Syntheses of Trifluoromethanethiolato Platinum(II) Complexes – Crystal Structures of *cis*-Pt(SCF₃)₂(PPh₃)₂ and *trans*-Pt(SCF₃)Cl(PPh₃)₂

Natalya V. Kirij^a, Wieland Tyrra^{b*}, Dieter Naumann^{b*}, Ingo Pantenburg^b, and Yurii L. Yagupolskii^a

^a Kiev / Ukraine, Institute of Organic Chemistry of the National Academy of Sciences of Ukraine,
^b Köln / Germany, Institut für Anorganische Chemie der Universität

Received August 26th, 2005.

Dedicated to Professor Bernhard Lippert on the Occasion of his 60th Birthday

Abstract. Ligand exchange reactions of *cis*-PtCl₂(PPh₃)₂ and [NMe₄]SCF₃ in different ratios were studied. Depending on the stoichiometry reactions proceeded with formation of products expected for the chosen ratio, i. e. *cis*-Pt(SCF₃)Cl(PPh₃)₂, *cis*-Pt(SCF₃)₂(PPh₃)₂, and [NMe₄][Pt(SCF₃)₃(PPh₃)]. Starting from *cis*-PtCl₂(MeCN)₂ and [NMe₄]SCF₃ and adding PPh₃ after substi-

Introduction

Platinum(II) trifluoromethanethiolato derivatives are established since middle of the 1970s [1-3]. Composition and behaviour in solution was studied in detail. The compounds were prepared either by oxidative addition of CF₃SSCF₃ to Pt⁰(PPh₃)₄ or by halide substitutions using AgSCF₃. The easy accessibility of [NMe₄]SCF₃ [4] together with the low solubility of tetramethylammonium halides, [NMe₄]X (X = Cl, Br, I), in common organic solvents opens a new synthetic approach for halide substitutions [4, 5]. Herein, we report on the syntheses of trifluoromethanethiolato platinum derivatives.

Results and Discussion

Ligand exchange reactions between $cis-PtCl_2(PPh_3)_2$ and $[NMe_4]SCF_3$

Reactions of cis-PtCl₂(PPh₃)₂ and [NMe₄]SCF₃ at ambient temperature in CH₂Cl₂ solutions allow more or less selective the syntheses of cis-Pt(SCF₃)Cl(PPh₃)₂ and cis-Pt(SCF₃)₂(PPh₃)₂ depending on the stoichiometry (Eq. (1) and (2)).

Institut für Anorganische Chemie, Universität zu Köln Greinstr. 6 D-50939 Köln Fax: 0221-4705196

E-mail: tyrra@uni-koeln.de, d.naumann@uni-koeln.de

tution, product mixtures were dominated by the corresponding

trans-isomers. Results of the single crystal structure analyses of

cis-Pt(SCF₃)₂(PPh₃)₂ and trans-Pt(SCF₃)Cl(PPh₃)₂ are discussed.

Keywords: Platinum; Trifluoromethanethiolate; Crystal structure

Both known compounds were isolated as raw materials and identified in comparison with literature data [1, 3]. In addition to the known ¹⁹F NMR data [1, 3], the missing data (Table 1) were determined from 1D-³¹P NMR, 2D-¹⁹⁵Pt HMBC and 2D-¹³C HMQC spectra. The *cis/trans* isomerization process is slow for both derivatives unless triphenylphosphane is added.

In dichloromethane solution, replacement of the PPh₃ ligands by SCF₃ groups is not observed. The exchange is finished on the stage of cis-Pt(SCF₃)₂(PPh₃)₂; excess of [NMe₄]SCF₃ can be recovered unchanged from the solutions.

Replacement of one PPh₃ group by a SCF₃ group is achieved using MeCN as a solvent. In this case, a salt with the [Pt(SCF₃)₃(PPh₃)]⁻ anion is formed (Eq. (3)). However, the compound [NMe₄][Pt(SCF₃)₃(PPh₃)] could not be isolated in pure state but the anion was identified unambiguously by ¹⁹F NMR spectroscopy. No evidence for the replacement of the second PPh₃ ligand as observed in nucleophilic trifluoromethylations with the reagent combination Me₃SiCF₃ / F⁻ / glyme to give [Pt(CF₃)₄]²⁻ [6] was found.

