

Anion-Triggered Substituent-Dependent Conformational Switching of Salicylanilides. New Hints for Understanding the Inhibitory Mechanism of Salicylanilides

Lin Guo, Qiang-Li Wang, Qian-Qian Jiang, Qiu-Ju Jiang, and Yun-Bao Jiang*

Department of Chemistry, College of Chemistry and Chemical Engineering, and The MOE Key Laboratory of Analytical Sciences, Xiamen University, Xiamen 361005, China

ybjiang@xmu.edu.cn

Received August 19, 2007

A series of salicylanilides (1a-h) bearing varied substituents at the 3'- or 4'-position of the anilino moiety (substituent = p-OCH₃, p-CH₃, m-CH₃, H, p-Cl, m-Cl, p-CO₂CH₃, and p-CN) were synthesized. In acetonitrile all of the substituted salicylanilides 1a-h predominantly adopt the "closed-ring" conformation facilitated by a strong intramolecular OH····O=C hydrogen bond. In the presence of H₂PO₄⁻, the conformation of 1a-h was found to be modulated by the substituent. With our proposed protontransfer fluorescence probing method, we were able to show that the conformation of 1a-f bearing a not highly electron-withdrawing substituent was switched to the "open-ring" form by H₂PO₄⁻, whereas 1hbearing a highly electron-withdrawing substituent, p-CN, remained in the "closed-ring" conformation. The significance of these findings for understanding, from a molecular structural point of view, the mechanism of salicylanilide-based inhibitors for inhibiting the protein tyrosine kinase epidermal growth factor receptor was discussed.

Introduction

Salicylanilides have been the subject of intensive interest in medicinal chemistry, due to their ability to serve as inhibitors of the protein tyrosine kinase epidermal growth factor receptor (EGFR PTK) relating to cancer, psoriasis, and restenosis.¹ They are generally suggested to compete with ATP for binding at the catalytic domain of tyrosine kinase and stop the growth of tumors.^{1a,b} Salicylanilides exist in a conformational equilibrium between the "closed-ring" and "open-ring" conformers, Scheme 1. The closed-ring conformation involving a strong intramolecular OH···O=C hydrogen bond has been proven to be

predominant and closely related to the inhibitory activities of salicylanilides.¹ Meanwhile, an electron-withdrawing substituent at the anilino moiety appears to be required to promote the inhibitory activity of salicylanilides.¹ Recent calculations, however, suggested that this would shift the conformational equilibrium of salicylanilides to the open-ring side,² not favor-

 $[\]ast$ To whom correspondence should be addressed. Phone/fax: +86 592 2185662.

 ^{(1) (}a) Kamatb, S.; Buolamwini, J. K. Med. Res. Rev. 2006, 26, 569– 594. (b) Liechti, C.; Séquin, U.; Bold, G.; Furet, P.; Meyer, T.; Traxler, P. Eur. J. Med. Chem. 2004, 39, 11–26. (c) Waisser, K.; Bureš, O.; Hol'y, P.; Kuneš, J.; Oswald, R.; Jirásková, L.; Pour, M.; Klimešová, V.; Kubicová, L.; Kaustová, J. Arch. Pharm. Pharm. Med. Chem. 2003, 1, 53–71. (d) Macielag, M. J.; Demers, J. P.; Fraga-Spano, S. A.; Hlasta, D. J.; Johnson, S. G.; Kanojia, R. M.; Russell, R. K.; Sui, Z.-H.; Weidner-Wells, M. A.; Werblood, H.; Foleno, B. D.; Goldschmidt, R. M.; Loeloff, M. J.; Webb, G. C.; Barrett, J. F. J. Med. Chem. 1998, 41, 2939–2945.

able for their inhibitory functions. Although the exact equilibrium status is not yet clear, the role of the electron-withdrawing substituent at the anilino moiety in the inhibitory activity of salicylanilides remains to be clarified. Another issue untouched is the possible interaction of salicylanilides with ATP, in addition to their competition for binding sites in tyrosine kinase. In fact, salicylanilides, containing conventional hydrogen-bonding donor groups, phenolic OH and amido NH, are potent anion receptors.^{3,4} Interaction of them with ATP is indeed expected, and whether this interaction, if any, influences the conformation of salicylanilides is unclear.

