Regular Article

Novel 2,7-Substituted (S)-1,2,3,4-Tetrahydroisoquinoline-3-carboxylic Acids: Peroxisome Proliferator-Activated Receptor γ Partial Agonists with Protein–Tyrosine Phosphatase 1B Inhibition

Kazuya Otake, Satoru Azukizawa, Shigemitsu Takeda, Masaki Fukui, Arisa Kawahara, Tatsuya Kitao, and Hiroaki Shirahase*

Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd.; 38, Nishinokyo Tsukinowa-cho, Nakagyo-ku, Kyoto 604–8444, Japan. Received June 24, 2015; accepted August 27, 2015

A novel series of 2,7-substituted 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivatives were synthesized and biologically evaluated. (S)-2-(2-Furylacryloyl)-7-[2-(2-methylindane-2-yl)-5-methyloxazol-4yl]methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid *tert*-butylamine salt (13jE) was identified as a potent human peroxisome proliferator-activated receptor γ (PPAR γ)-selective agonist (EC₅₀=85 nM) and human protein-tyrosine phosphatase 1B (PTP-1B) inhibitor (IC₅₀=1.0 μ M). Compound 13jE partially activated PPAR γ , but not PPAR α or PPAR δ , and antagonized farglitazar, a full PPAR γ agonist. C_{max} after the oral administration of 13jE at 10 mg/kg was 28.6 μ g/mL (53 μ M) in male Sprague-Dawley (SD) rats. Repeated administration of 13jE and rosiglitazone for 14d at 10 mg/kg/d decreased plasma glucose and triglyceride levels significantly in male KK-A^y mice. Rosiglitazone, but not 13jE, significantly increased the plasma volume and liver weight. In conclusion, 13jE showed stronger hypoglycemic and hypolipidemic effects and weaker hemodilution and hepatotoxic effects than rosiglitazone, suggesting that its safer efficacy may be due to its partial PPAR γ agonism and PTP-1B inhibition.

Key words peroxisome proliferator-activated receptor gamma; partial agonist; diabetes; adverse effect; protein-tyrosine phosphatase 1B inhibitor; insulin resistance

Thiazolidinedione (TZD) derivatives such as rosiglitazone (Fig. 1) have been used clinically as anti-diabetic drugs. Rosiglitazone is known to enhance insulin sensitivity by the activation of peroxisome proliferator-activated receptor γ (PPAR γ), causing the reduction of blood glucose levels in type 2 diabetic patients¹⁻³; however, it induces edema and increases the risks of weight gain and congestive heart failure.^{4–7}

Thus, many efforts have been made to develop a PPAR α/γ dual agonist and a partial PPAR γ agonist. PPAR α is expressed in the liver and related to fatty acid metabolism⁸⁾; fibrates, PPAR α agonists, have been used as anti-hyperlipidemic drugs, and reported to improve insulin resistance and show hypoglycemic effects in diabetic animals and patients.9-11) PPAR α agonists have a body-weight-reducing effect, and show no hemodilution effects.¹²⁾ The combination of PPAR α and PPARy agonists has been expected to show synergistic anti-diabetic effects with high safety.13,14) However, the development of PPAR α/γ dual agonists including muraglitazar. were suspended due to the risk of cardiovascular events, carcinogenicity and the potential risks of liver injury and/or renal dysfunction¹⁵⁻¹⁷⁾: Overactivation of PPAR with both PPAR α and PPARy agonist activity may lead to carcinogenesis and to adverse effects in the liver, heart and kidney.14,18-21) Thus, PPARy partial agonists, such as INT-131, have been researched and studied clinically.²²⁾ They showed higher efficacy with lower toxicity in experimental diabetic animals; however, none of them has been successfully developed.

We have reported a PPAR γ agonist and PPAR α/γ dual agonist with protein–tyrosine phosphatase 1B (PTP-1B) inhibitory activity.^{23–26)} PTP-1B is known to regulate the insulin signal negatively and its overexpression is involved in insulin resis-

tance; thus, PTP-1B inhibitors have been focused on as insulin sensitizers.^{27–29} Indeed, one of the PPAR α/γ agonists with PTP-1B inhibitory activity has been reported to show effective anti-diabetic activities with high safety,³⁰ probably due to its partial PPAR γ activation and PTP-1B inhibition. However, it may not be a true partial PPAR γ agonist, since it does not antagonize a full PPAR γ agonist. Furthermore, its risk of carcinogenesis by both PPAR α and PPAR γ activation has not been examined. In the present study, we found that (*S*)-2-(2furylacryloyl)-7-[2-(2-methylindane-2-yl)-5-methyloxazol-4yl]methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid *tert*-butylamine salt (**13j**E, Fig. 1) is a true partial PPAR γ agonist with PTP-1B inhibitory activity, and shows safer antidiabetic effects than rosiglitazone in KK-A^y mice.

Chemistry

The synthesis of 2,7-substituted-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivatives from methyl 2-*tert*-butoxycarbonyl-7-hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (1)²³⁾ is outlined in Chart 1. The hydroxyl group at the 7-position of 1 was alkylated with oxazole derivatives 2a-c and 3c-j in the presence of K₂CO₃ and tetraethylammonium fluoride hydrate to give 4a-c and 5c-j, and then the *tert*butoxycarbonyl (Boc) group at the 2-position was removed with HCl/HCO₂H to give 6a-c and 7c-j, respectively. Acylation of 6a-c and 7c-j was performed with carboxylic acids 8A, D-G and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl), or acyl chlorides 9B, C and triethylamine (Et₃N), to give corresponding amides 10aA-cA, 11cA-jA, gB-gE and jE-jG. Hydrolysis of the ester group with aqueous LiOH afforded 12aA-cA, 13cA-jA, gB-gF and

Fig. 1. Chemical Structures of PPARy Agonists

jE-**jG**, which were isolated as *tert*-butylamine salt or calcium salt.

2-(2-Substituted-5-methyloxazol-4-yl)ethyl methanesulfonates **2a–c** were prepared according to the previously reported procedure,²⁵⁾ as shown in Route A in Chart 2. Acylation of L-aspartic acid β -methyl ester **15** with acyl chlorides **14a–c** afforded 2-acyl L-aspartic acid β -methyl esters. The carboxylic acid group was transformed to an acetyl group by the Dakin– West reaction with acetic anhydride and bases, which was treated with phosphorous oxychloride to give oxazole derivatives **16a–c**. The ester group of **16a–c** was reduced by LiAlH₄ or NaBH₄ to give alcohols **17a–c**, and then methanesulfonylated to afford **2a–c**.

2-Substituted-4-chloromethyl-5-methyloxazoles 3c-i were synthesized via Routes B and C in Chart 2. In Route B, aldehydes 18c, d,³¹⁾ e, f³²⁾ and g,³³⁾ which were purchased or prepared according to the literature, were treated with HCl gas and diacetyl monoxime (19) to give oxazole N-oxides 20c-g, followed by treatment with phosphorous oxychloride to afford 4-chloromethyloxazole derivatives (3c-g).³⁴⁾ In Route C, carboxylic acids $24h^{35}$ and j^{32} were prepared according to the literature, and 1,3,4-trimethyl-3-cyclopentenecarboxylate (24i) was synthesized from 1,4-dichloro-2,3-dimethyl-but-2-ene (21).³⁶⁾ Diethyl malonate was alkylated with 21 and formed a cyclopentene ring 22. The diester group was hydrolyzed and decarboxlated to give monocarboxylic acid 23. Carboxylic acid was esterified and then methylated with lithium diisopropylamide (LDA) and methyl iodide (MeI), followed by hydrolysis, affording 24i. Compounds 24h-j were amidated with 25^{37} via acyl chloride, followed by cyclization with I₂, triphenylphosphine (PPh₃) and Et₃N to give oxazole derivatives **26h–j**. The ester group was transformed to a chloromethyl group by reduction with LiAlH_4 and then chlorinated with SOCl_2 to give **3h–j**.

Carboxylic acids **8A**, **D** and **E** were purchased, **8G** was prepared according to the literature³⁵⁾ and 3-(5-fluorofuryl)-acrylic acid (**8F**) was synthesized from ethyl 5-bromofuran-2-carboxylate (**27**), as shown in Chart 3. Compound **28** was prepared by the Heck reaction from **27** and ethyl ester was hydrolyzed. The carboxylic acid group was converted to fluorine with Selectfluor and NaHCO₃, followed by deprotection of the *tert*-butoxycarbonyl group with trifluoroacetic acid (TFA) to give **8F**.

The synthesis of non-carboxylic acid-type derivatives 32-34 is outlined in Chart 4. The hydroxyl group of 1 was protected with a benzyl group, and then the ester group was converted to Weinreb's amide 29 via carboxylic acid, and then transformed to an acetyl group with MeMgI, followed by deprotection of the benzyl group to give 30. Compound 30 was alkylated with 3j at the 7-position, subjected to removal of the Boc group, and acylated with 3-furylacrylic acid via acid chloride to give 32. Reduction of the acetyl group of 32 afforded hydroxyethyl derivative 33 as a diastereomixture (d.r.=71:29). Separately, 30 was treated with diethylaminosulfur trifluoride (DAST) to give 31. Difluoroethyl derivative 34 was synthesized from 31 in a similar manner as for the synthesis of 32.

Results and Discussion

In the present study, (S)-2-(2,4-hexadienoyl)-7-[2-(5-methyl-2-phenyloxazol-4-yl)ethoxy]-1,2,3,4-tetrahydroisoquinoline-3carboxylic acid (**35**, Fig. 1), a PPAR γ full agonist with a weak PTP-1B inhibitory activity, was chemically modified

(i) K_2CO_3 , tetraethylammonium fluoride hydrate, toluene, (ii) HCl, HCO₂H, (iii) **8A**, **D**–**G**, EDC·HCl, CH₂Cl₂, (iv) **9B**, **C**, Et₃N, CH₂Cl₂, (v) LiOHaq., THF–MeOH, (vi) *tert*-BuNH₂, MeOH, *i*-Pr₂O, (vii) KHCO₃, CaCl₂, THF, H₂O.

Chart 1. Synthesis of 2,7-Substituted-2-[(2E,4E)-hexadienoyl]-1,2,3,4-tetrahydroisoquinoline-3-carboxylic Acids

at the 2-, 3- and 7-positions. Then, PPARy agonist activity was determined as the transactivation activity in COS-1 cells transfected with full-length human PPARy1 plasmid, and human retinoid X receptor alpha (RXR α) plasmid with reporter plasmid pGL3-PPREx4-tk-luc, EC50 and the maximal activation level relative to the maximal level induced by farglitazar, a PPAR γ full agonist (10⁻⁷ M) (Fig. 1). The antagonist activity against farglitazar $(10^{-7} M)$ was also determined. The effects of the compounds on PTP-1B activities were examined using a human PTP-1B enzyme. For some compounds, plasma concentrations after oral administration at 10 mg/kg were determined in male Sprague-Dawley (SD) rats, and anti-diabetic effects were investigated in KK-A^y mice, a type 2 diabetic animal. All animal experiments in the present study were conducted according to the guidelines for animal experiments of our institute and the guidelines for animal experimentation approved by the Japanese Association of Laboratory Animal Science.

In the first experiments, methyl groups were introduced on the phenyl ring of compound **35** (**12aA–cA** and **13cA**) (Table 1). Interestingly, the introduction of two methyl groups at the 2- and 5-positions (**12bA**) markedly increased the affinity, and slightly decreased the maximal level of PPAR γ activation. However, its antagonistic activity against farglitazar was not observed. The introduction at the 2- and 6-positions (**12aA**) brought typical partial agonist activity: 66% maximal activation and 14% maximal inhibition. The introduction of three methyl groups at the 2-, 4- and 6-positions (12cA) slightly enhanced the partial agonist activity of 12aA. Furthermore, the shortening of the alkoxy chain (13cA) increased the affinity. These results suggest that appropriate bulkiness and steric hindrance near the 2-position of the oxazole ring in a side chain at the 7-position of a tetrahydroisoquinoline ring are needed to exhibit the partial agonist property. The shortening of the alkoxy chain was shown to increase the affinity to PPARy protein. In the structural study, other partial PPARy agonists with a carboxyl group interacted with PPARy protein differently from a full PPARy agonist, leading to insufficient PPAR_v activation.³⁸⁾ Conformational change of the phenvloxazole moiety by the introduction of 2 or 3 methyl groups may lead to conformational change of the whole molecule, thereby changing the interaction with PPARy protein.

In the second experiments, the phenyl ring at the 2-position of oxazole in **13cA** was replaced by bulky aliphatic moieties, which bind to the oxazole ring *via* quaternary carbon (Table 1). The seven synthesized compounds all showed partial agonist activity (EC₅₀: 117–237 nM, max: 52–71%). Among the compounds, **13gA** with an adamantyl group and **13jA** with an indanyl group showed higher affinity than the other compounds. The oral absorption of **13jA** was much higher than that of **13gA** (C_{max} : 11.0 and 1.2 μ g/mL, respectively). An adamantyl ring may be easily metabolized after oral adminis-

(i) Et₃N, CH₂Cl₂, (ii) Ac₂O, *N*-methylmorpholine, DMAP, toluene, (iii) POCl₃, toluene, (iv) NaBH₄, MeOH, THF or LiAlH₄, THF, (v) MsCl, Et₃N, CH₂Cl₂, (vi) HCl (g), AcOEt, (vii) POCl₃, toluene, (viii) diethyl malonate, LiH, THF, (ix) KOH aq., MeOH, (x) pyridine, (xi) K₂CO₃, MeI, DMF, THF, (xii) *i*-Pr₂NH, *n*-BuLi in hexane, MeI, THF, (xiii) LiOH aq., MeOH, THF, (xiv) (COCl)₂, DMF, **25**, *i*-Pr₂NEt, CH₂Cl₂, (xv) I₂, PPh₃, Et₃N, CH₂Cl₂, (xvi) LiAlH₄, THF, (xviii) SOCl₂, CH₂Cl₂.

Chart 2. Synthesis of 2-(2-Substituted-5-methyloxazol-4-yl)ethyl Methanesulfonates and 2-Substituted-4-chloromethyl-5-methyloxazole Derivatives

(i) *tert*-Butyl acrylate, Pd(OAc)₂, P(*o*-tol)₃, *i*-Pr₂NEt, LiCl, DMF, (ii) LiOHaq., THF-MeOH, (iii) Selectfluor, NaHCO₃, Et₂O, H₂O, (iv) TFA, CH₂Cl₂. Chart 3. Synthesis of 3-(5-Fluorofuryl)acrylic Acid

tration of 13gA.

The substituent at the 2-position of **13gA** and **jA** was replaced by various chains (Table 2). Hexanoyl, hexenoyl and hexynoyl chains did not affect the partial agonist activity of **13gA**. A furylacryloyl chain enhanced the affinity by about 2-fold and showed the lowest maximal levels (**13gE**, **gF**). The oral absorptions of these adamantyl derivatives were all lower than that of **13gA**. Among the indan derivatives, a furylacryloyl group moderately enhanced the partial agonist activity and markedly increased the oral absorption (**13jE**). A (5-fluorofuryl)acryloyl group enhanced the affinity (**13jF**) and a cyclopropylacryloyl group enhanced the affinity and slightly reduced the oral absorption (**13jG**).