284

^{*} Dr. W. Tyrra, Prof. Dr. D. Naumann

	cis-Pt(SCF ₃)Cl(PPh ₃) ₂	trans-Pt(SCF ₃)Cl(PPh ₃) ₂	cis-Pt(SCF ₃) ₂ (PPh ₃) ₂	trans-Pt(SCF ₃) ₂ (PPh ₃) ₂
$\delta(^{19}F)^{a)}$	-22.5	-26.5	-23.3	-25.3
$^{3}J_{\rm Pt} = / \rm Hz$	63	118	70	83
$\delta(^{31}P)$	17.6 / 14.8 ^{b)}	20.2	17.8	22.6
$^{1}J_{\rm Pf}$ p / Hz	3033 / 3725 ^{b)}	2625	3147	2634
${}^{4}J_{\rm P} = / \text{Hz}$	$11 / \approx 0.8^{\text{ b}}$	≈ 1.5	$\approx 7 / \approx 2^{\text{b}}$	≈ 1.5
$^{2}J_{\rm P}$ p / Hz	17			
$\delta(^{195}Pt)$	-4511	-4480	-4621	-4673
$\delta(^{13}C)$	132.5	129.3	132.7	129.9
$^{1}J_{\rm F, C}$ / Hz	303	303	303	303

Table 1 Compilation of NMR Chemical Shifts and Couplings of PtSCF₃ Compounds (21 °C, CD₂Cl₂)

^{a) 19}F NMR chemical shifts are in excellent agreement with literature data [1, 3]. ^{b)} First value: PPh₃ standing *trans* to SCF₃; second value: PPh₃ standing *cis* to SCF₃.

The fact that in all spectra signals of cis-Pt(SCF₃)₂-(PPh₃)₂ and SCF₃⁻ were observed together with the characteristic signal groups of the anion suggests an equilibrium between those species (Eq. (4)).

Not even spectroscopic evidence was found for the formation of $[Pt(SCF_3)_4]^{2-}$ if a manifold excess of $[NMe_4]SCF_3$ was used indicating that phosphorous donors are better accepted by platinum(II) atoms than sulphur donors although the sulphur ligands are negatively charged.

Ligand exchange reactions between cis-PtCl₂(MeCN)₂ and [NMe₄]SCF₃

In a similar manner as described above reactions of *cis*- $PtCl_2(MeCN)_2$ and $[NMe_4]SCF_3$ in acetonitrile proceed nearly exclusively with formation of the *trans* isomers after addition of PPh₃ to the reaction mixtures (Eq. (5, 6)).

Again, *cis/trans* isomerization proceeds very slowly. Results of 1D-³¹P-NMR, 2D-¹⁹⁵Pt-HMBC and 2D-¹³C-HMQC are added to the record (Table 1), while ¹⁹F-NMR values matched with those known from the literature [1-3].

Results of Crystal Structure Analyses

General remarks

The number of structurally analyzed compounds with the kernel cis-Pt(SR)₂(PR'₃)₂ is comparably large with respect to the corresponding *trans*-isomers. This must be attributed to the fact that merely bi-dentate ligands – either S–S ligands [7, 8], P–P ligands [9] or both types [7, 10] – were used allowing exclusively *cis*-arrangement. Examples of motifs with exclusively mono-dentate S- and P-ligands are rare

[11]. A view onto available structural data reveals that sulphur ligands carrying electron withdrawing groups cause an elongation of the Pt-S bonds [12, 13] and a weak shortening of the Pt-P bonds. Significantly shorter Pt-S bonds are found in derivatives, *trans*-Pt(SC=C-*t*-Bu)₂(PPh₃)₂ [14] and *trans*-Pt(SC₆F₅)₂(SEt₂)₂ [15]. A comparison of the molecular structures of *cis*- [16] and *trans*-PtCl₂(PPh₃)₂ [17] together with the data given in [14] shows that Pt-P bond lengths in *trans*-complexes are elongated by approximately 4 pm compared with the *cis*-derivatives.