We thus carried out a systematic investigation of the conformation in acetonitrile (CH₃CN) of a series of salicylanilides bearing substituent X at the 3'- or 4'-position of the anilino moiety ranging from electron-donating *p*-OCH₃ to highly electron-withdrawing *p*-CN (**1a-h**, Figure 1) in the absence and presence of H₂PO₄⁻, an alternative taken for ATP. Although infrared (IR) and NMR have been widely employed useful techniques for clarifying the conformation of amides and the involved hydrogen bonds,⁵ we proposed a fluorescence method for the case of salicylanilides, not only because of the higher spectroscopy sensitivity and enlarged solvent availability, but more specifically due to the intriguing photophysical properties of salicylanilides. In the closed-ring conformer of salicylanilides, the phenolic OH is intramolecularly hydrogen bonded to the

(3) (a) Santacroce, P. V.; Davis, J. T.; Light, M. E.; Gale, P. A.; Iglesias-Sanchez, J. C.; Prados, p.; Quesada, R. J. Am. Chem. Soc. 2007, 129, 1886–1887. (b) Winstanley, K. J.; Smith, D. K. J. Org. Chem. 2007, 72, 2803–2815. (c) Winstanley, K. J.; Sayer, A. M.; Smith, D. K. Org. Biomol. Chem. 2006, 4, 1760–1767. (d) Libra, E. R.; Scott, M. J. Chem. Commun. 2006, 1485–1487. (e) Ghosh, S.; Choudhury, A. R.; Guru Row, T. N.; Maitra, U. Org. Lett. 2005, 7, 1441–1444. (f) Kondo, S.; Suzuki, T.; Toyama, T.; Yano, Y. Bull. Chem. Soc. Jpn. 2005, 78, 1348–1350. (g) Smith, D. K. Org. Biomol. Chem. 2003, 1, 3874–3877. (h) Zhang, X.; Guo, L.; Wu, F.-Y.; Jiang, Y.-B. Org. Lett. 2003, 5, 2667–2670. (i) Kondo, S.; Suzuki, T.; Yano, Y. Tetrahedron Lett. 2002, 43, 7059–7061. (j) Lee, D. H.; Lee, K. H.; Hong, J. I. Chem. Commun. 2001, 1188–1189. (l) Lee, K. H.; Lee, H. Y.; Lee, D. H.; Hong, J. I. Tetrahedron Lett. 2001, 42, 5447–5449. (m) Lee, C.; Lee, D. H.; Hong, J. I. Tetrahedron Lett. 2001, 42, 8665–8668.

(4) (a) Gale, P. A., Ed. Coordination Chemistry Reviews; Elsevier: New York, 2006; Vol. 250. (b) Gale, P. A. Acc. Chem. Res. 2006, 39, 465-475.
(c) Kang, S. O.; Begum, R. A.; Bowman-James, K. Angew. Chem., Int. Ed. 2006, 45, 7882-7894. (d) Martínez-Máñez, R.; Sancenón, F. Chem. Rev. 2003, 103, 4419-4476. (e) Gale, P. A., Ed. Coordination Chemistry Reviews; Elsevier: New York, 2003; Vol. 240. (f) Suksai, C.; Tuntulani, T. Chem. Soc. Rev. 2003, 32, 192-202. (g) Beer, P. D.; Gale, P. A. Angew. Chem., Int. Ed. 2001, 40, 486-516. (h) Wiskur, S. L.; Ait-Haddou, H.; Lavigne, J. J.; Anslyn, E. V. Acc. Chem. Res. 2001, 34, 963-972.