Finally, the carboxyl group of 13jE was replaced by an un-ionized polar group: acetyl (32), hydroxyethyl (33) and difluoroethyl (34) groups markedly decreased the maximal levels and enhanced the inhibitory activity (Table 3). Unlike a carboxyl group, un-ionized polar groups may not interact fully with PPARy protein, resulting in insufficient recruitment of coactivators. These compounds were not orally absorbed

in SD rats. The tetrahydroisoquinoline with an un-ionized moiety at the 3-position may be a useful scaffold for PPAR γ antagonist.

Compound **13jE** with potent PPAR γ partial agonist activity and good oral absorption was chosen for further biological evaluation (Table 4). Compound **13jE** did not activate PPAR α and PPAR δ , even at 10⁻⁵ M. Compound **13jE** inhibited PTP-1B activity (IC₅₀=1.0 μ M). In KK-A^y mice, **13jE** more potently reduced the plasma glucose and triglyceride levels than rosiglitazone, while rosiglitazone but not **13jE** showed hemodilution and hepatomegalysis (Table 5). The PPAR γ agonist activity of **13jE** was lower than that of rosiglitazone. Its hypoglycemic effect is likely mediated by partial PPAR γ activation and PTP-1B inhibition, resulting in high efficacy with no PPAR γ related adverse effects.

In conclusion, 2,7-substituted 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivatives were demonstrated to be good scaffolds for a PPAR γ selective partial agonist with PTP-1B inhibitory activity, and a furylacryloyl moiety and an indan ring are suitable for partial agonist activity and oral

(i) K_2CO_3 , BnBr, DMF, (ii) LiOHaq., THF-MeOH, (iii) *N*,*O*-dimethylhydroxyamine, Et₃N, EDC·HCl, CH₂Cl₂, (iv) MeMgI in THF, THF, (v) Pd-C, H₂, MeOH, (vi) DAST, CH₂Cl₂, (vii) **3j**, K_2CO_3 , tetraethylammonium fluoride hydrate, toluene, (viii) HCl, HCO₂H, (ix) 2-furylacrylic acid, (COCl)₂, DMF, CH₂Cl₂, then Et₃N, (x) NaBH₄, MeOH, THF.

Chart 4. Synthesis of Non-carboxylic Acid-Type Derivatives

absorption. Compound **13jE** is a potential candidate of a safe and efficacious anti-diabetic drug, and its clinical development is desirable.

Experimental

General Procedures Melting points were measured on a melting point apparatus (Yamato MP-21; Yamato Scientific Co., Ltd., Tokyo, Japan) and are uncorrected. ¹H-NMR spectra were obtained on a nuclear magnetic resonance spectrometer at 90 MHz (R-1900; Hitachi High-Technologies Corporation, Tokyo, Japan) or 400 MHz (JNM-AL-400; JEOL Ltd., Tokyo, Japan) using tetramethylsilane (TMS) as an internal standard. IR spectra were recorded with an infrared spectrometer (FT-IR8200PC; Shimadzu Corporation, Kyoto, Japan). MS spectra were obtained on a QTRAP LC-MS/MS system (API2000; Applied Biosystems, Foster, U.S.A.). Column chromatography was performed on silica gel (Daisogel No.1001W; Daiso Co., Ltd., Osaka, Japan). Reactions were monitored by TLC (TLC silica gel 60F₂₅₄; Merck, Darmstadt, Germany).

Methyl (S)-2-tert-Butoxycarbonyl-7-[2-(2,6-dimethylphenvl)-5-methyloxazol-4-ylethoxy]-1,2,3,4-tetrahydroisoguinoline-3-carboxylate (4a) A mixture of 1 (1.42 g, 4.62 mmol), crude 2a (2.13g), tetraethylammonium fluoride hydrate (300 mg) and K_2CO_3 (1.91 g 13.8 mmol) in toluene (50 mL) was stirred at 85°C for 14h. AcOEt (100 mL) was added to the reaction mixture, and the mixture was washed with water and saturated brine and dried over Na2SO4. The solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography to give 4a (2.47g, quant.) as an oil. ¹H-NMR (CDCl₃) δ : 1.45, 1.52 (total 9H, s, s), 2.23 (6H, s), 2.35 (3H, s), 2.97 (2H, t, J=6.6Hz), 3.05–3.20 (2H, m), 3.60, 3.63 (total 3H, s, s), 4.23 (2H, t, J=6.6 Hz), 4.38-4.50 (1H, m), 4.60-4.75 (1.5H, m), 5.06-5.13 (0.5H, m), 6.60-6.75 (2H, m), 6.98-7.03 (1H, m), 7.06 (2H, d, J=7.6 Hz), 7.20 (1H, t, J=7.6 Hz).

Compounds **4b** and **c** and **5c–j** were prepared according to the procedure for the synthesis of **4a**.

Methyl (S)-2-tert-Butoxycarbonyl-7-[2-(2,5-dimethyl-

phenyl)-5-methyloxazol-4-ylethoxy]-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (4b) Yield 99%. ¹H-NMR (CDCl₃) δ : 1.45, 1.51 (total 9H, s, s), 2.35 (3H, s), 2.37 (3H, s), 2.59 (3H, s), 2.96 (2H, t, *J*=6.6 Hz), 3.04–3.21 (2H, m), 3.60, 3.62 (total 3H, s, s), 4.21 (2H, t, *J*=6.6 Hz), 4.37–4.50 (1H, m), 4.60–4.76 (1.5H, m), 5.07–5.13 (0.5H, m), 6.61–6.75 (2H, m), 6.98–7.15 (3H, m), 7.69–7.74 (1H, m).

Methyl (*S*)-2-*tert*-Butoxycarbonyl-7-[2-(2,4,6-dimethylphenyl)-5-methyloxazol-4-ylethoxy]-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (4c) Quant. ¹H-NMR (CDCl₃) δ : 1.35–1.70 (9H, m), 2.20 (6H, s), 2.29 (3H, s), 2.33 (3H, s), 2.96 (2H, t, *J*=6.8 Hz), 3.00–3.25 (2H, m), 3.61 (3H, s), 4.22 (2H, t, *J*=6.6 Hz), 4.30–5.20 (3H, m), 6.60–6.80 (2H, m), 6.90 (2H, s), 7.02 (1H, d, *J*=8.4 Hz).

Methyl (S)-2-tert-Butoxycarbonyl-7-[2-(2,4,6-dimethylphenyl)-5-methyloxazol-4-ylmethoxy]-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (5c) Yield 94%. ¹H-NMR (CDCl₃) δ : 1.45, 1.52 (total 9H, s, s), 2.23 (6H, s), 2.31 (3H, s), 2.39 (3H, s), 3.05–3.25 (2H, m), 3.60, 3.63 (total 3H, s, s), 4.40–4.53 (1H, m), 4.62–4.79 (1.5H, m), 4.99 (2H, s), 5.10–5.15 (0.5H, m), 6.76–6.88 (2H, m), 6.90 (2H, s), 7.01–7.07 (1H, m).

Methyl (S)-2-tert-Butoxycarbonyl-7-[2-(1-ethyl-1-methylpropan-1-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (5d) Quant. ¹H-NMR (CDCl₃) δ : 0.78 (6H, J=7.6Hz), 0.98 (9H, s), 1.29, 1.52 (total 9H, s, s), 1.45 (3H, s), 1.56–1.69 (2H, m), 1.72–1.84 (2H, m), 2.29 (3H, s), 3.02–3.21 (2H, m), 3.61, 3.63 (total 3H, s, s), 4.38–4.76 (2.5H, m), 4.86, 4.87 (total 2H, s, s), 5.05–5.14 (0.5H, m), 6.68–6.83 (2H, m), 6.98–7.05 (1H, m).

Methyl (S)-2-tert-Butoxycarbonyl-7-[2-(1-methylcyclopentan-1-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (5e) Yield 92%. ¹H-NMR (CDCl₃) δ : 1.39 (3H, s), 1.45, 1.52 (total 9H, s, s), 1.61–1.79 (6H, m), 2.15–2.24 (2H, m), 2.30 (3H, s), 3.05–3.20 (2H, m), 3.61, 3.63 (total 3H, s, s), 4.40–4.52 (1H, m), 4.62–4.78 (1.5H, m), 4.84 (2H, s), 5.08–5.15 (0.5H, m), 6.72–6.82 (2H, m), 7.00–7.06 (1H, m).

Methyl (S)-2-tert-Butoxycarbonyl-7-[2-(1-methylcyclo-

Table 1. Chemical Structure, Molecular Weight, PPARy Agonist and Antagonist Activity and Plasma Concentration in Male SD Rats of 7-Substituted-2-hexadienoyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylic Acid Derivatives

	D 1				PPA	Plasma levels ^{e)}			
Compound	K.	п	M.W."	EC ₅₀ (пм)	Max ^{c)} (%)	IC ₅₀ (пм)	Max ^{<i>d</i>}) (%)	$C_{\rm max}$ (µg/mL)	AUC (µg⋅h/mL)
35		2	472.53	1062	105	>1000	_	39	177
12aA		2	500.59	972	66	—	14	_	_
12bA	<u> </u>	2	500.59	156	87	>1000	<10	_	—
12cA		2	514.61	518	62	94	22	_	_
13cA		1	500.59	301	51	62	21	0.32	3.4
13dA		1	466.57	237	52	124	30	2.9	6.0
13eA	- Andrew	1	454.55	131	55	227	25	3.4	14.2
13 fA	- nobe	1	478.58	230	68	177	15	2.8	9.0
13gA	- and	1	516.63	117	63	314	35	1.2	5.5
13hA	- soine	1	462.54	184	62	45	30	9.4	52.9
13iA		1	490.59	142	71	476	17	11.9	114.5
13jA		1	512.60	122	69	622	26	11.0	74.9
Rosiglitazone			357.43	70	119	>1000	_	_	_

a) Molecular weight as the free form. b) n=3. c) The activation level induced by farglitazar $(10^{-7}M)$ was taken as 100%. d) The maximal inhibitory effects against the response induced by farglitazar $(10^{-7}M)$. e) Plasma levels after oral administration at 10 mg/kg in male SD rats, n=3.

hexyl-1-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (5f) Yield 98%. ¹H-NMR (CDCl₃) δ : 1.27 (3H, s), 1.32–1.60 (17H, m), 2.08–2.21 (2H, m), 2.30 (3H, s), 3.05–3.23 (2H, m), 3.61, 3.63 (total 3H, s, s), 4.38–4.52 (1H, m), 4.60–4.80 (1.5H, m), 4.86 (2H, s), 5.06–5.18 (0.5H, m), 6.72–6.86 (2H, m), 6.98–7.06 (1H, m).

Methyl (S)-2-tert-Butoxycarbonyl-7-{[2-(adamantan-1-yl)-5-methyloxazol-4-yl]methoxy}-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (5g) Yield 98%. ¹H-NMR (CDCl₃) δ : 1.45, 1.52 (total 9H, s, s), 1.70–1.81 (6H, m), 1.98–2.10 (9H, br), 2.30 (3H, s), 3.03–3.22 (2H, m), 3.61, 3.63 (total 3H, s, s), 4.40-4.52 (1H, m), 4.64-4.77 (1.5H, m), 4.84 (2H, s), 5.08-5.15 (0.5H, m), 6.70-6.84 (2H, m), 7.00-7.07 (1H, m).

Methyl (*S*)-2-*tert*-Butoxycarbonyl-7-[2-(1-methylcyclopent-3-en-1-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4-tetra-hydroisoquinoline-3-carboxylate (5h) Yield 99%. ¹H-NMR (CDCl₃) δ : 1.45, 1.46, 1.52 (total 12H, s, s, s), 2.31 (3H, s), 2.34–2.44 (2H, m), 2.95–3.22 (4H, m), 3.61, 3.63 (total 3H, s, s), 4.40–4.52 (1H, m), 4.64–4.78 (1.5H, m), 4.84 (2H, s), 5.07–5.15 (0.5H, m), 5.66 (2H, s), 6.70–6.84 (2H, m), 7.00–7.06 (1H, m).

Methyl (S)-2-tert-Butoxycarbonyl-7-[2-(1,4,5-trimethyl-

Table 2. Chemical Structure, Molecular Weight, PPARy Agonist and Antagonist Activity and Plasma Concentration in Male SD Rats of 2,7-Disubstituted-1,2,3,4-tetrahydroisoquinoline-3-carboxylic Acid Derivatives

0

						2N			
					PPA	Plasma levels ^{e)}			
Compound	K.	K ²	M.W."	EC ₅₀ (пм)	Max ^{c)} (%)	IC ₅₀ (пм)	Max ^{<i>d</i>}) (%)	$C_{\rm max}$ (µg/mL)	AUC (µg · h/mL)
13gA	J		516.63	117	63	314	35	1.2	5.5
13gB			520.66	117	60	108	27	0.22	0.92
13gC			518.64	139	61	170	30	0.12	0.69
13gD		-‡ —	516.63	154	59	27	32	0.23	0.81
13gE		0	542.62	48	48	14	29	0.13	0.81
13gF ^{/)}			560.61	70	52	82	32	—	—
13jA			512.60	122	69	622	26	11.0	74.9
13jE			538.59	85	65	202	20	28.6	367.9
13jF		- C F	556.58	193	62	120	20	20.4	229.5
13jG			512.60	87	55	214	30	8.5	97.4

a) Molecular weight as the free form. b) n=3. c) The activation level induced by farglitazar $(10^{-7}M)$ was taken as 100%. d) The maximal inhibitory effects against the response induced by farglitazar $(10^{-7}M)$. e) Plasma levels after oral administration at 10 mg/kg in male SD rats, n=3. f) Calcium salt.

Table 3. Chemical Structure, Molecular Weight, PPARy Agonist and Antagonist Activity and Plasma Concentration in Male SD Rats of 3,7-Substituted-2-furylacryloyl-1,2,3,4-tetrahydroisoquinoline Derivatives

Compound	D ³	M.W. ^{<i>a</i>)}		PPA	Plasma levels ^{e)}			
	K		EC ₅₀ (пм)	Max ^{c)} (%)	IC ₅₀ (пм)	Max^{d} (%)	$C_{\rm max}~(\mu {\rm g/mL})$	$AUC (\mu g \cdot h/mL)$
13j E ^{<i>f</i>)}	O M OH	538.59	85	65	202	20	28.6	367.9
32	- Safe	536.62	30	21	169	63	0.07	0.04
33	OH	538.63	120	38	1597	54	—	_
34	F	558.62	62	24	2221	62	_	—

a) Molecular weight as the free form. b) n=3. c) The activation level induced by farglitazar (10^{-7} M) was taken as 100%. d) The maximal inhibitory effects against the response induced by farglitazar (10^{-7} M) . e) Plasma levels after oral administration at 10 mg/kg in male SD rats, n=3. f) t-BuNH₂ salt.

cyclopent-3-en-1-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4tetrahydroisoquinoline-3-carboxylate (5i) Yield 97%. ¹H-NMR (CDCl₃) δ : 1.44, 1.52 (total 9H, s, s), 1.45 (3H, s), 1.61 (6H, s), 2.25–2.33 (5H, m), 2.95–3.22 (4H, m), 3.61, 3.63 (total 3H, s, s), 4.40–4.51 (1H, m), 4.64–4.79 (1.5H, m), 4.84 (2H, s), 5.07–5.14 (0.5H, m), 6.70–6.85 (2H, m), 6.97–7.05 (1H, m). Methyl (S)-2-*tert*-Butoxycarbonyl-7-[2-(2-methylindane-2-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (5j) Yield 93%. ¹H-NMR (CDCl₃) δ : 1.45, 1.52 (total 9H, s, s), 1.50 (3H, s), 2.32 (3H, s), 2.93–3.22 (4H, m), 3.55–3.66 (5H, m), 4.41–4.51 (1H, m), 4.64–4.79 (1.5H, m), 4.85 (2H, s), 5.07–5.15 (0.5H, m), 6.70–6.85 (2H, m), 6.98–7.06 (1H, m), 7.11–7.23 (4H, m).