Molecular structure of $cis-Pt(SCF_3)_2(PPh_3)_2$

Cis-Pt(SCF₃)₂(PPh₃)₂ crystallizes in the monoclinic non centrosymmetric space group P2₁ (No. 4) in the shape of yellow blocks. A view on the molecule is depicted in Figure 1

Fig. 1 Molecular structure of cis-Pt(SCF₃)₂(PPh₃)₂ (1) (50 % probability ellipsoids; H-atoms have been omitted). Interatomic distances in pm and angles in degrees (with estimated standard deviations in parantheses):

Pt1-P1 228.5(2), Pt1-P2 228.0(2), Pt1-S1 238.1(2), Pt1-S2 237.7(2), S1-C1 175.9(9), S2-C2 178.5(10), P1-Pt1-P2 100.0(1), P2-Pt1-S2 167.8(1), P1-Pt1-S2 84.1(1), P2-Pt1-S1 85.6(1), P1-Pt1-S1 168.7(1), S2-Pt1-S1 92.4(1).

It forms square planar moieties with the bulky phosphane ligands in a *cis* orientation. The SCF₃ substituents exhibit anti conformation (Figure 1). The Pt-S bond lengths of 237.7(2) and 238.1(2) pm are found to be at the upper end of the normal range for bonds of this type [7-13], while the Pt-P bond lengths of 228.0(2) and 228.5(2) pm are within the normal range [11-13]. Due to the bulky triphenylphosphane group the P-Pt-P angle of $100.0(1)^{\circ}$ is more obtuse than the ideal right angle, while the angles S-Pt-P (84.1(1) and 85.6(1)°) become more acute. The S-Pt-S angle of 92.4(1)° only slightly deviates from the ideal. The S-C bonds of 175.9(9) and 178.5(10) pm are longer than in (Cp₂MoH₂)₂AgSCF₃ (173.4(5) pm [18]), another example of a derivative with a terminal SCF₃ moiety, while angles Pt-S-C of 102.5(1) and 102.8(1)° only slightly deviate from the Ag-S-C angle 101.7(2)° found in (Cp₂MoH₂)₂AgSCF₃.

Molecular structure of trans- $Pt(SCF_3)Cl(PPh_3)_2$

Trans-Pt(SCF₃)Cl(PPh₃)₂ crystallizes in the monoclinic centrosymmetric space group $P2_1/c$ (No. 14) in the shape of yellow polyhedrons. A view on the molecule is depicted in Figure 2.

Fig. 2 Molecular structure of *trans*-Pt(SCF₃)Cl(PPh₃)₂·2CH₂Cl₂ (2) (50 % probability ellipsoids; H-atoms and CH₂Cl₂ molecules have been omitted). Interatomic distances in pm and angles in degrees (with estimated standard deviations in parantheses): Pt1-S1 229.9(1), Pt1-P1 232.0(1), Pt1-P2 232.7(1), Pt1-Cl1 234.2(1),

 $\begin{array}{c} \text{S1-C1} & \text{176.2(5)}, & \text{S1-Pt1-P1} & \text{92.7(1)}, & \text{S1-Pt1-P2} & \text{91.3(1)}, & \text{P1-Pt1-P2} \\ \text{170.0(1)}, & \text{S1-Pt1-C11} & \text{175.6(1)}, & \text{P1-Pt1-C11} & \text{88.5(1)}, & \text{P2-Pt1-C11} & \text{88.2(1)}. \end{array}$

Each molecule has a square planar arrangement of the ligands around the platinum centre. No contacts are found between adjacent molecules. Two dichloromethane molecules co-crystallize. While one has a fixed position, the other is disordered.