(5) (a) Kanamori, D.; Okamura, T.-A.; Yamamoto, H.; Ueyama, N. Angew. Chem., Int. Ed. **2005**, 44, 969–972. (b) Kanamori, D.; Okamura, T.-A.; Yamamoto, H.; Shimizu, S.; Tsujimoto, Y.; Ueyama, N. Bull. Chem. Soc. Jpn. **2004**, 77, 2057–2064. (c) Suezawa, H.; Hirota, M.; Yuzuri, T.; Hamada, Y.; Takeuchi, I.; Sugiura, M. Bull. Chem. Soc. Jpn. **2000**, 73, 2335–2339. (d) Suezawa, H.; Hirota, M.; Hamada, Y.; Takeuchi, I.; Kawabe, T. Bull. Chem. Soc. Jpn. **1991**, 64, 2863–2864. (e) Endo, H.; Hirota, M.; Ito, Y.; Takeuchi, I.; Hamada, Y. Bull. Chem. Soc. Jpn. **1982**, 55, 1564–1567.

X's: (a) 4'-OCH₃, (b) 4'-CH₃, (c) 3'-CH₃, (d) H, (e) 4'-Cl,

(f) 3'-Cl, (g) 4'-CO₂CH₃, (h) 4'-CN

carbonyl O atom, which could be signaled by the observation of excited-state intramolecular proton transfer (ESI_{intra}PT) fluorescence. Phenolic OH in the open-ring conformer, on the other hand, is not intramolecularly hydrogen-bonded, and salicylanilides are hence prone to emit excited-state intermolecular proton transfer (ESI_{inter}PT) fluorescence, especially when a proton acceptor such as an anion is present. As a consequence, the conformation of salicylanilides could be probed by the character of the proton-transfer fluorescence. Our investigations showed fluorescence spectroscopy indeed worked well in this regard and uncovered that $H_2PO_4^-$ could switch the conformation of salicylanilides from the closed-ring form to the openring form, and this switching was subject to the electronwithdrawing ability of substituent X.

Results and Discussion

Suezawa et al.5c in 2000 determined by NMR the conformation of unsubstituted salicylanilide 1d in CCl₄ and suggested that 1d adopted mainly the closed-ring conformation. It was thus wondered whether the closed-ring conformation was still predominant in more polar CH₃CN, the solvent used here. ¹H NMR and NOESY spectra of 1d in CD₃CN were recorded. The phenolic OH signal was observed at 12.01 ppm, which is close to 11.98 ppm in CCl₄ but is shifted to far downfield compared to that of non-hydrogen-bonded phenolic OH normally observed at 4–6 ppm,^{5b} indicating the OH····O=C intramolecular hydrogen bonding in 1d. The NOESY spectrum shows obvious NOE correlations of the amido NH proton with the aryl CH proton at the 6- and 6'-positions (Figure 2), providing further evidence for the preference of the closed-ring to open-ring conformation in the equilibrium (Scheme 1). Correlation with the Hammett constant of substituent X of the NMR signals of phenolic OH and amido NH protons of 1a-h in CD₃CN and DMSO- d_6 (Figure 3) confirmed that indeed the phenolic OH proton was involved in an intramolecular hydrogen bond while the amido NH proton was exposed to solvent molecules to a much higher extent, and all of them took the closed-ring conformation in CH₃CN and even in highly polar and hydrogen-bonding DMSO. It was also found in Figure 3 that, with increasing electronwithdrawing ability of X, the signal of the phenolic OH proton shifted to high field, suggesting a weakening OH····O=C hydrogen bond. This is in agreement with our molecular mechanic calculations which showed increasing OH····O=C hydrogen bond length (B3LYP/6-31G* level)⁶ and decreasing hydrogen-bonding energy7 (Table 1). This means that the conformational equilibrium of 1 (Scheme 1) is shifted more toward the open-ring side when X becomes more electronwithdrawing.2

^{(2) (}a) Blanco, S. E.; Ferretti, F. H. *Tetrahedron Lett.* 2007, 48, 2577–2581.
(b) Palomar, J.; De Paz, J. L. G.; Catalán, J. J. *Phys. Chem. A* 2000, 104, 6453–6463.
(c) Catalán, J.; Palomar, J.; De Paz, J. L. G. J. *Phys. Chem. A* 1997, 101, 7914–7921.

FIGURE 2. NOESY spectrum of 1d in CD₃CN.