Table 4. PPARy, PPARa and PPARo Transactivation Effects and PPARy Inhibition and PTP-1B Inhibition of Compound 13jE and Rosiglitazone

<u> </u>		PPA	$\mathbb{R}\gamma^{a)}$	PPAR α^{a}	$PPAR\delta^{a)}$	$PTP-1B^{a)}$	
Compound	EC ₅₀ (пм)	Max ^{b)} (%)	IC ₅₀ (пм)	Max ^{c)} (%)	EC ₅₀ (пм)	ЕС ₅₀ (пм)	ІС ₅₀ (μм)
13jE	85	65	202	20	>1000	>1000	1.0
Rosiglitazone	70	119	>1000	_	>1000	>1000	>30

a) n=3. b) The activation level induced by farglitazar (10^{-7} M) was taken as 100%. c) The maximal inhibitory effects against the response induced by farglitazar (10^{-7} M).

Table 5. Effects of Repeated Administration of Compound 13jE and Rosiglitazone in Male KK-A^y Mice

Compound		KK-A ^y mic	e (10 mg/kg, 14 d)	
Compound	Glucose % decrease ^{a)}	TG % decrease ^{a)}	Plasma volume % increase ^{b})	Liver weight % increase ^{b}
13jE	45.0±7.2**	41.0±3.7**	0.7±7.5	29.1±9.0
Rosiglitazone	31.8±4.5**	35.4±8.6*	13.1±3.9*	60.8±15.6**

Mean \pm S.E. *p<0.05, **p<0.01. The mean value in control mice were taken as 100%. a) **13j**E; n=6, rosiglitazone; n=11. b) **13j**E; n=6, rosiglitazone; n=5.

(S)-7-[2-(2,6-Dimethylphenyl)-5-methyloxazol-Methyl 4-ylethoxy]-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (6a) To a solution of 4a (2.45 g, 4.70 mmol) in formic acid (5 mL) was added 8.6 M hydrogen chloride solution in 2-propanol (1.64 mL, 14.1 mmol) under ice-cooling, and the mixture was stirred at room temperature for 15 min. The reaction mixture was neutralized with saturated aqueous NaHCO₃ solution and extracted with AcOEt. The organic layer was washed with brine and dried over Na2SO4. The solvent was evaporated under reduced pressure to give 6a (1.90g, 92%) vield) as an oil. ¹H-NMR (CDCl₂) δ : 2.22 (6H, s), 2.35 (3H, s), 2.86 (1H, dd, J=15.6, 10.2 Hz), 2.95-3.04 (3H, m), 3.71(1H, dd, J=10.2, 4.6 Hz), 3.77 (3H, s), 4.03 (1H, d, J=15.6 Hz), 4.07 (1H, d, J=15.6Hz), 4.23 (2H, t, J=6.6Hz), 6.58 (1H, d, J=2.4Hz), 6.73 (1H, dd, J=8.6, 2.4 Hz), 6.99 (1H, d, J=8.6 Hz), 7.06 (2H, d, J=7.3 Hz), 7.20 (1H, t, J=7.3 Hz).

Compounds **6b** and **c** and **7c**–**j** were prepared according to the procedure for the synthesis of **6a**.

Methyl (*S*)-7-[2-(2,5-Dimethylphenyl)-5-methyloxazol-4-ylethoxy]-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (6b) Yield 98%. ¹H-NMR (CDCl₃) δ : 2.34 (3H, s), 2.36 (3H, s), 2.59 (3H, s), 2.86 (1H, dd, *J*=16.1, 10.5 Hz), 2.92–3.04 (3H, m), 3.70 (1H, dd, *J*=10.5, 4.6 Hz), 3.76 (3H, s), 4.03 (1H, d, *J*=16.4 Hz), 4.07 (1H, d, *J*=16.4 Hz), 4.21 (2H, t, *J*=6.6 Hz), 6.57 (1H, d, *J*=2.7 Hz), 6.72 (1H, dd, *J*=8.5, 2.7 Hz), 6.99 (1H, d, *J*=8.5 Hz), 7.06–7.14 (2H, m), 7.69–7.73 (1H, m).

Methyl (S)-7-[2-(2,4,6-Dimethylphenyl)-5-methyloxazol-4-ylethoxy]-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (6c) Yield 91%. ¹H-NMR (CDCl₃) δ : 2.19 (6H, s), 2.29 (3H, s), 2.33 (3H, s), 2.90–3.10 (4H, m), 3.68 (1H, d, J=5.5 Hz), 3.77 (3H, s), 4.06 (2H, s), 4.22 (2H, t, J=7.3 Hz), 6.59 (1H, d, J=2.4 Hz), 6.60–6.85 (1H, m), 6.88 (2H, s), 7.00 (1H, d, J=8.1 Hz).

Methyl (S)-7-[2-(2,4,6-Dimethylphenyl)-5-methyloxazol-4-ylmethoxy]-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (7c) Quant. ¹H-NMR (CDCl₃) δ : 1.60–1.85 (1H, br), 2.22 (6H, s), 2.30 (3H, s), 2.39 (3H, s), 2.88 (1H, dd, J=15.6, 10.5 Hz), 3.03 (1H, dd, J=15.6, 4.6 Hz), 3.72 (1H, dd, J=10.5, 4.6 Hz), 3.77 (3H, s), 4.02–4.10 (2H, m), 4.99 (2H, s), 6.71 (1H, d, J=2.4 Hz), 6.85 (1H, dd, J=8.3, 2.4 Hz), 6.90 (2H, s), 7.02 (1H, d, J=8.3 Hz).

Methyl (S)-7-[2-(1-Ethyl-1-methylpropan-1-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4-tetrahydroisoquinoline-3-car**boxylate (7d)** Yield 92%. ¹H-NMR (CDCl₃) δ : 0.77 (6H, J=7.3 Hz), 1.29 (3H, s), 1.56–1.69 (2H, m), 1.72–1.85 (2H, m), 1.97–2.07 (1H, br), 2.29 (3H, s), 2.87 (1H, dd, J=15.9, 10.2 Hz), 3.02 (1H, dd, J=15.9, 4.6 Hz), 3.71 (1H, dd, J=10.2, 4.6 Hz), 3.77 (3H, s), 3.99–4.10 (2H, m), 4.87 (2H, s), 6.65 (1H, d, J=2.4 Hz), 6.79 (1H, dd, J=8.3, 2.4 Hz), 7.00 (1H, d, J=8.3 Hz).

Methyl (S)-7-[2-(1-Methylcyclopentan-1-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (7e) Yield 89%. ¹H-NMR (CDCl₃) δ : 1.39 (3H, s), 1.61–1.78 (6H, m), 2.10–2.24 (2H, m), 2.30 (3H, s), 2.89 (1H, dd, J=15.9, 10.2 Hz), 3.04 (1H, dd, J=15.9, 4.4 Hz), 3.72–3.77 (1H, m), 3.78 (3H, s), 4.05 (1H, d, J=16.1), 4.11 (1H, d, J=16.1 Hz), 4.84 (2H, s), 6.67 (1H, d, J=2.4 Hz), 6.80 (1H, dd, J=8.6, 2.4 Hz), 7.01 (1H, d, J=8.6 Hz).

Methyl (S)-7-[2-(1-Methylcyclohexyl-1-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (7f) Yield 95%. ¹H-NMR (CDCl₃) δ : 1.28 (3H, s), 1.32–1.63 (8H, m), 2.08–2.18 (2H, m), 2.30 (3H, s), 2.87 (1H, dd, J=15.9, 10.5 Hz), 3.02 (1H, dd, J=15.9, 4.4 Hz), 3.67–3.77 (1H, m), 3.77 (3H, s), 4.00–4.10 (2H, m), 4.86 (2H, s), 6.67 (1H, d, J=2.4 Hz), 6.80 (1H, dd, J=8.3, 2.4 Hz), 7.01 (1H, d, J=8.3 Hz).

Methyl (S)-7-{[2-(Adamantan-1-yl)-5-methyloxazol-4-yl]methoxy}-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (7g) Yield 92%. ¹H-NMR (CDCl₃) δ : 1.71–1.83 (6H, m), 1.95–2.10 (10H, br), 2.30 (3H, s), 2.87 (1H, dd, J=15.9, 10.2 Hz), 3.02 (1H, dd, J=15.9, 4.6 Hz), 3.72 (1H, dd, J=10.2, 4.6 Hz), 3.74 (3H, s), 4.00–4.12 (2H, m), 4.84 (2H, s), 6.66 (1H, d, J=2.7 Hz), 6.79 (1H, dd, J=8.5, 2.7 Hz),, 7.01 (1H, d, J=8.5 Hz).

Methyl (*S*)-7-[2-(1-Methylcyclopent-3-en-1-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (7h) Yield 94%. ¹H-NMR (CDCl₃) δ : 1.46 (3H, s), 1.86–2.03 (1H, br), 2.31 (3H, s), 2.35–2.44 (2H, m), 2.87 (1H, dd, *J*=15.9, 10.5 Hz), 2.95–3.08 (3H, m), 3.72 (1H, dd, *J*=10.2, 4.6 Hz), 3.78 (3H, s), 4.03–4.12 (2H, m), 4.84 (2H, s), 5.67 (2H, s), 6.66 (1H, d, *J*=2.4 Hz), 6.80 (1H, dd, *J*=8.3, 2.4 Hz), 7.01 (1H, d, *J*=8.3 Hz).

Methyl (S)-7-[2-(1,4,5-Trimethylcyclopent-3-en-1-yl)-5methyloxazol-4-yl]methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (7i) Yield 94%. ¹H-NMR (CDCl₃) δ : 1.44 (3H, s), 1.61 (6H, s), 2.25–2.34 (5H, m), 2.95–3.03 (2H, m), 3.20–3.35 (2H, m), 3.83 (3H, s), 4.17–4.25 (1H, m), 4.36 (1H, d, *J*=16.1 Hz), 4.55 (1H, d, *J*=16.1 Hz), 4.84 (2H, s), 6.72 (1H, d, *J*=2.0 Hz), 6.87 (1H, dd, *J*=8.5, 2.0 Hz), 7.05 (1H, d, *J*=8.5 Hz).

Methyl (*S*)-7-[2-(2-Methylindane-2-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (7j) Yield 79%. ¹H-NMR (CDCl₃) δ: 1.50 (3H, s), 1.51–1.70 (1H, br), 2.32 (3H, s), 2.83–3.05 (4H, m), 3.55–3.65 (2H, m), 3.69–3.75 (1H, m), 3.78 (3H, s), 4.01–4.12 (2H, m), 4.85 (2H, s), 6.66 (1H, d, *J*=2.4Hz), 6.80 (1H, dd, *J*=8.3, 2.4Hz), 7.01 (1H, d, *J*=8.3Hz), 7.14–7.24 (4H, m).

(S)-7-[2-(2,6-Dimethylphenyl)-5-methyloxazol-Methyl 4-ylethoxy]-2-[(2E,4E)-hexadienoyl]-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (10aA) To a solution of 6a (1.88 g, 4.47 mmol) in CH₂Cl₂ (40 mL) was added (2E, 4E)-5-methylhexadienoic acid (601 mg, 5.36 mmol) and EDC·HCl (1.03 g, 5.37 mmol) at room temperature and the mixture was stirred for 1.5h. The reaction mixture was washed with water and saturated brine and dried over Na₂SO₄. The solvent was evaporated under reduced pressure, and the obtained residue was purified by silica gel column chromatography to give 10a (1.88 g, 82% yield) as an oil. ¹H-NMR (CDCl₃) δ : 1.81–1.89 (3H, m), 2.23 (6H, s), 2.35 (3H, s), 2.98 (2H, t, J=6.6 Hz), 3.03-3.27 (2H, m), 3.60 (3H, s), 4.24 (2H, t, J=6.6 Hz), 4.53 (0.25H, d, J=17.3 Hz), 4.71 (0.75H, d, J=15.6 Hz), 4.77 (0.75H, d, J=15.6 Hz), 4.87-4.98 (0.5H, m), 5.53 (0.75H, dd, J=5.8, 3.4 Hz), 6.05-6.35 (3H, m), 6.64-6.78 (2H, m), 7.00-7.09 (3H, m), 7.21 (1H, t, J=7.6 Hz), 7.27-7.36 (1H, m).

Compounds **10bA** and **cA** and **11cA–jA** were prepared according to the procedure for the synthesis of **10aA**.

Methyl (*S*)-7-[2-(2,5-Dimethylphenyl)-5-methyloxazol-4-ylethoxy]-2-[(2*E*,4*E*)-hexadienoyl]-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (10bA) Yield 81%. ¹H-NMR (CDCl₃) δ : 1.80–1.89 (3H, m), 2.35 (3H, s), 2.36 (3H, s), 2.59 (3H, s), 2.97 (2H, t, *J*=6.6Hz), 3.02–3.28 (2H, m), 3.59 (3H, s), 4.22 (2H, t, *J*=6.6Hz), 4.53 (0.25H, d, *J*=17.6Hz), 4.70 (0.75H, d, *J*=15.4Hz), 4.77 (0.75H, d, *J*=15.4Hz), 4.88–4.97 (0.5H, m), 5.53 (0.75H, dd, *J*=5.8, 3.4Hz), 6.06–6.34 (3H, m), 6.64–6.78 (2H, m), 6.99–7.15 (3H, m), 7.27–7.36 (1H, m), 7.73 (1H, s).

Methyl (S)-7-[2-(2,4,6-Dimethylphenyl)-5-methyloxazol-4-ylethoxy]-2-[(2E,4E)-hexadienoyl]-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (10cA) Quant. ¹H-NMR (CDCl₃) δ : 1.85 (3H, d, J=4.8 Hz), 2.20 (6H, s), 2.29 (3H, s), 2.34 (3H, s), 2.97 (2H, t, J=6.8 Hz), 3.00–3.25 (2H, m), 3.60 (3H, s), 4.24 (2H, t, J=6.8 Hz), 4.50–5.10 (2H, m), 5.40–5.65 (1H, m), 6.00–6.55 (3H, m), 6.60–6.85 (2H, m), 6.89 (2H, s), 7.04 (1H, d, J=8.4 Hz), 7.15–7.55 (1H, m).