In the molecule the PPh₃ groups are in a *trans* orientation. As a consequence distortion around the platinum centre is lower than in *cis* derivatives. The P-Pt-P angle of $170.0(1)^{\circ}$ deviates by 10° from linearity, while the S-Pt-Cl angle of 175.6(1)° is even closer to 180°. Consequently, S-Pt-P (92.7(1) and 91.3(1)°) as well as Cl-Pt-P (88.5(1)) and 88.2(1)°) differ less from the right angle than comparable angles in the *cis* derivative, cis-Pt(SCF₃)₂(PPh₃)₂. The Pt-P bond lengths of 232.0(1) and 232.7(1) pm are in absolute agreement with data collected for related trans compounds [14, 17], while the Pt-S bond length of 229.9(1) pm is somewhat shorter than in other *trans* thiolato complexes [14, 15]. On the other hand, the Pt-Cl bond of 234.2(1) pm is elongated by 3.4 pm compared with the parent molecule trans-PtCl₂(PPh₃)₂ [17]. These deviations might be attributed to the more electron withdrawing effects of the chloro ligand in comparison with the SCF₃ group.

Experimental Part

Schlenk techniques were used throughout all manipulations. *cis*-PtCl₂(PPh₃)₂ (ABCR) and *cis*-PtCl₂(MeCN)₂ (Aldrich) were used as received. [NMe₄]SCF₃ was prepared according to [4]. All solvents were dried by routine methods prior to use. NMR spectra were recorded on Bruker spectrometers AC200 and AVANCE 400 (¹H, ¹⁹F, ¹³C, ³¹P, ¹⁹⁵Pt). External standards were used in all cases (¹H, ¹³C: Me₄Si; ¹⁹F: CCl₃F; ³¹P: H₃PO₄ (85 %); ¹⁹⁵Pt: Na₂PtCl₆). Acetone-d₆ was used as an external lock (5 mm tube) in reaction control measurements while an original sample of the reaction mixture was measured in a 4 mm insert. HMQC and HMBC techniques were employed to determine the ¹⁹⁵Pt chemical shifts and to locate the SCF₃ groups. Complicated coupling patterns were calculated using the program gNMR [19]

Single crystals were grown from saturated dichloromethane solutions of the crude materials at -21 °C. Both compounds *cis*-Pt(SCF₃)₂(PPh₃)₂ (1) and *trans*-Pt(SCF₃)Cl(PPh₃)₂ (2) form yellow single crystals which were sealed in glass capillaries and the suitability was checked with the help of an IP-diffractometer (STOE IPDS II) [20, 21]. The same device was used to collect the reflection data of the respective best specimen. Structure solution and refinement were carried out using the programs SIR-92 [22] and SHELXL-97 [23]. Details of crystal data and structure refinement parameters for *cis*-Pt(SCF₃)₂(PPh₃)₂ (1) and *trans*-Pt(SCF₃)Cl(PPh₃)₂ (2) are summarised in Table 2.

Synthesis of cis-Pt(SCF₃)Cl(PPh₃)₂

To a solution of 0.79 g (1.0 mmol) cis-PtCl₂(PPh₃)₂ in 10 mL CH₂Cl₂ 0.19 g (1.1 mmol) [NMe₄]SCF₃ were added at room temperature. The mixture was stirred for 30 minutes. [NMe₄]Cl which has precipitated was filtered off and the crude material dried. Analysis by ¹⁹F and ³¹P NMR spectroscopic methods revealed a composition of 70 % cis-Pt(SCF₃)Cl(PPh₃)₂, 12 % cis-Pt(SCF₃)₂(PPh₃)₂ and 18 % of the starting material, cis-PtCl₂(PPh₃)₂.

Synthesis of cis-Pt(SCF₃)₂(PPh₃)₂

In a similar manner as described above, 0.38 g (2.2 mmol) [NMe₄]SCF₃ were added to a solution of 0.79 g (1.0 mmol)

Table 2	Crystal	Data a	and S	tructure	Refinement	Parameters	for
cis-Pt(SCI	$F_3)_2(PPh$	3) ₂ (1) a	nd tra	ans-Pt(SC	CF_3)Cl(PPh ₃)	$_2 \cdot 2 C H_2 C l_2$ (2)