FIGURE 3. Linear relationship against the Hammett constant of substituent X in **1a**-**h** of the chemical shifts of the OH and NH protons in CD₃CN and DMSO-*d*₆. With **2**, the methoxy counterpart of **1**, in DMSO-*d*₆, δ (NH) = 10.12 + 0.61\sigma_X.^{8a}

Due to intramolecular OH····O=C hydrogen bonding, salicylanilide **1d**, similar to salicylamide, exhibits an absorption band at 310 nm and an ESI_{intra}PT fluorescence at 470 nm in CH₃CN (Figure 4).⁸ With introduction of a substituent at the 3'- or 4'-position of the anilino moiety, the characteristic absorption and fluorescence of salicylanilide at 310 and 470 nm were not much affected (Figures 4 and 5), indicating that the predominant closed-ring conformation in 1a-h remains despite varying 3'- or 4'-substitution.

Note that the emission maximum of **1** slightly shifts to the red with increasing electron-withdrawing ability of X (Figures 4b and 5), which is opposite to the intramolecular charge transfer (ICT) emission of its methoxy counterpart **2** that shifts to the blue.^{8a} This provides additional support for the intramolecular proton-transfer nature of the emissive state of **1a**–**h** and hence their closed-ring conformation.

In the presence of $H_2PO_4^-$, interaction of **1** with $H_2PO_4^-$ was expected that may influence the conformation of **1**. The phenolic OH proton of **1** in the closed-ring conformation is hydrogenbonded to carbonyl O, and therefore, only the amido NH and aryl CH protons are available for binding $H_2PO_4^-$. In contrast, **1** in the open-ring form seems to be more favorable for binding $H_2PO_4^-$ because the phenolic OH is also available (Scheme 2).^{3b} To clarify the conformation **1a**-**h** adopt in the presence of $H_2PO_4^-$, we first carried out ¹H NMR titrations of **1d** by $H_2PO_4^$ in CD₃CN.

Figure 6 shows that, upon addition of H₂PO₄⁻, the signal of the amido NH proton is broadened and shifted downfield from 8.93 to 11.83 ppm whereas that of the phenolic OH proton originally at 12.01 ppm rapidly disappears. Meanwhile, downfield shifts in the NMR signals of CH(6) and CH(6') protons are also observed. These facts confirm hydrogen-bonding interaction of **1d** with H₂PO₄^{-.11} ¹H NMR dilution experiments on 1d in CD₃CN carried out over a 1d concentration range of 0.1-20 mmol L⁻¹ indicated hardly any change in the chemical shifts of phenolic OH, amido NH, and aryl CH protons (Figures S1 and S2, Supporting Information), excluding the dimerization of 1d at 10 mmol L^{-1} , the concentration employed for NMR titration. Since the pK_a of H_3PO_4 (2.16 in water⁹) is much lower than that of 1d (7.68 in water¹⁰), deprotonation of 1d by $H_2PO_4^$ was ruled out; otherwise, a signal of the amido NH proton at ca. 16 ppm would have been observed^{5b} and the signal of the C-H(6) proton shifted upfield due to an increase in the electron density in the salicyloyl ring via a through-bond mechanism.¹¹ These, however, are still not enough to make a clear assignment of the conformation of 1d, because similar spectral changes are likely to be observed in both the closed-ring and open-ring conformations upon their interactions with H₂PO₄⁻. In principle, binding $H_2PO_4^-$ by 1d in the closed-ring conformation (Scheme 2) will result in not only downfield shifts of the amido NH and aryl CH (6 and 6') signals but also an increase in the electron density at the carbonyl O atom and hence an enhancement in the intramolecular OH····O=C hydrogen bond. The latter would bring about a downfield shift and even the disappearance of the phenolic OH proton signal. Similarly, signals of phenolic OH, amido NH, aryl CH(6') and CH(6) protons of 1d in the open-ring conformation could also be shifted downfield due to hydrogen bonding of 1d with $H_2PO_4^-$ and polarization of the C-H(6) bond by a through-space effect.¹¹

Absorption and fluorescence spectroscopies were then applied. Spectral traces given in Figure 7 for the case of **1d** indeed

⁽⁶⁾ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanavakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Gaussian, Inc.: Pittsburgh, PA, 1998.