Methyl (S)-7-[2-(2,4,6-Dimethylphenyl)-5-methyloxazol-4-ylmethoxy]-2-[(2E,4E)-hexadienoyl]-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (11cA) Yield 95%. ¹H-NMR (CDCl₃) δ : 1.83–1.90 (3H, m), 2.22 (6H, s), 2.31 (3H, s), 2.40 (3H, s), 3.03–3.32 (2H, m), 3.60 (3H, s) 4.55 (0.3H, d, J=17.6Hz), 4.68–5.03 (4H, m), 5.51–5.57 (0.7H, m), 6.07–6.36 (3H, m), 6.80–6.93 (4H, m), 7.03–7.10 (1H, m), 7.27–7.39 (1H, m).

Methyl (S)-7-[2-(1-Ethyl-1-methylpropan-1-yl)-5-methyloxazol-4-yl]methoxy-2-[(2E,4E)-hexadienoyl]-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (11dA) Yield 87%. ¹H-NMR (CDCl₃) δ : 0.78 (6H, J=7.6Hz), 1.29 (3H, s), 1.56–1.68 (2H, m), 1.73–1.90 (5H, m), 2.30 (3H, s), 3.00–3.30 (2H, m), 3.59 (3H, s), 4.54 (0.3H, d, J=17.6Hz), 4.66–4.96 (4H, m), 5.50–5.58 (0.7H, m), 6.05–6.37 (3H, m), 6.70–6.84 (2H, m), 7.00-7.07 (1H, m), 7.27-7.39 (1H, m).

Methyl (S)-2-[(2E,4E)-Hexadienoyl]-7-[2-(1-methylcyclopentan-1-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (11eA) Yield 99%. ¹H-NMR (CDCl₃) δ : 1.39 (3H, s), 1.60–1.78 (6H, m), 1.82–1.89 (3H, m), 2.15–2.24 (2H, m), 2.31 (3H, s), 3.06–3.30 (2H, m), 3.60 (3H, s), 4.55 (0.3H, d, J=15.0 Hz), 4.68–5.00 (4H, m), 5.55 (0.7H, dd, J=5.9, 3.4 Hz), 6.06–6.38 (3H, m), 6.73–6.86 (2H, m), 7.04–7.09 (1H, m), 7.27–7.38 (1H, m).

Methyl (S)-2-[(2E,4E)-Hexadienoyl]-7-[2-(1-methylcyclohexyl-1-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (11fA) Yield 89%. ¹H-NMR (CDCl₃) δ : 1.28 (3H, s), 1.32–1.63 (8H, m), 1.82–1.91 (3H, m), 2.08–2.20 (2H, m), 2.31 (3H, s), 3.00–3.30 (2H, m), 3.60 (3H, s), 4.55 (0.3H, d, *J*=17.3 Hz), 4.67–4.98 (4H, m), 5.50–5.59 (0.7H, m), 6.05–6.40 (3H, m), 6.72–6.86 (2H, m), 7.04–7.09 (1H, m), 7.27–7.38 (1H, m).

Methyl (S)-7-{[2-(Adamantan-1-yl)-5-methyloxazol-4-yl]methoxy}-2-[(2E,4E)-hexadienoyl]-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (11gA) Yield 86%. ¹H-NMR (CDCl₃) δ : 1.72–1.82 (6H, m), 1.83–1.89 (3H, m), 1.97–2.10 (9H, m), 2.30 (3H, s), 3.00–3.30 (2H, m), 3.60 (3H, s), 4.55 (0.3H, d, J=17.3 Hz), 4.67–4.98 (4H, m), 5.51–5.58 (0.7H, m), 6.05–6.38 (3H, m), 6.71–6.86 (2H, m), 7.02–7.09 (1H, m), 7.27–7.37 (1H, m).

Methyl (S)-2-[(2E,4E)-Hexadienoyl]-7-[2-(1-methylcyclopent-3-en-1-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4tetrahydroisoquinoline-3-carboxylate (11hA) Yield 93%. ¹H-NMR (CDCl₃) δ : 1.47 (3H, s), 1.80–1.90 (3H, m), 2.25–2.45 (5H, m), 2.95–3.30 (4H, m), 3.60 (3H, s), 4.55 (0.3H, d, J=17.3 Hz), 4.68–4.98 (4H, m), 5.51–5.58 (0.7H, m), 5.67 (2H, s), 6.07–6.40 (3H, m), 6.72–6.86 (2H, m), 7.02–7.10 (1H, m), 7.27–7.38 (1H, m).

Methyl (S)-2-[(2E,4E)-Hexadienoyl]-7-[2-(1,4,5-trimethylcyclopent-3-en-1-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4tetrahydroisoquinoline-3-carboxylate (11iA) Yield 96%. ¹H-NMR (CDCl₃) δ : 1.44 (3H, s), 1.61 (6H, s), 1.85–1.90 (3H, m), 2.27–2.32 (5H, m), 2.95–3.31 (4H, m), 3.60 (3H, s), 4.55 (0.3H, d, *J*=17.6Hz), 4.69–4.98 (4H, m), 5.51–5.58 (0.7H, m), 6.07–6.38 (3H, m), 6.74–6.86 (2H, m), 7.02–7.10 (1H, m), 7.29–7.40 (1H, m).

Methyl (S)-2-[(2E,4E)-Hexadienoyl]-7-[2-(2-methylindane-2-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (11jA) Yield 91%. ¹H-NMR (CDCl₃) δ : 1.50 (3H, s), 1.80–1.90 (3H, m), 2.32 (3H, m), 2.94–3.30 (4H, m), 3.55–3.64 (5H, m), 4.55 (0.3H, d, J=16.8 Hz), 4.67–4.98 (4H, m), 5.50–5.58 (0.7H, m), 6.05–6.40 (3H, m), 6.72–6.86 (2H, m), 7.02–7.10 (1H, m), 7.13–7.24 (4H, m), 7.27–7.40 (1H, m).

Compounds **11gE** and **F** and **11jE–G** were prepared according to the procedure for the synthesis of **10aA** using corresponding carboxylic acid.

Methyl (S)-7-{[2-(Adamantann-1-yl)-5-methyloxazol-4-yl]methoxy}-2-(2-hexynoyl)-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (11gD) Quant. ¹H-NMR (CDCl₃) δ (ppm): 1.01 (1.5H, t, J=7.5Hz), 1.07 (1.5H, t, J=7.5Hz), 1.56–1.70 (2H, m), 1.72–1.81 (6H, m), 2.00–2.11 (9H, m), 2.30, 2.31 (total 3H, s, s), 2.35 (1H, t, J=7.1Hz), 2.41 (1H, t, J=7.1Hz), 3.05–3.32 (2H, m), 3.63, 3.64 (total 3H, s, s), 4.49 (0.5H, d, J=17.8Hz), 4.49 (0.5H, d, J=17.6Hz), 4.64 (0.5H, d, J=16.3Hz), 4.83, 4.86 (total 2H, s, s), 4.94 (0.5H, d, *J*=17.6 Hz), 5.08 (0.5H, d, *J*=16.3 Hz), 5.35–5.42 (1H, m), 6.74–6.86 (2H, m), 7.03–7.09 (1H, m).

Methyl (S)-7-{[2-(Adamantann-1-yl)-5-methyloxazol-4-yl]methoxy}-2-(2-furylacryloyl)-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (11gE) Yield 98%. ¹H-NMR (CDCl₃) δ (ppm): 1.73–1.82 (6H, m), 2.00–2.10 (9H, m), 2.31 (3H, s), 3.05–3.35 (2H, m), 3.61 (3H, s), 4.59 (0.3H, d, J=17.1 Hz), 4.78–5.07 (4H, m), 5.55–5.63 (0.7H, m), 6.45–6.51 (1H, m), 6.56–6.62 (1H, m), 6.45–6.51 (1H, m), 6.74–6.94 (3H, m), 7.03–7.12 (1H, m), 7.44–7.55 (1H, m).

Methyl (S)-7-{[2-(Adamantann-1-yl)-5-methyloxazol-4-yl]methoxy}-2-[2-(5-fluorofuryl)acryloyl]-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (11gF) Yield 92%. ¹H-NMR (CDCl₃) δ (ppm): 1.70–1.80 (6H, m), 1.97–2.09 (9H, m), 2.31 (3H, s), 3.05–3.35 (2H, m), 3.62 (3H, s), 4.59 (0.3H, d, J=17.3 Hz), 4.77–5.07 (4H, m), 5.51–5.61 (1.7H, m), 6.45–6.58 (1.3H, m), 6.72–6.88 (2.7H, m), 7.03–7.12 (1H, m), 7.34–7.43 (1H, m).

Methyl (S)-2-(2-Furylacryloyl)-7-[2-(2-methylindane-2-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (11jE) Quant. ¹H-NMR (CDCl₃) δ : 1.50 (3H, s), 2.32 (3H, s), 2.94–3.35 (4H, m), 3.56–3.66 (5H, m), 4.59 (0.3H, d, J=17.4Hz), 4.77–4.93 (3.5H, m), 4.95–5.09 (0.5H, m), 5.55–5.62 (0.7H, m), 6.42–6.50 (1H, m), 6.55–6.61 (1H, m), 6.69 (0.3H, d, J=15.1Hz), 6.75–6.87 (2H, m), 6.91 (0.7H, d, J=15.1Hz), 7.05–7.10 (1H, m), 7.14–7.23 (4H, m), 7.42–7.56 (2H, m).

Methyl (S)-2-[2-(5-Fluorofuryl)acryloyl-7-[2-(2-methylindane-2-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (11jF) Yield 72%. ¹H-NMR (CDCl₃) δ : 1.51 (3H, s), 2.33 (3H, s), 2.95–3.35 (4H, m), 3.56–3.65 (5H, m), 4.58 (0.3H, d, *J*=18.1Hz), 4.75–4.89 (3.5H, m), 4.94–5.06 (0.5H, m), 5.54–5.60 (1.7H, m), 6.45–6.55 (1.3H, m), 6.74–6.86 (2.7H, m), 7.02–7.09 (1H, m), 7.13–7.23 (4H, m), 7.34–743 (1H, m).

Methyl (S)-2-(2-Cyclopropylacryloyl)-7-[2-(2-methylindane-2-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (11jG) Quant. ¹H-NMR (CDCl₃) δ : 0.57–0.72 (2H, m), 0.83–1.00 (2H, m), 1.50 (3H, s), 2.32 (3H, s), 2.93–3.30 (4H, m), 3.56–3.65 (5H, m), 4.53 (0.3H, d, *J*=17.6Hz), 4.66–5.00 (4H, m), 5.45–5.58 (0.7H, m), 6.24 (0.3H, d, *J*=14.9Hz), 6.35–6.53 (1.7H, m), 6.70–6.88 (2H, m), 7.00–7.10 (1H, m), 7.13–7.27 (5H, m), 7.34–743 (1H, m).

Methyl (S)-7-{[2-(Adamantann-1-vl)-5-methyloxazol-4-yl]methoxy}-2-hexanoyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (11gB) To a solution of 7g (500 mg, 1.15 mmol) in CH₂Cl₂ (5 mL) was added triethylamine (0.24 mL, 1.72 mmol) and hexanovl chloride (0.17 mL, 1.27 mmol) under ice-cooling, and the mixture was stirred for 15 min under ice-cooling. To the reaction mixture was added water and extracted with CHCl₂. The organic layer was washed with water and dried over Na₂SO₄. The solvent was evaporated under reduced pressure, and the obtained residue was purified by silica gel column chromatography to give **11gB** (0.62 g, quant.) as an oil. ¹H-NMR (CDCl₂) δ : 0.86-0.96 (3H, m), 1.29-1.40 (4H, m), 1.55-1.62 (0.6H, m), 1.65-1.81 (8H, m), 2.01-2.10 (9H, m), 2.30, 2.30 (total 3H, s, s), 2.44-2.52 (1.4H, m), 3.00-3.31 (2H, m), 3.61 (3H, s), 4.45 (0.3H, d, J=17.1 Hz), 4.65 (1.4H, s), 4.80-4.86 (2.3H, m), 5.46-5.51 (0.7H, m), 6.73-6.85 (2H, m), 7.03-7.10 (1H, m).

Compound 11gC was prepared according to the procedure

for the synthesis of 11gB.

Methyl (*S*)-7-{[2-(Adamantann-1-yl)-5-methyloxazol-4-yl]methoxy}-2-(2-hexenoyl)-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (11gC) Quant. ¹H-NMR (CDCl₃) δ (ppm): 0.91–1.00 (3H, m), 1.45–1.57 (2H, m), 1.72–1.82 (6H, m), 2.01–2.10 (9H, m), 2.13–2.27 (2H, m), 2.31 (3H, s), 3.02–3.30 (2H, m), 3.61 (3H, s), 4.53 (0.3H, d, J=17.6Hz), 4.68–4.96 (4H, m), 5.50–5.56 (0.7H, m), 6.14 (0.3H, d, J=15.2Hz), 6.37 (0.7H, d, J=15.2Hz), 6.75–7.08 (4H, m).

(S)-7-[2-(2,6-Dimethylphenyl)-5-methyloxazol-4-ylethoxy]-2-[(2E,4E)-hexadienoyl]-1,2,3,4-tetrahydroisoquinoline-3-carboxylic Acid tert-Butylamine Salt (12aA) To a solution of 10aA (1.88g, 3.65 mmol) in tetrahydrofuran (THF)-MeOH (3:1, 20mL) was added 1 M aqueous lithium hydroxide solution (11.0mL, 11.0mmol), and the mixture was stirred at room temperature for 1h. The mixture was acidified with 10% citric acid in water and extracted with AcOEt. The organic layer was washed with saturated brine and then dried over Na₂SO₄. The solvent was evaporated under reduced pressure and the obtained residue was dissolved in MeOH (5 mL). After dropwise addition of tert-butylamine (0.77 mL, 7.33), diisopropyl ether (100 mL) was added, and the mixture was stirred at room temperature for 1 h. The precipitated crystals were collected by filtration to give 12aA (2.14g, quant) as a white solid, mp 135–137°C. ¹H-NMR (CDCl₃) δ : 1.02 (9H, s), 1.78, 1.84 (total 3H, d, d, J=6.6, 5.8 Hz), 2.22 (6H, s), 2.35 (3H, s), 2.87-3.05 (3H, m), 3.12-3.30 (1H, m), 4.10-4.25 (2H, m), 4.45 (0.5H, d, J=17.8Hz), 4.55-4.77 (1.5H, m), 4.95-5.09 (1H, m), 5.95-6.40 (3H, m), 6.56-6.72 (2H, m), 6.90-7.00 (1H m), 7.06 (2H, d, J=7.3 Hz), 7.12-7.25 (2H, m). IR attenuated total reflectance (ATR) cm⁻¹: 1652, 1623, 1589, 1538, 1392. MS m/z: 501 [M+H]⁺.

Compounds **12bA** and **cA** and **13cA–jA** were prepared according to the procedure for the synthesis of **12aA**.