	1	2
empirical formula formula mass / g mol ⁻¹	$\begin{array}{c} C_{38}H_{30}F_6P_2S_2Pt\\ 921.77 \end{array}$	C ₃₉ H ₃₄ F ₃ P ₂ SCl ₅ Pt 1026.00
data collection		
diffractometer	STOE IPDS II	STOE IPDS II
radiation	Mo- K_{α} (graphite monoch	romator, $\lambda = 71.073$ pm)
temperature / K	150(2)	150(2)
index range	$-11 \le h \le 12$	$-20 \le h \le 20$
	$-25 \le k \le 25$	$-18 \le k \le 18$
	$-12 \le 1 \le 12$	$-22 \le I \le 22$
rotation angle range	$0^{\circ} \leq \omega \leq 180^{\circ}; \gamma = 0^{\circ}$	$0^{\circ} \leq \omega \leq 180^{\circ}; \gamma = 0^{\circ}$
increment	$0^{\circ} \leq \omega \leq 180^{\circ}; \gamma = 90^{\circ}$	$0^{\circ} \leq \omega \leq 29^{\circ}; \gamma = 90^{\circ}$
no of images	$\Delta \omega = 1$ 360	$\Delta \omega = 1$ 200
exposure time / min	1	1
detector distance / mm	120	120
20 range / deg	120 - 548	120 - 548
total data collected	24365	33936
unique data	7654	8286
observed data	7345	7071
R _{merg}	0.0735	0.0346
absorption correction	numerical, after crystal sha	ape optimization [20, 21]
transmission min / max	0.2244 / 0.5848	0.3673 / 0.6493
crystallographic data		
crystal size / mm	$0.3 \cdot 0.3 \cdot 0.2$	$0.2 \cdot 0.2 \cdot 0.1$
colour, habit	yellow, block	yellow, polyhedron
crystal system	monoclinic	monoclinic
space group	$P2_1$ (no. 4)	$P2_1/c$ (no. 14)
a / pm	954.4(1)	1567.9(1)
b/pm	1992.1(1)	1481.5(1)
c / pm	1011.6(1)	1/8/.3(1)
β / \deg	111.0/(1)	114.61(1)
volume / 10° pm²	1/94./(2)	3//4.2(3)
\sum	1 706	4
$p_{calc} / g cm^{-1}$	1.700	1.800
μ / mm $F(000)$	904	2016
1 (000)		2010
structure analysis and refinement*		
structure determination	SIR-92 [22] and S	HELXL-97 [23]
no. of variables	444	466
R indexes $[I > 2\sigma(I)]$	$R_1 = 0.0479$	$R_1 = 0.0334$
	$wR_2 = 0.1051$	$wR_2 = 0.0856$
R indexes (all data)	$\bar{R}_1 = 0.0516$	$\bar{R}_1 = 0.0399$
	$wR_2 = 0.1085$	$wR_2 = 0.0881$
goodness of fit (Sall)	1.058	1.022
Flack x	-0.028(8)	-
largest difference map		
hole / peak / e 10^{-6}pm^{-3}	-3.467 / 1.703	-1.643 / 2.348
Deposition number [24]	CCDC-275940	CCDC-275937

$$\begin{split} &R_1 = \Sigma \|F_o| - |F_c\| \ / \ \Sigma \ |F_o|, \ wR_2 = [\Sigma \ w \ (|F_o|^2 - |F_c|^2)^2 \ / \ \Sigma \ w \ (|F_o|^2)^2]^{1/2}, \\ &\Sigma_2 = [\Sigma \ w \ (|F_o|^2 - |F_c|^2)^2 \ / \ (n-p)]^{1/2}, \ with \ w = 1 \ / \ [\sigma^2 \ (F_o)^2 \ + \\ &(0.0392 \cdot P)^2 \ + \ 13.4186 \cdot P] \ for \ (1) \ and \ w = 1 \ / \ [\sigma^2 \ (F_o)^2 \ + \ (0.0643 \cdot P)^2] \\ &for \ (2), \ were \ P = (F_o^2 \ + \ 2F_c^2) \ / \ 3. \ F_c^* = \ k \ F_c \ [1 \ + \ 0.001 \cdot |F_c|^2 \ \lambda^3 \ / \\ &sin(20)]^{-1/4}. \end{split}$$