⁽⁷⁾ Schaefer, T. J. Phys. Chem. 1975, 79, 1888-1890.

^{(8) (}a) Zhang, X.; Guo, L.; Jiang, Y.-B. *Acta Phys.-Chim. Sin.* **2004**, 20, 930–935. (b) Woolfe, G. J.; Thistlethwaite, P. J. *J. Am. Chem. Soc.* **1980**, *102*, 6917–6923. (c) Thistlethwaite, P. J.; Woolfe, G. J. *Chem. Phys. Lett.* **1979**, *63*, 401–405.

⁽⁹⁾ Lide, D. R., Ed. *CRC Handbook of Chemistry and Physics*, 85th ed.; CRC Press: Boca Raton, FL, 2004; Section 8.

⁽¹⁰⁾ Natarajan, A.; Sapre, V.; Hadkar, U. B.; Shirodkar, P. Y. Indian Drugs 1992, 29, 545-552.

 ⁽¹¹⁾ Boiocchi, M.; Del Boca, L.; Gómez, D. E.; Fabbrizzi, L.; Licchelli,
 M.; Monzani, E. J. Am. Chem. Soc. 2004, 126, 16507–16514.

TABLE 1. Structural and Spectral Parameters of 1a-h and 1·H₂PO₄⁻ Complexes and Binding Constants in CH₃CN

				absorption			fluorescence		
	OH····O.a	$E_{\rm HB}$, ^b kJ mol ⁻¹		λ , nm		$\log K^c$	λ , nm		log K.c
	Å Å	CD ₃ CN	DMSO- d_6	1	$1 \cdot H_2 PO_4^-$	$mol^{-1}L$	1	$1 \cdot H_2 PO_4^-$	$mol^{-1}L$
1a	1.6776	23.72	12.96	284/309	351	3.81 ± 0.01	464	405	3.77 ± 0.01
1b	1.6807	23.38	12.46	273/311	353	3.81 ± 0.01	466	407	3.91 ± 0.02
1c	1.6804	23.06	12.21	267/308	353	3.87 ± 0.01	468	409	4.08 ± 0.01
1d	1.6832	22.93	12.04	266/310	353	3.85 ± 0.01	470	410	4.15 ± 0.01
1e	1.6885	22.29	11.41	269/307	356	3.90 ± 0.02	472	414	4.17 ± 0.02
1f	1.6867	21.87	10.99	265/307	357	4.13 ± 0.01	476	417	4.41 ± 0.02
1g	1.6911	21.53	10.66	282/309	366	4.01 ± 0.01	484	484	4.34 ± 0.02
1h	1.6963	20.84	10.33	280/309	368	4.24 ± 0.02	494	494	4.58 ± 0.03

^{*a*} OH···O=C intramolecular hydrogen bond length calculated at the B3LYP/6-31G* level.^{*6*} ^{*b*} Hydrogen-bonding energy calculated in CD₃CN and DMSOd₆ from the difference in the chemical shifts of the phenolic OH proton in **1a**–**h** and phenol (6.928 ppm in CD₃CN and 9.32 ppm in DMSO-d₆).⁷ ^{*c*} Binding constant *K* obtained by nonlinear fitting assuming a 1:1 stoichiometry.¹² Nice fittings support this stoichiometry, which is also confirmed by importing absorption spectral data, for example, those in Figure 7a, into the Specfit/32 software (SPECFIT/32 Global Analysis System, v. 3.0, Spectrum Software Associates, Malborough, MA), which only allows for a perfect fitting under 1:1 stoichiometry.

FIGURE 4. Absorption (a) and fluorescence (b) spectra of 1a-h in CH₃CN.