(S)-7-[2-(2,5-Dimethylphenyl)-5-methyloxazol-4-ylethoxy]-2-[(2E,4E)-hexadienoyl]-1,2,3,4-tetrahydroisoquinoline-3-carboxylic Acid tert-Butylamine Salt (12bA) Quant. A white solid. mp 134–135°C. ¹H-NMR (CDCl₃) δ : 0.99 (9H, s), 1.78, 1.84 (total 3H, d, d, J=6.8, 6.6Hz), 2.34 (3H, s), 2.36 (3H, s), 2.59 (3H, s), 2.88–3.05 (3H, m), 3.12–3.26 (1H, m), 4.13–4.21 (2H, m), 4.45 (0.5H, d, J=17.3Hz), 4.59–4.72 (1.5H, m), 4.96–5.04 (1H, m), 5.95–6.35 (3H, m), 6.57–6.71 (2H, m), 6.92–7.00 (1H m), 7.05–7.26 (3H, m), 7.72 (1H, s). IR (ATR) cm⁻¹: 1650, 1621, 1585, 1506, 1378. MS m/z: 501 [M+H]⁺.

(S)-2-[(2E,4E)-Hexadienoyl]-7-[2-(2,4,6-trimethylphenyl)-5-methyloxazol-4-ylethoxy]-1,2,3,4-tetrahydroisoquinoline-3-carboxylic Acid *tert*-Butylamine Salt (12cA) Yield 72%. A white solid. mp 130–132°C. ¹H-NMR (CDCl₃) δ : 0.98 (9H, s), 1.60–2.05 (3H, m), 2.20 (6H, s), 2.29 (3H, s), 2.34 (3H, s), 2.75–3.40 (4H, m), 4.19 (2H, t, *J*=6.8 Hz), 4.45–5.25 (3H, m), 5.80–7.40 (12H, m). IR (ATR) cm⁻¹: 1652, 1623, 1592, 1540, 1504, 1394. MS *m/z*: 515 [M+H]⁺.

(S)-2-[(2E,4E)-Hexadienoyl]-7-[2-(2,4,6-trimethylphenyl)-5-methyloxazol-4-ylmethoxy]-1,2,3,4-tetrahydroisoquinoline-3-carboxylic Acid *tert*-Butylamine Salt (13cA) Yield 63%. A white solid. mp 135–138°C. ¹H-NMR (CDCl₃) δ : 1.01 (9H, s), 1.78, 1.84 (total 3H, d, d, J=6.6, 6.3 Hz), 2.22 (6H, s), 2.30 (3H, s), 2.38, 2.39 (total 3H, s, s), 2.90–3.07 (1H, m), 3.15–3.32 (1H, m), 4.49 (0.5H, d, J=17.1 Hz), 4.55–4.75 (1.5H, m), 4.91–5.08 (3H, m), 5.95–6.35 (3H, m), 6.72–6.84 (2H, m), 6.89 (2H, s), 6.95–7.04 (1H, m), 7.16–7.25 (1H, m). IR (ATR) cm⁻¹: 1652, 1623, 1592, 1536, 1504, 1392. MS m/z: 501 [M+H]⁺.

(S)-7-[2-(1-Ethyl-1-methylpropan-1-yl)-5-methyloxazol-4-yl]methoxy-2-[(2E,4E)-hexadienoyl]-1,2,3,4-tetrahydroisoquinoline-3-carboxylic Acid *tert*-Butylamine Salt (13dA) Yield 70%. A white solid. mp 120–123°C. ¹H-NMR (CDCl₃) δ : 0.78 (6H,, J=7.6Hz), 0.98 (9H, s), 1.29, 1.28 (total 3H, s), 1.56–1.69 (2H, m), 1.75–1.88 (5H, m), 2.29 (3H, s), 2.92–3.07 (1H, m), 3.15–3.30 (1H, m), 4.47 (0.5H, d, J=17.8Hz), 4.65–4.75 (1.5H, m), 4.82, 4.83 (total 2H, s, s), 4.99–5.12 (1H, m), 5.96–6.37 (3H, m), 6.65–6.78 (2H, m), 6.93–7.00 (1H, m), 7.16–7.25 (1H, m). IR (ATR) cm⁻¹: 1652, 1627, 1560, 1504, 1384. MS *m/z*: 467 [M+H]⁺.

(S)-2-[(2E,4E)-Hexadienoyl]-7-[2-(1-methylcyclopentan-1-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic Acid *tert*-Butylamine Salt (13eA) Yield 74%. A white solid. mp 130–133°C. ¹H-NMR (CDCl₃) δ : 0.99 (9H, s), 1.38, 1.39 (total 3H, s), 1.60–1.88 (9H, m), 2.13–2.24 (2H, m), 2.29, 2.30 (total 3H, s, s), 2.91–3.07 (1H, m), 3.15–3.30 (1H, m), 4.47 (0.5H, d, *J*=17.3 Hz), 4.63–4.77 (1.5H, m), 4.80, 4.81 (total 2H, s, s), 5.04 (0.5H, d, *J*=17.3 Hz), 5.08–5.13 (0.5H, m), 5.96–6.37 (3H, m), 6.64–6.78 (2H, m), 6.93–7.02 (1H, m), 7.15–7.26 (1H, m). IR (ATR) cm⁻¹: 1652, 1623, 1592, 1538, 1506, 1394. MS *m/z*: 465 [M+H]⁺.

(S)-2-[(2E,4E)-Hexadienoyl]-7-[2-(1-methylcyclohexyl-1-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic Acid *tert*-Butylamine Salt (13fA) Yield 70%. A white solid. ¹H-NMR (CDCl₃) δ (ppm): 1.01 (9H, s), 1.28 (3H, s), 1.32–1.65 (8H, m), 1.79, 1.85 (total 3H, d, d, J=6.3, 6.6Hz), 2.06–2.18 (2H, m), 2.30 (3H, s), 2.90–3.08 (1H, m), 3.11–3.29 (1H, m), 4.48 (0.5H, d, J=17.1Hz), 4.62–4.71 (1.5H, m), 4.81, 4.83 (total 2H, s, s), 4.96–5.12 (1H, m), 5.96–6.37 (3H, m), 6.66–6.81 (2H, m), 6.93–7.05 (1H, m), 7.15–7.26 (1H, m). IR (ATR) cm⁻¹: 1652, 1625, 1554, 1502, 1378. MS *m/z*: 479 [M+H]⁺.

(S)-7-{[2-(Adamantan-1-yl)-5-methyloxazol-4-yl]methoxy}-2-[(2E,4E)-hexadienoyl]-1,2,3,4-tetrahydroisoquinoline-3-carboxylic Acid *tert*-Butylamine Salt (13gA) Yield 82%. A white solid. mp 154–156°C. ¹H-NMR (CDCl₃) δ : 0.99 (9H, s), 1.72–1.89 (9H, m), 2.03 (6H, s), 2.03–2.10 (3H, br), 2.29 (3H, s), 2.90–3.07 (1H, m), 3.13–3.31 (1H, m), 4.47 (0.5H, d, J=17.4Hz), 4.58–4.78 (1.5H, m), 4.80, 4.81 (total 2H, s, s), 4.99–5.13 (1H, m), 5.96–6.38 (3H, m), 6.66–6.78 (2H, m), 6.95–7.04 (1H, m), 7.15–7.26 (1H, m). IR (ATR) cm⁻¹: 1652, 1623, 1592, 1540, 1506, 1392. MS *m/z*: 517 [M+H]⁺.

(S)-2-[(2E,4E)-Hexadienoyl]-7-[2-(1-methylcyclopent-3en-1-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic Acid *tert*-Butylamine Salt (13hA) Yield 59%. A white solid. mp 134–137°C. ¹H-NMR (CDCl₃) δ : 1.01 (9H, s), 1.46, 1.46 (total 3H, s), 1.78, 1.85 (total 3H, d, d, J=6.8, 6.8 Hz), 2.30, 2.31 (total 3H, s, s), 2.35–2.44 (2H, m), 2.93–3.08 (3H, m), 3.15–3.31 (1H, m), 4.47 (0.5H, d, J=17.6Hz), 4.59–4.85 (3.5H, m), 4.99–5.12 (1H, m), 5.66 (1H, s), 5.96–6.37 (3H, m), 6.66–6.79 (2H, m), 6.93–7.02 (1H, m), 7.15–7.26 (1H, m). IR (ATR) cm⁻¹: 1652, 1625, 1592, 1560, 1540, 1504, 1382. MS *m/z*: 463 [M+H]⁺.

(S)-2-[(2E,4E)-Hexadienoyl]-7-[2-(1,4,5-trimethylcyclopent-3-en-1-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic Acid *tert*-Butylamine Salt (13iA) Yield 63%. A white solid. mp 114–116°C. ¹H-NMR (CDCl₃) δ : 1.03 (9H, s), 1.43 (3H, s), 1.61 (6H, s), 1.78, 1.85 (total 3H, d, d, *J*=6.6, 6.6Hz), 2.23–2.33 (5H, m), 2.92–3.04 (3H, m), 3.15–3.31 (1H, m), 4.49 (0.5H, d, *J*=17.6Hz), 4.65–4.85 (3.5H, m), 4.97–5.08 (1H, m), 5.96–6.37 (3H, m), 6.66–6.79 (2H, m), 6.95–7.05 (1H, m), 7.15–7.26 (1H, m). IR (ATR) cm⁻¹: 1652, 1625, 1554, 1504, 1378. MS *m/z*: 491 [M+H]⁺.

(S)-2-[(2E,4E)-Hexadienoyl]-7-[2-(2-methylindane-2yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic Acid *tert*-Butylamine Salt (13jA) Yield 65%. A white solid. mp 150–155°C (dec.). ¹H-NMR (CDCl₃) δ : 1.02 (9H, s), 1.49, 1.50 (total 3H, s, s), 1.78, 1.84 (total 3H, d, d, J=6.6, 6.4Hz), 2.30, 2.31 (total 3H, s, s), 2.90–3.06 (3H, m), 3.15–3.31 (1H, m), 3.60 (2H, d, J=15.9Hz), 4.47 (0.5H, d, J=17.4Hz), 4.64–4.76 (1.5H, m), 4.80, 4.81 (total 2H, s, s), 5.00–5.10 (1H, m), 5.95–6.37 (3H, m), 6.66–6.79 (2H, m), 6.94–7.03 (1H, m), 7.12–7.26 (5H, m). IR (ATR) cm⁻¹: 1652, 1625, 1554, 1504, 1380. MS *m/z*: 513 [M+H]⁺.

Compounds **13gB–E** and **13jE** and **F** were prepared according to the procedure for the synthesis of **12aA**.

(S)-7-{[2-(Adamantann-1-yl)-5-methyloxazol-4-yl]methoxy}-2-hexanoyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylic Acid *tert*-Butylamine Salt (13gB) Yield 76%. A white solid. mp 124–126°C. ¹H-NMR (CDCl₃) δ : 0.86–0.95 (3H, m), 1.03 (9H, s), 1.25–1.39 (4H, m), 1.58–1.69 (2H, m), 1.25–1.39 (4H, m), 1.72–1.81 (6H, br), 2.03 (6H, s), 2.03–2.10 (3H, br), 2.29, 2.30 (total 3H, s, s), 2.31–2.48 (2H, m), 2.92–3.06 (1H, m), 3.13–3.33 (1H, m), 4.45–4.70 (2H, m), 4.80, 4.82 (total 2H, s, s), 4.94–5.05 (1H, m), 6.66–6.80 (2H, m), 6.95–7.04 (1H, m). IR (ATR) cm⁻¹: 1635, 1548, 1504, 1382. MS *m/z*: 521 [M+H]⁺.

(S)-7-{[2-(Adamantann-1-yl)-5-methyloxazol-4-yl]methoxy}-2-(2-hexenoyl)-1,2,3,4-tetrahydroisoquinoline-3carboxylic Acid tert-Butylamine Salt (13gC) Yield 79%. A white solid. mp 141–143°C. ¹H-NMR (CDCl₃) δ (ppm): 0.86–0.98 (3H, m), 1.03 (9H, s), 1.38–1.55 (2H, m), 1.72–1.81 (6H, br), 2.02–2.25 (11H, m), 2.29, 2.29 (total 3H, s, s), 2.95–3.07 (1H, m), 3.15–3.33 (1H, m), 4.47 (0.5H, d, J=17.3 Hz), 4.62–4.76 (1.5H, m), 4.80, 4.82 (total 2H, s, s), 4.96–5.09 (1H, m), 6.25, 6.35 (total 1H, d, d, J=15.1, 15.2 Hz), 6.67–6.85 (3H, m), 6.95–7.04 (1H, m). IR (ATR) cm⁻¹: 1658, 1621, 1548, 1504, 1384. MS m/z: 519 [M+H]⁺.

(S)-7-{[2-(Adamantann-1-yl)-5-methyloxazol-4-yl]methoxy}-2-(2-hexynoyl)-1,2,3,4-tetrahydroisoquinoline-3carboxylic Acid *tert*-Butylamine Salt (13gD) Yield 67%. A white solid. mp 133–135°C. ¹H-NMR (CDCl₃) δ (ppm): 0.89–1.05 (12H, m), 1.54–1.69 (2H, m), 1.72–1.81 (6H, br), 2.02 (6H, s), 2.03–2.10 (3H, br), 2.25–2.35 (4H, m), 2.37 (1H, t, *J*=7.1 Hz), 2.95–3.10 (1H, m), 3.13–3.35 (1H, m), 4.46 (0.5H, d, *J*=17.6 Hz), 4.69–4.84 (2.5H, m), 4.89–4.95 (0.5H, m), 4.97–5.12 (1H, m), 6.65–6.80 (2H, m), 6.94–7.04 (1H, m). IR (ATR) cm⁻¹: 1627, 1554, 1506, 1378. MS *m/z*: 517 [M+H]⁺.

(S)-7-{[2-(Adamantann-1-yl)-5-methyloxazol-4-yl]methoxy}-2-(2-furylacryloyl)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic Acid *tert*-Butylamine Salt (13gE) Yield 60%. A white solid. mp 140–142°C. δ (ppm): 1.01 (9H, s), 1.72–1.81 (6H, br), 1.97–2.10 (9H, br), 2.29 (3H, s), 2.94–3.10 (1H, m), 3.13–3.35 (1H, m), 4.52 (0.5H, d, J=17.3 Hz), 4.69–4.85 (3.5H, m), 5.00–5.13 (1H, m), 6.37–6.58 (2H, m), 6.67–7.03 (1H, m), 7.35–7.50 (2H, m). IR (ATR) cm⁻¹: 1648, 1608, 1554, 1504, 1382. MS m/z: 543 [M+H]⁺. (*S*)-2-(2-Furylacryloyl)-7-[2-(2-methylindane-2-yl)-5methyloxazol-4-yl]methoxy-1,2,3,4-tetrahydroisoquinoline-**3-carboxylic Acid** *tert*-Butylamine Salt (13jE) Yield 63%. A white solid. mp 165–170°C (dec.). ¹H-NMR (CDCl₃) δ : 0.97 (9H, s), 1.50 (3H, s), 2.30 (3H, s), 2.90–3.08 (3H, m), 3.15–3.31 (1H, m), 3.60 (2H, d, *J*=15.9Hz), 4.49 (0.5H, d, *J*=17.4Hz), 4.66–4.84 (3.5H, m), 5.02–5.20 (1H, m), 6.35–6.57 (2H, m), 6.67–7.02 (4H, m), 7.12–7.24 (4H, m), 7.30–7.46 (3H, m). IR (ATR) cm⁻¹: 1650, 1616, 1556, 1504, 1376. MS *m/z*: 539 [M+H]⁺. *Anal.* Calcd for C₂₉H₃₈N₂O₅·C₄H₁₁N·0.5H₂O: C, 69.66; H, 6.82; N, 6.77. Found: C, 69.54; H, 7.00; N, 6.58.