* All H atoms (except the hydrogen atoms for the CH_2Cl_2 molecules in (2)) were placed in idealized positions and constrained to ride on their parent atom. The position of one CH_2Cl_2 molecule in (2) referring to C3, Cl31 and Cl32 has an occupancy factor of 0.35. This is in accordance with the maximum of 0.5 to avoid too short interatomic distances of the two crystallographic equivalent Clatoms (Cl31 and Cl32), respectively.

cis-PtCl₂(PPh₃)₂ in 10 mL CH₂Cl₂ at room temperature. The mixture was stirred for 60 minutes. [NMe₄]Cl was filtered off and the crude material dried. The composition of the crude material was determined to consist of 4% *cis*-Pt(SCF₃)Cl(PPh₃)₂, 92% *cis*-Pt(SCF₃)₂(PPh₃)₂ and 4% of the starting material, *cis*-PtCl₂(PPh₃)₂.

Attempted synthesis of [NMe₄][Pt(SCF₃)₃(PPh₃)]

To a solution of 0.79 g (1.0 mmol) cis-PtCl₂(PPh₃)₂ in 10 mL MeCN, 0.57 g (3.3 mmol) [NMe₄]SCF₃ were added. Stirring was continued for 24 hours. After this period, two multiplets in the integrative ratio 1:2 were detected for the anion beside the low-intensity resonances of cis-Pt(SCF₃)₂(PPh₃)₂ and SCF₃⁻.

¹⁹F NMR (MeCN): $\delta = -20.2$ (m, 3F, ${}^{3}J_{Pt, F} = 77$ Hz; ${}^{4}J_{P, F} = 14$ Hz), -23.0 (m, 6F, ${}^{3}J_{Pt, F} = 88$ Hz; ${}^{4}J_{P, F} \approx 1$ Hz).

Syntheses of trans- $Pt(SCF_3)Cl(PPh_3)_2$ and trans- $Pt(SCF_3)_2(PPh_3)_2$

0.35 g (1.0 mmol) *cis*-PtCl₂(MeCN)₂ were dissolved in 10 mL MeCN. 0.19 g (1.1 mmol) respective 0.38 g (2.2 mmol) [NMe₄]SCF₃ were added. 0.52 g (2.0 mmol) PPh₃ were added to both reaction mixtures. After one hour stirring was terminated, all insoluble material was filtered off and all volatile materials were removed in vacuo giving raw materials of the composition 92 % *trans*-Pt(SCF₃)Cl(PPh₃)₂ and 8 % *trans*-Pt(SCF₃)₂(PPh₃)₂, respectively 8 % *trans*-Pt(SCF₃)Cl(PPh₃)₂ and 92 % *trans*-Pt(SCF₃)₂(PPh₃)₂.

NMR data of all compounds are summarized in Table 1.

Acknowledgement. This work was generously supported by the Deutsche Forschungsgemeinschaft (436 UKR 113).

References

- [1] K. R. Dixon, K. C. Moss, M. A. R. Smith, J. Chem. Soc., Dalton Trans. 1973, 1528–1532.
- [2] K. R. Dixon, K. C. Moss, M. A. R. Smith, J. Chem. Soc., Dalton Trans. 1974, 971–977.
- [3] K. R. Dixon, K. C. Moss, M. A. R. Smith, J. Chem. Soc., Dalton Trans. 1975, 990–998.
- [4] W. Tyrra, D. Naumann, B. Hoge, Yu. L. Yagupolskii, J. Fluorine Chem. 2003, 119, 101–107.
- [5] M. M. Kremlev, W. Tyrra, D. Naumann, Yu. L. Yagupolskii, *Tetrahedron Lett.* 2004, 45, 6101–6104.
- [6] D. Naumann, N. V. Kirij, N. Maggiarosa, W. Tyrra, Yu. L. Yagupolskii, M. S. Wickleder, Z. Anorg. Allg. Chem. 2004, 630, 746-751.
- [7] J. Fornieés-Cámer, A. Aaliti, N. Ruiz, A. M. Masdeu-Bultó, C. Claver, C. J. Cardin, J. Organomet. Chem. 1997, 530, 199–209.
- [8] S. A. Bryan, D. M. Roundhill, Acta Crystallogr. 1983, C39, 184–186; M. J. G. Lesley, W. Clegg, T. B. Marder, N. C. Norman, A. G. Orpen, A. J. Scott, J. Starbuck, Acta Crystallogr. 1999, C55, 1272–1275; U. Belluco, R. Bertani, R. A. Michelin, M. Mozzon, G. Bombieri, F. Benetollo, Gazz. Chim. Ital. 1994, 124, 487–495; D. S. Dudis, C. King, J. P. Fackler, jr., Inorg. Chim. Acta 1991, 181, 99–102; C. E. Keefer, S. T. Purrington, R. D. Bereman, B. W. Knight, D. R. Bedgood, jr., P. D. Boyle, Inorg. Chim. Acta 1998, 282, 200–208.