FIGURE 5. Linear correlation against the Hammett constant of substituent X of absorption and emission energies of 1 and its complex with $H_2PO_4^{-}$ in CH₃CN. With 2, the methoxy counterpart of 1, $h\nu_{flu} = 2.42 + 0.378\sigma_X$.^{8a}

point to the interaction of it with $H_2PO_4^-$. The absorption spectrum of **1d** originally peaking at 266 nm splits, and a new band at 353 nm appears. During this course two clear isosbestic points at 290 and 327 nm are observed, establishing the formation of a well-defined ground-state hydrogen-bonding complex, as also suggested by the ¹H NMR titrations. Meanwhile, the fluorescence of **1d** originally peaking at 470 nm is

shifted to 410 nm, which is continuously enhanced with increasing H₂PO₄⁻ concentration. This new emission is blueshifted by 60 nm from the ESI_{intra}PT fluorescence, excluding the closed-ring conformation of 1d, since no enhancement was observed in the ESI_{intra}PT fluorescence that would have been expected from binding of $H_2PO_4^-$ with 1d in the closed-ring conformation (Scheme 2), which shall increase the electron density of the carbonyl O atom and in turn facilitate ESI_{intra}PT. The open-ring conformation was therefore assumed as the predominant conformation of 1d in the presence of $H_2PO_4^{-1}$. 1d in the open-ring conformation could form a hydrogenbonding complex with H₂PO₄⁻ via its phenolic OH, amido NH, and aryl CH protons (Scheme 2). Upon photoexcitation, the acidity of phenolic OH proton is dramatically enhanced so that it is transferred to H₂PO₄⁻, leading to the observed ESI_{inter}PT fluorescence of 1d (Figure 7b). To support this assumption, a control experiment was carried out by using an organic base, triethylamine (TEA; $pK_b = 3.25$ in water⁹), that is able to deprotonate phenolic OH ($pK_a = 7.68$ in water¹⁰) and to result in an ESI_{inter}PT fluorescence emission.^{3h} Spectral responses of 1d toward TEA in CH₃CN (Figure S3, Supporting Information) show a profile similar to that observed toward H₂PO₄⁻. This supports the occurrence of ESI_{inter}PT of 1d in the presence of H₂PO₄⁻ and the preference of the open-ring to closed-ring conformation of 1d (Scheme 2). It is therefore made clear that the conformation of 1d is switched from the closed-ring to the open-ring in the presence of $H_2PO_4^-$.

FIGURE 6. Portions of ¹H NMR spectra of **1d** in CD₃CN in the presence of increasing equivalents of $H_2PO_4^-$ as an *n*-Bu₄N⁺ salt. [**1d**] = 10 mmol L⁻¹. For the numbering of the protons in **1d** see Figure 1.

FIGURE 7. Absorption (a) and fluorescence (b) spectra of salicylanilide **1d** in CH₃CN in the presence of increasing concentrations of $H_2PO_4^-$. [**1d**] = 2.0×10^{-5} (a) and 1.0×10^{-5} (b) mol L⁻¹. The excitation wavelength employed to record the spectra in (b) was 290 nm, an isosbestic wavelength seen in (a).

As absorption and fluorescence spectral variation profiles of 1a-f bearing a substituent from electron-donating *p*-OCH₃ to electron-withdrawing *m*-Cl (Figures 5 and S4–S8, Supporting Information) are similar to those of 1d (Figure 7), it is concluded that the conformation of 1a-f is switched as is that of 1d by $H_2PO_4^-$. Note in Figure 5 that the emission energy of 1a-f in the presence of $H_2PO_4^-$ has a dependence on the Hammett constant of X similar to that of the ESI_{intra}PT fluorescence of 1a-f, again supporting the intermolecular proton-transfer character of the emission of 1a-f in the presence of $H_2PO_4^-$.