(S)-2-[2-(5-Fluorofuryl)acryloyl-7-[2-(2-methylindane-2-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic Acid *tert*-Butylamine Salt (13jF) Yield 64%. A white solid. mp 168–171°C (dec.). ¹H-NMR (CDCl₃) δ : 1.00 (9H, s), 1.49, 1.50 (total 3H, s, s), 2.30, 2.30 (total 3H, s, s), 2.90–3.08 (3H, m), 3.14–3.32 (1H, m), 3.53–3.65 (2H, m), 4.49 (0.5H, d, *J*=17.7Hz), 4.70–4.84 (3.5H, m), 5.01–5.12 (1H, m), 5.45–5.55 (1H, m), 6.36–6.48 (1H, m), 6.60–6.79 (2H, m), 6.96–7.02 (1H, m), 7.12–7.30 (5H, m). IR (ATR) cm⁻¹: 1652, 1569, 1542, 1506, 1376. MS *m/z*: 557 [M+H]⁺.

(S)-2-(2-Cyclopropylacryloyl)-7-[2-(2-methylindane-2-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic Acid *tert*-Butylamine Salt (13jG) Yield 65%. A white solid. mp 148–156°C (dec.). ¹H-NMR (CDCl₃) δ : 0.50–0.65 (2H, m), 0.77–0.95 (2H, m), 1.04 (9H, s), 1.49, 1.50 (total 3H, s, s), 2.30, 2.31 (total 3H, s, s), 2.92–3.07 (3H, m), 3.05–3.32 (1H, m), 3.54–3.65 (2H, m), 4.46 (0.5H, d, J=17.6Hz), 4.64–4.87 (3.5H, m), 4.94–5.08 (1H, m), 6.45–6.53 (2H, m), 6.67–6.80 (2H, m), 6.95–7.05 (1H, m), 7.12–7.27 (4H, m). IR (ATR) cm⁻¹: 1654, 1610, 1550, 1504, 1382. MS *m/z*: 513 [M+H]⁺.

(S)-7-{[2-(Adamantann-1-yl)-5-methyloxazol-4-yl]methoxy}-2-[2-(5-fluorofuryl)acryloyl]-1,2,3,4-tetrahydroisoquinoline-3-carboxylic Acid Calcium Salt (13gF) To a solution of 11gE (1.82g, 3.17 mmol) in 1,4-dioxane (38 mL) was added 1 M aqueous lithium hydroxide solution (9.5 mL, 9.5 mmol) dropwise, and the mixture was stirred at room temperature for 2h. The mixture was acidified with 2M HCl and extracted with AcOEt. The organic laver was washed with water and saturated brine, and then dried over Na₂SO₄. The solvent was evaporated under reduced pressure, and the obtained residue was purified by silica gel column chromatography to give the free form of **11gF** (1.65g) as a crude oil. To a solution of the free form of **11gF** (500 mg, 0.89 mmol) in THF (25mL) was added 0.1 M aqueous KHCO₃ (9.0 mL, 0.9 mmol), and the mixture was stirred at room temperature for 1h. The solvent was evaporated under reduced pressure, and the obtained residue was dissolved in 10% MeCN in water and passed through an ODS silica gel (Fuji Silysia, Kasugai, Japan) column chromatograph. Fractions containing the compound were collected and MeCN was evaporated under reduced pressure. To the obtained residue was added 1 M aqueous CaCl₂ solution (1.0 mL, 1.0 mmol) dropwise, and the mixture was stirred at room temperature for 3h. The precipitated crystals were collected by filtration to give 11gF (390 mg, 76% yield) as a white solid. mp 160-166°C. ¹H-NMR (DMSO- d_6) δ : 1.65–1.75 (6H, br), 1.86–2.05 (9H, br), 2.27 (3H, s), 2.73-2.95 (1H, m), 3.25-3.40 (1H, m), 4.52 (0.7H, d, J=18.3Hz), 4.56-4.69 (0.7H, br), 4.70-4.95 (3.3H,

Methyl [5-Methyl-2-(2,6-dimethylphenyl) ∞ azol-4-yl]acetate (16a) To a suspension of the 2,6-dimethylbenzoyl chloride 14a (11.8g, 70 mmol) and 15 (18.4g, 100 mmol) in CH₂Cl₂ (450 mL) was added triethylamine (27.8 mL, 200 mmol) dropwise at -10°C, and stirred at the same temperature for 2 h. The reaction mixture was washed with water, 6 M HCl and saturated brine, and dried over Na₂SO₄. The solvent was evaporated under reduced pressure to give a crude oil (16.8g).

The crude oil (16.8 g), acetic anhydride (18.4 mL, 195 mmol), *N*-methylmorpholine (21.1 mL, 192 mmol) and 4-dimethylaminopyridine (1.21 g, 9.90 mmol) were dissolved in toluene (250 mL) and stirred at 70–80°C for 1.5 h. After cooling to room temperature, the reaction mixture was neutralized with saturated aqueous NaHCO₃ solution and separated into two layers. The organic layer was washed with water and saturated brine, and dried over Na₂SO₄. The solvent was evaporated under reduced pressure to give a crude solid (16.6 g).

To a solution of the crude solid (16.6g) in toluene (200 mL) was added POCl₃ (10.0 mL, 107 mmol), which was refluxed for 1.5 h. After cooling, the mixture was poured into cold water, neutralized with K_2CO_3 and extracted with AcOEt. The organic layer was washed with water and saturated brine, dried over Na₂SO₄ and then evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography to give **16a** (2.25 g, 12.3% yield) as an oil. ¹H-NMR (CDCl₃) δ : 2.24 (6H, s), 2.35 (3H, s), 3.60 (2H, s), 3.73 (3H, s), 7.07 (2H, d, *J*=7.6 Hz), 7.21 (1H, t, *J*=7.6 Hz).

Compounds **16b**, **c** were prepared according to the procedure for the synthesis of **16a**.

Methyl [5-Methyl-2-(2,5-dimethylphenyl)oxazol-4-yl]acetate (16b) Yield 32%. ¹H-NMR (CDCl₃) δ : 2.34 (3H, s), 2.36 (3H, s), 2.59 (3H, s), 3.58 (2H, s), 3.73 (3H, s), 7.06–7.16 (2H, m), 7.73 (1H, s).

Methyl [5-Methyl-2-(2,4,6-trimethylphenyl)oxazol-4-yl]acetate (16c) Yield 65%. ¹H-NMR (CDCl₃) δ : 2.20 (6H, s), 2.29 (3H, s), 2.31 (3H, s), 3.57 (2H, s), 3.72 (3H, s), 6.82 (2H, s).

2-[5-Methyl-2-(2,6-dimethylphenyl)oxazol-4-yl]ethanol (17a) To a suspension of 16a (2.25 g, 8.68 mmol) and NaBH₄ (1.35 g, 35.7 mmol) in THF (70 mL) was added methanol (10 mL) dropwise at 60°C and stirred for 30 min. After cooling, the mixture was poured into cold water and extracted with AcOEt. The organic layer was washed with saturated brine, dried over Na₂SO₄ and then evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography to give 17a (1.60 g, 80 yield) as an oil. ¹H-NMR (CDCl₃) δ : 2.26 (6H, s), 2.32 (3H, s), 2.74 (2H, t, *J*=4.4Hz), 3.25–3.40 (1H, br), 3.88–3.95 (2H, m), 7.08 (2H, d, *J*=7.6Hz), 7.22 (1H, t, *J*=7.6Hz).

Compound **17b** was prepared according to the procedure for the synthesis of **17a**.

2-[5-Methyl-2-(2,5-dimethylphenyl)oxazol-4-yl]ethanol (17b) Yield 42%. ¹H-NMR (CDCl₃) δ: 2.33 (3H, s), 2.36 (3H, s), 2.60 (3H, s), 2.73 (2H, t, *J*=5.6Hz), 3.55–3.70 (1H, br), 3.93 (2H, t, *J*=5.6Hz), 7.07–7.15 (2H, m), 7.74 (1H, s).

2-[5-Methyl-2-(2,4,6-trimethylphenyl)oxazol-4-yl]ethanol (17c) To a solution of 16c (3.60 g, 13.2 mmol) in THF (75 mL) was added lithium aluminum hydride (500 mg, 13.2 mmol) portionwise below 10°C, and stirred at the same temperature for 1 h. To the reaction mixture was added cold water (100 mL) and AcOEt (100 mL). The precipitate was removed by filtration, and the filtrate was separated into two layers. The organic layer was washed with saturated brine, dried over Na₂SO₄ and then evaporated under reduced pressure to give **17c** (3.07 g, 95% yield) as an oil. ¹H-NMR (CDCl₃) δ : 2.22 (6H, s), 2.30 (6H, s), 2.72 (2H, t, *J*=5.7 Hz), 2.80–3.20 (1H, br), 3.92 (2H, t, *J*=5.7 Hz), 6.90 (2H, s).

2-[5-Methyl-2-(2,6-dimethylphenyl)oxazol-4-yl]ethyl Methanesulfonate (2a) To a solution of **17a** (1.60 g, 6.92 mmol) and triethylamine (1.16 mL, 8.30 mmol) in CH_2Cl_2 (30 mL) was added methanesulfonyl chloride (0.59 mL, 7.61 mmol) at 0°C and stirred for 15 min. The reaction mixture was washed with water and saturated brine, and dried over Na_2SO_4 . The solvent was evaporated under reduced pressure to give a crude **2a** (2.13 g) as an oil. The crude **2a** was used in subsequent reactions without further purification.

Compounds **2b** and **c** were prepared according to the procedure for the synthesis of **2a**.

4-Chloromethyl-5-methyl-2-(2,4,6-trimethylphenyl)oxazole (21c) To a solution of mesitylaldehyde (15.8 g, 416 mmol) in AcOEt (40 mL) was added **19** (10 g, 98.9 mmol) and HCl gas was bubbled through the solution at 0°C for 0.5 h. The mixture was stirred at the same temperature for 1.5 h. To the reaction mixture was added *i*-Pr₂O and precipitated crystals were collected by filtration to give a crude **20c** (13.8 g).

To a solution of the crude **20c** (13.8 g) in CHCl₃ (140 mL) was added POCl₃ (6.9 mL, 74.8 mmol), which was refluxed for 3 h. After cooling, the mixture was poured into cold water and extracted with AcOEt. The organic layer was washed with 1 M NaOH and saturated brine, dried over Na₂SO₄ and then evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography to give **3c** (4.39 g, 29% yield) as an oil. ¹H-NMR (CDCl₃) δ : 2.25 (6H, s), 2.30 (3H, s), 2.41 (3H, s), 4.57 (2H, s), 6.90 (2H, s).

Compounds **3d**–**g** were prepared according to the procedure for the synthesis of **3c**.

4-Chloromethyl-2-(1-ethyl-1-methylpropyl)-5-methyloxazole (3d) 21% yield. ¹H-NMR (CDCl₃) δ: 0.77 (6H, t, *J*=7.3 Hz), 1.21 (3H, s), 1.56–1.66 (2H, m), 1.72–1.83 (2H, m), 2.30 (3H, s), 4.47 (2H, s).

4-Chloromethyl-2-(1-methyl-cyclopentan-1-yl)-5-methyloxazole (3e) 24% yield. ¹H-NMR (CDCl₃) δ : 1.37 (3H, s), 1.59–1.79 (6H, m), 1.71–1.78 (2H, m), 2.30 (2H, s), 4.47 (2H, s).

4-Chloromethyl-2-(1-methyl-cyclohexan-1-yl)-5-methyloxazole (3f) 8.7% yield. ¹H-NMR (CDCl₃) δ: 1.27 (3H, s), 1.35–1.62 (8H, m), 2.07–2.18 (2H, m), 2.31 (2H, s), 4.48 (2H, s).

4-Chloromethyl-2-(Adamantan-1-yl)-5-methyloxazole (**3g**) 11% yield. ¹H-NMR (CDCl₃) δ: 1.70–1.80 (6H, m), 2.01 (6H, s), 2.03–2.09 (3H, br), 2.29 (3H, s), 4.47 (2H, s).

Diethyl 3,4-Dimethylcyclopent-3-ene-1,1-dicarboxylate (22) To a solution of diethyl malonate (4.57g 28.5 mmol) in *N*,*N*-dimethylformamide (DMF) (100 mL) was added LiH (567 mg, 71.3 mmol) portionwise at room temperature, the mixture was stirred for 1 h and then 21 in DMF (10 mL) was added dropwise at the same temperature for 5 d. The reaction mixture was poured into water and extracted with AcOEt. The organic layer was washed with saturated brine, dried over Na₂SO₄ and then evaporated under reduced pressure. The

obtained residue was purified by silica gel column chromatography to give **22** (3.55 g, 51% yield) as a yellow oil. ¹H-NMR (CDCl₃) δ : 1.24 (6H, t, *J*=7.1), 1.59 (6H, s), 2.92 (4H, s), 4.18 (4H, q, *J*=7.1 Hz).

3,4-Dimethylcyclopent-3-enecarboxylic Acid (23) To a solution of **22** (3.55 g, 14.8 mmol) in MeOH (70 mL) was added potassium hydroxide (KOH) (5.85 g, 88.6 mmol) in water (25 mL) at room temperature and the mixture was stirred at 50° C for 5 h. The reaction mixture was evaporated under reduced pressure. The obtained residue was acidified with conc. HCl and extracted with AcOEt. The organic layer was washed with saturated brine and dried over Na₂SO₄. The solvent was evaporated under reduced pressure.

The obtained residue was dissolved in pyridine (25 mL) and stirred at 110°C for 3 h. After cooling to room temperature, the reaction mixture was acidified with 6 M HCl and extracted with AcOEt. The organic layer was washed with saturated brine and dried over Na₂SO₄. The solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography to give **23** (1.62 g, 78% yield) as an oil. ¹H-NMR (CDCl₃) δ : 1.60 (6H, s), 2.55–2.71 (4H, m), 3.03–3.14 (1H, m), 9.60–12.40 (1H, br).

1,3,5-Trimethylcyclopent-3-enecarboxylic Acid (24i) To a solution of **23** (1.41 g, 10.1 mmol) in DMF (30 mL) was added K_2CO_3 (4.17 g, 30.2 mmol) and MeI (1.00 mL, 16.1 mmol) at room temperature and the mixture was stirred for 15h. To the reaction mixture was added water and extracted with Et₂O. The organic layer was washed with saturated brine and dried over Na₂SO₄. The solvent was evaporated under reduced pressure to give a crude oil (2.01 g).

To a solution of diisopropylamine (2.12 mL, 15.1 mmol) in THF (50 mL) was added 2.6 $\mbox{m-BuLi}$ in hexane (5.83 mL, 15.2 mmol) at -78° C and the mixture was stirred at the same temperature for 15 min, and then the crude oil (2.01 g) in THF (20 mL) was added dropwise at -78° C. The mixture was stirred for 15 min and MeI (0.65 mL, 10.4 mmol) was added to it. The mixture was stirred and slowly warmed to room temperature for 2h. To the reaction mixture was added water and extracted with Et₂O. The organic layer was washed with saturated brine and dried over Na₂SO₄. The solvent was evaporated under reduced pressure to give a crude oil (2.12 g).