- [9] G. Wei, Z. Huang, M. Hong, H. Liu, Jiegou Huaxue 1991, 10, 159–161, CA115:244479; M. Capdevila, W. Clegg, P. Gonzáles-Duarte, B. Harris, I. Mira, J. Sola, I. C. Taylor, J. Chem. Soc., Dalton Trans. 1992, 2817–2826; G. Wei, H. Liu, Acta Cryst. 1990, C46, 2457–2458; G. Wei, M. Hong, Z. Huang, H. Liu, Jiegou Huaxue 1992, 11, 334–338, CA119:250144.
- [10] P. C. Bulman Page, S. S. Klair, M. P. Brown, C. S. Smith, S. J. Maginn, S. Mulley, *Tetrahedron* **1992**, *28*, 5933–5940; J. M. Bevilacqua, J. A. Zuleta, R. Eisenberg, *Inorg. Chem.* **1994**, *33*, 258–266.
- [11] Q. Chen, F. Boeheim, J. Dabrowiak, J. Zubieta, *Inorg. Chim. Acta* 1994, 216, 83–87; C. E. Bryan, G. R. Hughes, P. C. Minshall, D. M. P. Mingos, *J. Organomet. Chem.* 1980, 202, C18–C20; R. Vicente, J. Ribas, X. Solans, G. Germain, *An. Quim. Ser. B* 1986, 82, 47–51; CA106:187769.
- [12] L. Villanueva, M. Arroyo, S. Bernès, H. Torrens, *Chem. Commun.* 2004, 1942–1943.
- [13] G. Rivera, S. Bernès, C. Rodriguez de Barbarin, H. Torrens, *Inorg. Chem.* 2001, 40, 5575–5580.
- [14] W. Weigand, M. Weishäupl, C. Robl, Z. Naturforsch. 1996, 51b, 501-505.
- [15] D. Cruz-Garritz, E. Martin, H. Torrens, K. A. Mayoh, A. J. Smith, Acta Crystallogr. 1990, C46, 2377–2379.

- [16] G. K. Anderson, H. C. Clark, J. A. Davies, G. Ferguson, M. Parvez, J. Crystallogr. Spectrosc. Res. 1982, 12, 449-458, CA97:227911.
- [17] M. H. Johansson, S. Otto, Acta Crystallogr. 2000, C56, e12-e15.
- [18] H. Brunner, A. Hollmann, B. Nuber, M. Zabel, J. Organomet. Chem. 2001, 633, 1–6.
- [19] P. H. M. Budzelaar, gNMR Version 4.1. Cherwell Scientific, Oxford, UK, 1998.
- [20] X-RED 1.22, Stoe Data Reduction Program (C) 2001 Stoe & Cie GmbH Darmstadt.
- [21] X-Shape 1.06, Crystal Optimisation for Numerical Absorption Correction (C) 1999 STOE & Cie GmbH Darmstadt.
- [22] A. Altomare, G. Cascarano, C. Giacovazzo, SIR-92; A program for crystal structure solution. J. Appl. Crystallogr. 1993, 26, 343–350.
- [23] G. M. Sheldrick, SHELXL-97; Program for Crystal Structure Refinement, Göttingen, 1998.
- [24] Crystallographic data for the structures have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 275940 (*cis*-Pt(SCF₃)₂(PPh₃)₂) and CCDC 275937 (*trans*-Pt(SCF₃)Cl(PPh₃)₂). These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/datarequest/cif.