1g and **1h**, substituted by p-CO₂CH₃ and p-CN of stronger electron-withdrawing ability, however, displayed differing spectral responses to H₂PO₄⁻ (Figures 8 and 9). With **1g** the ESI_{inter}PT fluorescence at 410 nm increased very weakly upon adding H₂PO₄⁻, at the expense of the ESI_{intra}PT fluorescence at 484 nm. In the case of **1h**, H₂PO₄⁻ induced an enhancement

FIGURE 8. Absorption (a) and fluorescence (b) spectra of $\mathbf{1g}$ (X = p-CO₂CH₃) in CH₃CN in the presence of increasing concentrations of H₂PO₄⁻. [**1g**] = 3.5×10^{-5} (a) and 1.8×10^{-5} (b) mol L⁻¹. The excitation wavelength employed to record the spectra in (b) was 287 nm, an isosbestic wavelength seen in (a).

in the ESI_{intra}PT fluorescence at 494 nm. Following analysis previously given for **1d**, **1h** in the presence of $H_2PO_4^-$ was concluded to remain predominantly in the closed-ring conformation (Scheme 3), opposite to **1d** which was switched by $H_2PO_4^-$ to the open-ring conformation (Scheme 2).

Although the phenolic OH proton of 1a-f is strongly bonded to the carbonyl O atom, they still take an open-ring conformation in the presence of H₂PO₄⁻. It thus appears that the NH···O hydrogen bond between the amido NH proton and the phenolic O atom in the open-ring conformation plays a more important role in controlling the conformation of substituted salicylanilides. In case the acidity of the NH proton is relatively low, this NH···O hydrogen bond would be weak.^{5c} The amido NH proton is relatively more accessible, which allows for a cooperation of phenolic OH, aryl CH, and NH protons in their hydrogen binding to H₂PO₄⁻. The conformational equilibrium of 1a-f

FIGURE 9. Absorption (a) and fluorescence (b) spectra of **1h** (X = p-CN) in CH₃CN in the presence of increasing concentrations of H₂PO₄⁻. [**1h**] = 2.0×10^{-5} (a) and 1.0×10^{-5} (b) mol L⁻¹. The excitation wavelength employed to record the spectra in (b) was 283 nm, an isosbestic wavelength seen in (a).

SCHEME 3. Conformational Equilibria of Salicylanilide 1h in the Presence of $H_2PO_4^-$

with a weakly acidic amido NH proton is thus shifted to the open-ring conformation (Scheme 2). With **1h**, however, the highly electron-withdrawing substituent *p*-CN at the anilino phenyl ring enhances the acidity of the amido NH proton. The NH···O hydrogen bond in the open-ring conformation is relatively strong so that the amido NH proton is now less accessible for $H_2PO_4^{-.3b}$ The closed-ring conformation of **1h** therefore remains preferable during its binding to $H_2PO_4^{-}$ (Scheme 3). The acidity of the amido NH proton in **1g** is between those of **1f** and **1h**, and its conformation in the presence of $H_2PO_4^{-}$ could be reasonably assumed as a mixture of open-ring and closed-ring conformations, as indeed suggested by its fluorescence titration traces.

Binding constant analysis did show strong interaction of $H_2PO_4^-$ with 1a-h in CH₃CN. Data obtained from nonlinear fitting assuming a 1:1 stoichiometry¹² (Table 1) clearly indicate that 1h exhibits a higher binding affinity toward $H_2PO_4^-$ despite the participation in anion binding of the aryl CH instead of the more acidic phenolic OH proton as in, for example, 1d. This is

in agreement with the recently reported calculations on C_6H_6 – anion complexes by Hay et al.¹³ It was revealed that simple aryl CH protons form hydrogen bonds with anions that can be as strong as over 50% of those formed by acidic OH and NH protons. Moreover, when substituted by an electron-withdrawing substituent, the aryl CH protons could become more powerful hydrogen bond donors to form stronger hydrogen-bonding complexes even than those from conventional OH and NH protons, as observed here.

Conclusions

We showed that in CH₃CN all of the substituted salicylanilides 1a-h adopted predominantly the closed-ring conformation involving a strong intramolecular OH····O=C hydrogen bond. In the presence of H₂PO₄⁻, however, the conformation of salicylanilides 1a-h was subject to the substituent. The observed switching of intramolecular to intermolecular proton-transfer fluorescence of 1a-f by $H_2PO_4^-$ directly pointed to the openring conformation of them in the presence of $H_2PO_4^-$. 1h bearing a highly electron-withdrawing substituent, p-CN, however, was shown to remain in the closed-ring conformation in the presence of $H_2PO_4^{-}$. The observed enhancement in the excited-state intramolecular instead of the intermolecular protontransfer fluorescence of **1h** in the presence of $H_2PO_4^-$ served as a direct indication. The character of the proton-transfer fluorescence, inter- or intramolecular, clearly probes the conformation of salicylanilides, which also enables direct fluorescence imaging of the conformations by strongly contrasted colors.