To a solution of the crude oil (2.12 mmol) in THF (45 mL) and MeOH (15 mL) was added 1 M aqueous LiOH solution (20.0 mL, 20.0 mmol) at room temperature for 2 h and the mixture was stirred at 40 °C for 2 h. The reaction mixture was evaporated under reduced pressure. The obtained residue was acidified with citric acid and extracted with AcOEt. The organic layer was washed with water and saturated brine, and then dried over Na₂SO₄. The obtained residue was purified by silica gel column chromatography to give **24i** (1.27 g, 82% yield, 3 steps) as an oil.

Methyl 5-Methyl-2-(Cyclopent-3-enyl)oxazole-4-carboxylate (26h) To a solution of 24h (34.0 g, 0.27 mmol) in CH_2Cl_2 (370 mL) was added (COCl)_2 (23.2 mL, 270 mmol) and DMF (3 mL) at room temperature, which was stirred for 1 h. To the reaction mixture was added 25 (37.7 g, 230 mmol) and *i*- Pr_2NEt (99 mL, 580 mmol) at 0°C and stirred for 1 h. The reaction mixture was washed with 10% citric acid in water, dried over Na₂SO₄ and then evaporated under reduced pressure. The solution of the obtained residue in CH_2Cl_2 (140 mL) was added dropwise to a solution of I_2 (164 g, 650 mmol), PPh₃ (171 g, 650 mmol) and Et₃N (183 mL, 1.31 mol) in CH₂Cl₂ (1.0 L) at 0°C and stirred for 0.5 h. The reaction mixture was poured into water and extracted with CH₂Cl₂. The organic layer was dried over Na₂SO₄ and then evaporated under reduced pressure. To the obtained residue was added *i*-Pr₂O, precipitated crystals were filtered out and the filtrate was purified by silica gel column chromatography to give **26h** (29.9 g, 61% yield) as an oil. ¹H-NMR (CDCl₃) δ : 1.48 (3H, s), 2.38–2.47 (2H, m), 2.60 (3H, s), 2.99–3.06 (2H, m), 3.89 (3H, s), 5.66 (2H, s).

Compounds **26i** and **j** were prepared according to the procedure for the synthesis of **26h**.

Methyl5-Methyl-2-(1,3,4-trimethylcyclopent-3-enyl)-oxazole-4-carboxylate(26i)Fifty percent yield. 1 H-NMR(CDCl₃) δ : 1.45 (3H, s), 1.61 (6H, s), 2.30 (2H, d, J=14.9Hz),2.60 (3H, s), 3.01 (2H, d, J=14.9Hz), 3.89 (3H, s).

Methyl 5-Methyl-2-(1-methylindan-2-yl)oxazole-4-carboxylate (26j) 46% yield. ¹H-NMR (CDCl₃) δ : 1.51 (3H, s), 2.61 (3H, s), 2.99 (2H, d, *J*=16.0 Hz), 3.62 (2H, d, *J*=16.0 Hz), 3.89 (3H, s), 7.12–7.26 (4H, m).

4-Chloromethyl-5-methyl-2-(cyclopent-3-en-1-yl)oxazole (3h) To a suspension of lithium aluminum hydride (5.84 g, 150 mmol) in THF (500 mL) was added a solution of 16h (29.9 g, 140 mmol) in THF (100 mL) below 25°C, and stirred at the same temperature for 1 h. To the reaction mixture was added cold water and AcOEt. The precipitate was removed by filtration and the filtrate was separated into two layers. The organic layer was washed with saturated brine, dried over Na₂SO₄ and then evaporated under reduced pressure to give a crude 17h (25.3 g).

To a solution of the crude **17h** (25.3 g) in CH₂Cl₂ (250 mL) was added SO₂Cl₂ (11.4 g, 160 mmol) dropwise below 30°C. The mixture was poured into water, neutralized with NaHCO₃ and extracted with CH₂Cl₂. The organic layer was dried over Na₂SO₄ and then evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography to give **3h** (22.9 g, 79% yield) as an oil. ¹H-NMR (CDCl₃) δ : 1.45 (3H, s), 2.31 (3H, s), 2.36–2.46 (2H, m), 2.94–3.04 (2H, m), 4.47 (2H, s), 5.66 (2H, s).

4-Chloromethyl-5-methyl-2-(1,3,4-trimethylcyclopent-3-enyl)oxazole (3i) 99% yield. ¹H-NMR (CDCl₃) δ : 1.43 (3H, s), 1.61 (6H, s), 2.28 (2H, d, *J*=14.9 Hz), 2.31 (3H, s), 2.98 (2H, d, *J*=14.9 Hz), 4.48 (2H, s).

4-Chloromethyl-5-methyl-2-(1-methylindan-2-yl)oxazole (**3j**) Quant. ¹H-NMR (CDCl₃) δ: 1.49 (3H, s), 2.32 (3H, s), 2.98 (2H, d, *J*=16.0Hz), 3.59 (2H, d, *J*=16.0Hz), 4.47 (2H, s), 7.13–7.26 (4H, m)

Ethyl 5-(2-*tert*-Butoxycarbonylvinyl)furan-2-carboxylate (28) Compound 27 (121 g, 556 mmol), *tert*-butyl acrylate (500 mL, 3.43 mol), Pd(OAc)₂ (12.5 g, 55.6 mmol), tri(*o*-tolyl)-phosphine (67.7 g, 222 mmol), *i*-Pr₂NEt (284 mL, 1.67 mol) and LiCl (70.8 g, 1.67 mol) were dissolved in DMF (1.1 L) under a nitrogen atmosphere and stirred at 130°C for 0.5 h. After cooling to room temperature, water and Et₂O were added to the reaction mixture, and passed through Celite. The filtrate was separated into two layers, and the organic layer was washed with 10% citric acid in water, water and saturated brine, dried over Na₂SO₄ and then evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography to give **28** (110.2 g, 74% yield) as an oil. ¹H-NMR (CDCl₃) δ : 1.38 (3H, t, *J*=7.6Hz), 1.52 (9H, s), 4.37 (2H, q, *J*=7.6Hz), 6.48 (1H, d, *J*=15.8Hz), 6.62 (1H, d, *J*=3.4Hz), 7.16

(1H, d, J=3.4Hz), 7.32 (1H, d, J=15.8Hz).

5-(2-*tert***-Butoxycarbonylvinyl)furan-2-carboxylic** Acid To a solution of **22** (110 g, 414 mmol) in THF (550 mL) and MeOH (550 mL) was added 1 M aqueous LiOH solution (500 mL, 500 mmol), and the mixture was stirred at room temperature for 1 h. The mixture was acidified with 10% citric acid in water and extracted with AcOEt. The organic layer was washed with saturated brine and then dried over Na₂SO₄. The solvent was evaporated under reduced pressure and *n*-hexane was added to the obtained residue. The precipitated crystals were collected by filtration to give 5-(2-*tert*-butoxycarbonylvinyl)furan-2-carboxylic acid (83.3 g, 84% yield) as a white solid. ¹H-NMR (CDCl₃) δ : 1.52 (9H, s), 6.54 (1H, d, *J*=15.9 Hz), 6.68 (1H, d, *J*=3.4 Hz), 7.33 (1H, d, *J*=3.4 Hz), 7.35 (1H, d, *J*=15.9 Hz).

tert-Butyl 3-(5-Fluorofuryl)acrylate To a solution of 5-(2-*tert*-butoxycarbonylvinyl)furan-2-carboxylic acid (83.3 g, 350 mmol) in Et₂O (420 mL) and water (840 mL) was added NaHCO₃ (70.6 g, 840 mmol), and the mixture was stirred at room temperature for 0.5 h. Then, Selectfluor (149 g, 420 mmol) was added portionwise to the reaction mixture. The mixture was stirred for 1.5 h and separated into two layers. The organic layer was washed with water and saturated brine, and then dried over Na₂SO₄. The solvent was then evaporated under reduced pressure and the obtained residue was purified by silica gel column chromatography to give *tert*-butyl 3-(5-fluorofuryl)acrylate (43.2 g, 58% yield) as an oil. ¹H-NMR (CDCl₃) δ : 1.51 (9H, s), 5.53 (1H, dd, *J*=7.1, 3.6Hz), 6.11 (1H, d, *J*=15.6Hz), 6.41–6.50 (1H, m), 7.16 (1H, dd, *J*=15.6, 2.7Hz).

3-(5-Fluorofuryl)acrylic Acid (8F) To a solution of *tert*butyl 3-(5-fluorofuryl)acrylate (20.0 g, 94.2 mmol) in CH₂Cl₂ (200 mL) was added TFA (70 mL, 942 mmol) at 0°C and the mixture was stirred for 1.5 h. The solvent was evaporated under reduced pressure and the obtained residue was purified by silica gel column chromatography to give a crude **8F**. *n*-Hexane was added to the crude **8F** and the precipitated crystals were collected by filtration to give **8F** (9.50 g, 65% yield) as a white solid. ¹H-NMR (CDCl₃) δ : 5.59 (1H, dd, *J*=6.8, 3.4 Hz), 6.17 (1H, d, *J*=15.6 Hz), 6.56–6.63 (1H, m), 7.16 (1H, dd, *J*=15.6, 2.7 Hz).

7-Benzyl-2-*tert*-butoxycarbonyl-tetrahydroisoquinoline-3-carboxylic Acid To a solution of 1 (20.0g) in DMF (200 mL) was added K_2CO_3 (13.5g, 97.6 mmol) and BnBr (7.7 mL, 65.1 mmol) at room temperature, which was stirred for 16 h. To the reaction mixture was added water and extracted with AcOEt. The organic layer was washed with water and saturated brine, dried over Na₂SO₄ and then evaporated under reduced pressure.

The obtained residue was dissolved in THF (330 mL) and MeOH (110 mL), and 1 M aqueous lithium hydroxide solution (110 mL, 0.11 mol) was added to the solution at room temperature. The mixture was stirred for 18h. The reaction mixture was evaporated under reduced pressure, acidified with 10% citric acid in water and extracted with AcOEt. The organic layer was washed with saturated brine and dried over Na₂SO₄. The solvent was evaporated under reduced pressure. *n*-Hexane was added to the obtained residue and precipitated crystals were collected by filtration to give 7-benzyl-2-*tert*-butoxycarbonyl-tetrahydroisoquinoline-3-carboxylic acid (25.7 g, 91% yield) as a white solid. ¹H-NMR (CDCl₃) δ : 1.42, 1.51 (9H, s, s), 3.00–3.25 (2H, m), 4.43 (1H, dd, *J*=16.6, 7.8Hz),

Vol. 63, No. 12 (2015)

4.64 (1H, dd, *J*=16.6, 7.8Hz), 4.70–4.78 (0.5H, m), 5.01 (2H, s), 5.05–5.12 (0.5H, m), 6.70–6.83 (2H, m), 7.05 (1H, d, *J*=8.3Hz), 7.27–7.44 (5H, m).

7-Benzyloxy-2-tert-butoxycarbonyl-N-methoxy-N-methyl-tetrahydroisoquinoline-3-carboxamide (29) To a solution of 7-benzyl-2-tert-butoxycarbonyl-tetrahydroisoguinoline-3-carboxylic acid (25.0 g, 65.2 mmol) in CH₂Cl₂ (250 mL) was added N,O-dimethylhydroxylamine (7.63 g, 78.2 mmol), Et₃N (11.8 mL, 84.8 mmol) and EDC·HCl (16.3 g, 84.8 mmol) under ice-cooling, and the mixture was stirred at room temperature for 2h. The reaction mixture was washed with 10% citric acid in water, and water and saturated brine, and dried over Na_2SO_4 . The solvent was evaporated under reduced pressure and the obtained residue was purified by silica gel column chromatography to give 29 (9.11 g, 33% yield) as an oil. ¹H-NMR (CDCl₃) δ: 1.45, 1.50 (total 9H, s, s), 2.85–3.05 (1H, m), 3.07-3.18 (4H, m), 3.76, 3.83 (total 3H, s, s), 4.45-4.90 (2.5H, m), 5.03 (2H, s), 5.18-5.26 (0.5H, m), 6.75-6.85 (2H, m), 7.00-7.06 (1H, m), 7.27-7.44 (5H, m).

3-Acetyl-2-*tert*-**butoxycarbonyl-7**-**benzyloxy-tetrahydroisoquinoline** To a solution of **29** (5.0 g, 11.7 mmol) in THF (100 mL) was added 3.0 M MeMgI in Et₂O (19.5 mL, 58.5 mmol) at 0°C and the mixture was stirred at room temperature for 12 h. To the reaction mixture was added 10% citric acid in water at 0°C and extracted with AcOEt. The organic layer was washed with saturated brine and dried over Na₂SO₄. The solvent was evaporated under reduced pressure and the obtained residue was purified by silica gel column chromatography to give 3-acetyl-2-*tert*-butoxycarbonyl-7-benzyloxy-tetrahydroisoquinoline (4.07 g, 91% yield) as an oil. ¹H-NMR (CDCl₃) δ : 1.45, 1.52 (total 9H, s, s), 1.99, 2.06 (total 3H, s, s), 2.95–3.15 (2H, m), 4.40–4.55 (1.5H, m), 4.60–4.72 (1.0H, m), 4.84–4.90 (0.5H, m), 5.03 (2H, s), 6.70–6.85 (2H, m), 7.01–7.07 (1H, m), 7.29–7.44 (5H, m).

3-Acetyl-2-*tert***-butoxycarbonyl-7-hydroxy-tetrahydroisoquinoline (30)** 3-Acetyl-2-*tert*-butoxycarbonyl-7-benzyloxytetrahydroisoquinoline (4.07 g, 10.7 mmol) in MeOH (80 mL) was hydrogenated at 0.4 MPa in the presence of 10% Pd–C (814 mg) at room temperature for 2h. After removal of the catalyst by filtration, the filtrate was evaporated under reduced pressure to give crude **30** (2.93 g) as an oil. Crude **30** was used in subsequent reactions without further purification.

2-tert-Butoxycarbonyl-3-(1,1-difluoroethyl)-7-hydroxytetrahydroisoquinoline (31) To a solution of **30** (2.0 g, 6.86 mmol) in CH₂Cl₂ (20 mL) was added DAST (2.70 mL, 20.6 mmol) at 0°C. The mixture was stirred at room temperature for 18 h, and then DAST (2.70 mL, 20.6 mmol) was again added to the mixture. The reaction mixture was stirred at room temperature for 18 h, poured into saturated NaHCO₃ solution and extracted with AcOEt. The organic layer was washed with saturated brine and dried over Na₂SO₄. The solvent was evaporated under reduced pressure and the obtained residue was purified by silica gel column chromatography to give **31** (620 mg, 29% yield) as a solid. ¹H-NMR (CDCl₃) δ : 1.45–1.65 (12H, m), 2.88–3.07 (2H, m), 4.07–4.20 (1H, m), 4.50–5.00 (2H, m), 6.52–6.70 (2H, m), 7.00 (1H, d, *J*=8.3 Hz).

