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for the synthesis of 5-substituted 2-amino-1,3,4-oxadiazoles
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Abstract A rapid, improved, and environmentally benign

synthesis of 5-substituted 2-amino-1,3,4-oxadiazoles by

one-pot electrocyclization of acylthiosemicarbazones is

reported. Controlled potential electrolysis was performed at

room temperature in acetonitrile as non-aqueous solvent

and LiClO4 as supporting electrolyte. The reaction prod-

ucts were characterized by spectroscopic methods and a

mechanism was deduced from voltammetric data. Better

yields at room temperature, shortest reaction time, and easy

work-up are attractive features of this green procedure.
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Introduction

1,3,4-Oxadiazoles are a class of heterocycles which have

attracted significant interest in medicinal chemistry. These

compounds have a wide range of pharmaceutical and

biological activity including anti-inflammatory [1], antimi-

crobial [2], antimalarial [3], antifungal [4], muscle relaxant

[5], anticancer [6], analgesic [7], anti-HIV [8], antitubercular

[9], anticonvulsant [10], antiproliferative [11], insecticidal

[12], antiparasitic [13], antiviral [14], antihypoglycemic

[15], hypotensive [16], 5-HT-receptor antagonist [17], and

muscarinic receptor agonist [18]. Some material applications

of 1,3,4-oxadiazole derivatives are in photosensitizers [19],

liquid crystals [20], and organic light-emitting diodes

(OLEDs) [21].

Development of eco-friendly synthetic methods in

chemical research has great importance [8, 22–28] because

conventional organic synthesis involves multistep proce-

dures with complex isolation, and expensive and toxic

solvents and reagents. With increasing public concern over

environmental degradation, use of electrochemical tech-

nology can be a valuable alternative to conventional

reagents for fine chemical synthesis [29–31]. Because of

electron transfer between an electrode and substrate mole-

cules, formation of highly reactive intermediates is

achieved under mild conditions, avoiding acids and bases as

reducing or oxidizing agents and related waste by-products.

It seems that electrochemical procedures will emerge as a

new tool in which the special advantages of electrochem-

istry, for example energy specificity, chemical selectivity,

and specific activation of small molecules can be applied

without toxic reagents and solvents.

Results and discussion

1,3,4-Oxadiazoles are an important class of heterocyclic

compounds with a wide range of pharmaceutical and bio-

logical activity. Their synthesis and transformation have

been of interest for a long time, as documented by a

steadily increasing number of publications and patents

[32]. However, despite their common use, various reported

methods for preparation of 1,3,4-oxadiazoles [9] suffer

from harsh conditions or stoichiometric formation of

Electronic supplementary material The online version of this
article (doi:10.1007/s00706-011-0711-3) contains supplementary
material, which is available to authorized users.

S. Singh � L. K. Sharma � A. Saraswat � R. K. P. Singh (&)

Electrochemical Laboratory of Green Synthesis,

Department of Chemistry, University of Allahabad,

Allahabad 211002, U.P., India

e-mail: rkp.singh@rediffmail.com

123

Monatsh Chem (2012) 143:1427–1430

DOI 10.1007/s00706-011-0711-3

http://dx.doi.org/10.1007/s00706-011-0711-3


byproducts. Approaches are based on bromine oxidation of

semicarbazide derivatives and on cyclodesulfurization of

acylthiosemicarbazide derivatives in solution using I2/

NaOH or 1,3-dicyclohexylcarbodiimide (DCC) [33–36],

mercury(II) acetate or yellow mercury(II) oxide [37, 38],

and highly reactive alkylating agents, for example methyl

iodide [39] and ethyl bromoacetate [9]. Evans [40] syn-

thesized oxadiazole derivatives by parallel synthesis in an

efficient one-pot preparation using resin-bound reagents.

All these methods are usually carried performed in differ-

ent synthetic steps and require high temperature, and

extraction and purification of the products from the mixture

requires great precautions.

The objective of our research program is to find a new

general route for eco-friendly efficient synthesis [41–46] of

important organic compounds without the use of toxic

reagents. We propose electrooxidative cyclization of acyl-

thiosemicarbazones 3 in the presence of acetonitrile as

solvent and LiClO4 as background electrolyte. The reaction

involves two discrete synthetic steps; in the first step,

reaction of acylhydrazide 1 with an isothiocyanate 2 pro-

vides the acylthiosemicarbazone 3. In the second step,

electrooxidative cyclization of acylthiosemicarbazone 3

gives oxadiazoles 4 (Scheme 1).

In the proposed mechanism (Scheme 2) the acylthiose-

micarbazone undergoes one-electron oxidation followed by

dehydrosulfidation, i.e., evolution of H2S (confirmed by

use of lead tetraacetate paper) and results in the formation

of products in 70–95% yield.

Experimental

Cyclic voltammetric experiments were performed using an

Alsch Instruments model 600A electrochemical analyzer.

IR spectra (KBr) were recorded on a Shimadzu 8201 PC IR

spectrophotometer. 1H and 13C NMR spectra were recor-

ded on a Bruker DRX 400 spectrometer (400 MHz) in

CDCl3 using TMS as an internal standard. Chemical shifts

(d) are quoted in ppm. Mass spectra were acquired on a

Jeol SX-1020/PA-6000 (EI) spectrometer. Melting points

were determined by the open tube capillary method.

Scheme 1
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Fig. 1 Cyclic voltammogram of 3a in 0.1 M LiClO4 at a platinum

electrode (area 1 9 1 cm2) at a scan rate of 100 mV s-1, counter

electrode: platinum mesh, reference electrode: Ag/AgCl, T = 25 ± 1

�C. The corresponding CV contains one anodic peak at 1.24 V. This

peak corresponds to oxidation of acylthiosemicarbazone

Scheme 2
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All chemicals used were AnalaR grade purchased from

Merck and Loba Chem, and were used without purification.

Water used in the reaction was double-distilled. The

acylthiosemicarbazones 3 were prepared by acylation of

commercially available hydrazides 1 with the appropriate

isothiocyanates 2 by a known method [28] (Fig. 1).

Electroorganic synthesis of 5-substituted 2-amino-

1,3,4-oxadiazoles 4a–4k — controlled potential

electrolysis (CPE)

Acylthiosemicarbazone 3 (8.0 mmol) and lithium perchlo-

rate (4.0 mmol) were dissolved in 100 cm3 acetonitrile.

Preparative-scale controlled potential electrolysis was per-

formed at room temperature in a 250 cm3 three-electrode

cell with platinum plate (flattened sheet of dimensions

1.0 cm 9 1.0 cm) as working and counter electrodes and

saturated calomel electrode (SCE) as reference electrode. A

magnetic stirrer was used to ensure complete mixing of the

reaction mixture during electrolysis. All electrolysis reac-

tions were carried out at the corresponding oxidation

potential of the substrate (1.24 V for 3a) and were complete

in 3–4 h. The progress of the reactions was monitored by

TLC. The current–potential data were recorded by use of a

potentiostat at intervals of 15 min and are listed in Table 1.

After electrolysis the solvent was evaporated under reduced

pressure and the product was purified by column chroma-

tography over silica gel. All products were analyzed by

spectral techniques.
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