These conclusions would be of considerable significance for understanding the inhibitory mechanism of salicylanilides. As more hydrophobic salicylanilide is preferred in its action as an inhibitor,¹ the binding site in the catalytic domain shall be less polar. One issue then that deserves attention is the occurrence of interaction with ATP of the salicylanilide-based inhibitors, in addition to their competition for binding to the catalytic domain. This also helps to understand the experimental observations that the inhibitory activity of salicylanilides is positively related to the electron-withdrawing ability of the substituent at the anilino moiety.¹ On the basis of our model investigations, this substituent of higher electron-withdrawing ability facilitates the closed-ring conformation of salicylanilides required to be functional. Introduction of a strongly electron-withdrawing substituent at the anilino ring is thus suggested, and it is even better if hydrophobicity can also be enhanced by doing so.

Experimental Section

¹H NMR and ¹³C NMR spectra were acquired on a 400 or 500 MHz NMR spectrometer in DMSO- d_6 or CD₃CN using TMS as an internal standard. Absorption and fluorescence spectral titrations for anion binding were carried out by adding an aliquot of anion solution to a bulk salicylanilide solution at a given concentration.

Chemicals used for syntheses were commercially available, were of AR grade, and were used as received. Solvents used for spectral investigations were further purified by redistillations so that no fluorescent impurity could be detected at the employed excitation wavelength.

Salicylanilides **1a**-**h** are known compounds in the literature,^{1b,c} but synthesis procedures and characterization data are provided as modified procedures were employed in this work.

^{(12) (}a) Kato, R.; Nishizawa, S.; Hayashita, T.; Teramae, N. *Tetrahedron Lett.* **2001**, *42*, 5053–5056. (b) Madrid, J. M.; Mendicuti, F. *Appl. Spectrosc.* **1997**, *51*, 1621–1627.

^{(13) (}a) Bryantsev, V. S.; Hay, B. P. Org. Lett. 2005, 7, 5031–5034.
(b) Bryantsev, V. S.; Hay, B. P. J. Am. Chem. Soc. 2005, 127, 8282–8283.

General Procedure for Preparation of Salicylanilides 1a-h. A mixture of salicylic acid (1.0 g, 7.0 mmol) and thionyl chloride (2.5 mL, 35 mmol) was heated at 50 °C for 2 h. The excess SOCl₂ was removed by distillation in vacuo at room temperature. The residue was dissolved in dry CH₂Cl₂ and the solvent removed as before; this procedure was repeated twice. The freshly formed salicyloyl chloride dissolved in dry CH₂Cl₂ was added dropwise to a solution of the substituted aniline, pyridine, and DMAP in dry CH₂Cl₂. The resultant solution was stirred at room temperature for 2 h, and the solvent was removed. The residue was washed with 1 mol L⁻¹ HCl and dissolved in 2 mol L⁻¹ NaOH. The filtrate was neutralized with 3 mol L⁻¹ HCl, and a white solid was precipitated, which was collected by filtration and purified by recrystallization

from CH_3CN/H_2O (9:1, v/v). **1a**-h were fully characterized, and detailed spectral data are supplied in the Supporting Information.

Acknowledgment. This work was supported by the NSF of China though Grants 20425518 and 20675069.

Supporting Information Available: NMR dilution experiment data of **1d** in CD₃CN, fluorescence spectra of **1d** in CH₃CN in the presence of triethylamine, absorption and fluorescence spectra of **1a**–**f** in CH₃CN in the presence of H₂PO₄⁻, characterization data, and ¹H NMR and ¹³C NMR spectra of **1a-h**. This material is available free of charge via the Internet at http://pubs.acs.org.

JO701823D