(S)-3-Acetyl-2-*tert*-butoxycarbonyl-7-[2-(2-methylindane-2-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4-tetrahydroisoquinoline was prepared according to the procedure for the synthesis of **5**j.

(S)-3-Acetyl-2-(2-furylacryloyl)-7-[2-(2-methylindane-

2-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4-tetrahydroisoquinoline (32) To a solution of (S)-3-acetyl-2-tertbutoxycarbonyl-7-[2-(2-methylindane-2-yl)-5-methyloxazol-4vl]methoxy-1,2,3,4-tetrahydroisoquinoline (955 mg, 1.85 mmol) in formic acid (3mL) was added 8.6M hydrogen chloride solution in 2-propanol (0.65 mL, 5.55 mmol) under ice-cooling, and the mixture was stirred at room temperature for 15 min. The reaction mixture was neutralized with saturated aqueous NaHCO3 solution and extracted with AcOEt. The organic layer was washed with saturated brine and dried over Na₂SO₄. The solvent was evaporated under reduced pressure, and Et₂O was added to the obtained residue and the mixture was stirred at room temperature for 1h. The precipitated crystals were collected by filtration to give (S)-3-acetyl-7-[2-(2-methylindane-2-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4tetrahydroisoquinoline hydrochloride (0.699 mg, 92% yield) as a white solid.

To a solution of 2-furylacrylic acid (150 mg, 1.09 mmol) in CH₂Cl₂ (7 mL) was added (COCl)₂ (0.093 mL, 1.09 mmol) and DMF (1 drop) at room temperature, and stirred for 0.5 h. To the reaction mixture was added (S)-3-acetyl-7-[2-(2-methylindane-2-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4tetrahydroiso quinoline hydrochloride (340 mg, 0.720 mmol) and Et₃N (0.51 mL, 3.62 mol) at 0°C and stirred at room temperature for 2h. To the reaction mixture was added AcOEt, washed with water and saturated brine, dried over Na_2SO_4 and then evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography to give 32 (240 mg, 76% yield) as a white solid. mp 51–52°C. ¹H-NMR (CDCl₂) δ : 1.50 (3H, s), 2.00, 2.10 (total 3H, s, s), 2.32 (3H, s), 2.94-3.29 (4H, m), 3.61 (2H, d, J=15.6Hz), 4.65-4.97 (4H, m), 5.27-5.35 (1H, m), 6.44-6.51 (1H, m), 6.55-6.62 (1H, m), 6.77-6.95 (3H, m), 7.05-7.24 (5H, m), 7.33-7.57 (2H, m). IR (ATR) cm⁻¹: 1718, 1648, 1604, 1558, 1400. MS m/z: 537 $[M+H]^+$

1-{(S)-2-(2-Furylacryloyl)-7-[2-(2-methylindane-2-yl)-5methyloxazol-4-yl]methoxy-1,2,3,4-tetrahydroisoquinoline-3-yl}ethanol (33) To a solution of 32 (120 mg, 0.224 mmol) in THF (1 mL) and MeOH (1 mL) was added NaBH₄ (10 mg, 0.268 mmol) under ice-cooling, and the mixture was stirred for 0.5h. To the reaction mixture was added water and extracted with CHCl₃. The organic layer was dried over Na₂SO₄ and then evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography to give 33 (107 mg, 76% yield) as a white solid. The diastereomeric ratio was 71:29, which was determined using an HPLC equipment consisted of a pump (LC-8A; Shimadzu Corporation, Kvoto, Japan), a UV detector (SPD-10Avp; Shimadzu Corporation), and a Cosmosil 5C18-AR-II column (5 µm, 4.6 mm×150 mm; Nacalai Tesque, Inc., Kyoto, Japan). As the eluent, 0.01 M KH₂PO₄ aq.-MeCN (4:6) was used. mp 67–69°C. ¹H-NMR (CDCl₂) δ: 1.16 (3H, m), 1.51 (3H, s), 2.30 (3H, s), 2.70-2.85 (1H, m), 2.88-3.37 (4H, m), 3.54-3.90 (3H, m), 4.08-4.90 (4.5H, m), 5.25-5.37 (0.5H, m), 6.42-6.62 (2H, m), 6.75–7.12 (4H, m), 7.14–7.24 (4H, m), 7.44–7.54 (2H, m). IR (ATR) cm⁻¹: 1644, 1600, 1583, 1558, 1504, 1484, 1419. MS *m*/*z*: 539 [M+H]⁺.

Compound **34** was prepared according to the procedure for the synthesis of **32**.

(S)-3-Difluoroethyl-2-(2-furylacryloyl)-7-[2-(2-methylindane-2-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4-tetra-

PPARy, PPARa and PPARS Agonist Activity Fulllength human PPARyl plasmid (Open Biosystems, Huntsville, U.S.A.), human PPARa plasmid (GeneCopoeia Inc., Rockville, U.S.A.) or human PPAR δ plasmid (GeneCopoeia Inc.), and human RXR α plasmid (GeneCopoeia Inc.) with reporter plasmid pGL3-PPREx4-tk-luc were electroporated into COS-1 cells (Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan) using Nucleofector II (AAD-1001S, Lonza Group Ltd., Basel, Switzerland). The cells were incubated for 24 h in the presence or absence of test compounds in Dulbecco's modified Eagle's medium (DMEM; Nissui Pharmaceutical Co., Ltd., Tokyo, Japan) containing 10% fetal bovine serum (FBS) under 5% CO₂ at 37°C. The medium was removed and then luciferase activities were determined using a commercial kit (PicaGene LT7.5; TOYO B-Net Co., Ltd., Tokyo, Japan) and a microplate luminescence reader (Dainippon Sumitomo Pharma Co., Ltd.). EC₅₀ values were determined from the average dose-response curve using data in three experiments. The maximal activation level relative to the level activated by farglitazar, a PPAR γ agonist (10⁻⁷ M), Wy-14643, a PPAR δ agonist (10⁻⁵ M), or GW-501516, a PPAR δ agonist (10⁻⁷ M), were determined.

PTP-1B Inhibitory Activity PTP-1B inhibitory activities were determined in the absence or presence of test compounds in 50 mM sodium acetate buffer (pH 5.5) containing the enzyme, 1 mM *p*-nitrophenylphosphonic acid (*p*NPP), 1 mM dithiothreitol and 1 mM ethylenediaminetetraacetic acid (EDTA). The reaction was started by addition of the *p*NPP and stopped by the addition of 1 M NaOH after 30 min of incubation at 37°C, and the absorbance was determined at 405 nm.

Plasma Concentration after Oral Administration in Male SD Rats Male SD rats (7 weeks old; Japan SLC, Inc., Hamamatsu, Japan) were used. The test compound at 10 mg/kg suspended in 0.5% methylcellulose solution was administered orally and then a blood sample was taken from the external jugular vein at 0.5, 1, 3, 5 and 8 h after administration to rats. Plasma concentrations of the compounds were determined using an HPLC equipment consisted of a pump (PU-980; JASCO, Tokyo, Japan), UV detector (UV-970; JASCO), autoinjector (AS-950; JASCO) and STR-ODS-II column (5 μ m, 4.6 mm×150 mm; Shimadzu GLC Ltd., Tokyo, Japan).

Hypoglycemic and Hypotriglyceridemic Effects in Male KK-A^y Mice Male KK-A^y mice (11 weeks old; Clea Japan, Inc., Tokyo, Japan) were allocated to control and treated groups (n=5-11). Test compounds were suspended in 0.5% methylcellulose solution and orally administered once a day for 4d or 14d. Blood samples were taken from the tail vein of non-fasted mice 24h after the final administration. Plasma glucose and triglyceride levels in mice administered vehicle or test compounds were determined using commercial kits (Wako Pure Chemical Industries, Ltd., Osaka, Japan).

Plasma volume was determined by the dye dilution method using Evans blue.³⁹⁾ Briefly, mice were injected intravenously with Evans blue solution ($100 \mu g/animal$) 48h after the last administration, anesthetized with diethyl ether and then blood

samples were collected by orbital sinus puncture. Plasma concentrations of dye were determined and plasma volume was calculated. The mice were bled to death under deep anesthesia, after which the livers were isolated and weighed.

Conflict of Interest The authors declare no conflict of interest.

References

- 1) Bloomgarden Z. T., Diabetes Care, 28, 488-493 (2005).
- Lebovitz H. E., Banerji M. A., *Recent Prog. Horm. Res.*, 56, 265–294 (2001).
- 3) Tack C. J. J., Smits P., Neth. J. Med., 64, 166-174 (2006).
- 4) Staels B., Cell Metab., 2, 77–78 (2005).
- 5) Lehrke M., Lazar M. A., Cell, 123, 993-999 (2005).
- 6) Krische D., West. J. Med., 173, 54-57 (2000).
- Hussein Z., Wentworth J. M., Nankervis A., Proietto J., Colman P. G., Med. J. Aust., 181, 536–539 (2004).
- 8) Everett L., Galli A., Crabb D., Liver, 20, 191-199 (2000).
- Chou C. J., Haluzik M., Gregory C., Dietz K. R., Vinson C., Gavrilova O., Reitman M. L., *J. Biol. Chem.*, 277, 24484–24489 (2002).
- Kuwabara K., Murakami K., Todo M., Aoki T., Asaki T., Murai M., Yano J., J. Pharmacol. Exp. Ther., 309, 970–977 (2004).
- Koh K. K., Han S. H., Quon M. J., Yeal Ahn J., Shin E. K., *Diabetes Care*, 28, 1419–1424 (2005).
- 12) Chaput E., Saladin R., Silvestre M., Edgar A. D., *Biochem. Biophys. Res. Commun.*, **271**, 445–450 (2000).
- 13) Yajima K., Hirose H., Fujita H., Seto Y., Fujita H., Ukeda K., Miyashita K., Kawai T., Yamamoto Y., Ogawa T., Yamada T., Saruta T., Am. J. Physiol. Endocrinol. Metab., 284, E966–E971 (2003).
- 14) Fiévet C., Fruchart J., Staels B., *Curr. Opin. Pharmacol.*, **6**, 606–614 (2006).
- 15) Cho N., Momose Y., Curr. Top. Med. Chem., 8, 1483-1507 (2008).
- 16) Henke B. R., J. Med. Chem., 47, 4118–4127 (2004).
- 17) Nissen S. E., Wolski K., Topol E. J., JAMA, 294, 2581-2586 (2005).
- Lai D. Y., J. Environ. Sci. Health C. Environ. Carcinog. Ecotoxicol. Rev., 22, 37–55 (2004).
- Cornwell P. D., De Souza A. T., Ulrich R. G., Mutat. Res., 549, 131–145 (2004).
- Zungu M., Felix R., Faadiel Essop M., *Mitochondrion*, 6, 315–322 (2006).
- Rubenstrunk A., Hanf R., Hum D. W., Fruchart J. C., Staels B., Biochim. Biophys. Acta, 1771, 1065–1081 (2007).
- 22) Taygerly J. P., McGee L. R., Rubenstein S. M., Houze J. B., Cushing T. D., Li Y., Motani A., Chen J. L., Frankmoelle W., Ye G., Learned M. R., Jaen J., Miao S., Timmermans P. B., Thoolen M., Kearney P., Flygare J., Beckmann H., Weiszmann J., Lindstrom M., Walker N., Liu J., Biermann D., Wang Z., Hagiwara A., Iida T., Aramaki H., Kitao Y., Shinkai H., Furukawa N., Nishiu J., Nakamura M., *Bioorg. Med. Chem.*, **21**, 979–992 (2013).
- 23) Azukizawa S., Kasai M., Takahashi K., Miike T., Kunishiro K., Kanda M., Mukai C., Shirahase H., *Chem. Pharm. Bull.*, 56, 335– 345 (2008).
- 24) Otake K., Azukizawa S., Takahashi K., Fukui M., Shibabayashi M., Kamemoto H., Kasai M., Shirahase H., *Chem. Pharm. Bull.*, **59**, 876–879 (2011).
- 25) Otake K., Azukizawa S., Fukui M., Shibabayashi M., Kamemoto H., Miike T., Kunishiro K., Kasai M., Shirahase H., *Chem. Pharm. Bull.*, **59**, 1233–1242 (2011).
- 26) Otake K., Azukizawa S., Fukui M., Kunishiro K., Kamemoto H., Kanda M., Miike M., Kasai M., Shirahase H., *Bioorg. Med. Chem.*, 20, 1060–1075 (2012).
- 27) Thareja S., Aggarwal S., Bhardwaj T. R., Kumar M., Med. Res. Rev., 32, 459–517 (2012).

- 28) Ala P. J., Gonneville L., Hillman M., Becker-Pasha M., Yue E. W., Douty B., Wayland B., Polam P., Crawley M. L., McLaughlin E., Sparks R. B., Glass B., Takvorian A., Combs A. P., Burn T. C., Hollis G. F., Wynn R., *J. Biol. Chem.*, **281**, 38013–38021 (2006).
- 29) Wrobel J., Sredy J., Moxham C., Dietrich A., Li Z., Sawicki D. R., Seestaller L., Wu L., Katz A., Sullivan D., Tio C., Zhang Z. Y., J. Med. Chem., 42, 3199–3202 (1999).
- 30) Kubo M., Fukui M., Ito Y., Kitao T., Shirahase H., Hinoi E., Yoneda Y., J. Pharmacol. Sci., 124, 276–285 (2014).
- 31) Sarel S., Newman M. S., J. Am. Chem. Soc., 78, 5416-5420 (1956).
- 32) Arasappan A., Venkatraman S., Padilla A. I., Wu W., Meng T., Jin Y., Wong J., Prongay A., Girijavallabhan V., Njoroge F. G., *Tetrahedron Lett.*, 48, 6343–6347 (2007).
- 33) Augeri D. J., Robl J. A., Betebenner D. A., Magnin D. R., Khanna A., Robertson J. G., Wang A., Simpkins L. M., Taunk P., Huang Q., Han S.-P., Abboa-Offei B., Cap M., Xin L., Tao L., Tozzo E., Welzel G. E., Egan D. M., Marcinkeviciene J., Chang S. Y., Biller S. A., Kirby M. S., Parker R. A., Hamann L. G., J. Med. Chem., 48,

5025-5037 (2005).

- 34) Brooks D. A., Etgen G. J., Rito C. J., Shuker A. J., Dominianni S. J., Warshawsky A. M., Ardecky R., Paterniti J. R., Tyhonas J., Karanewsky D. S., Kauffman R. F., Broderick C. L., Oldham B. A., Montrose-Rafizadeh C., Winneroski L. L., Faul M. M., McCarthy J. R., J. Med. Chem., 44, 2061–2064 (2001).
- 35) Ma Z., Wang S., Cooper C. S., Fung A. K. L., Lynch J. K., Plagge F., Chu D. T. W., *Tetrahedron Asymmetry*, 8, 883–887 (1997).
- 36) Müller P., Pfyffer J., Helv. Chim. Acta, 75, 745-750 (1992).
- 37) Judd D. B., Dowle M. D., Middlemiss D., Scopes D. I. C., Ross B. C., Jack T. I., Pass M., Tranquillini E., Hobson J. E., *J. Med. Chem.*, 37, 3108–3210 (1994).
- 38) Pochetti G., Godio C., Mitro N., Caruso D., Galmozzi A., Scurati S., Loiodice F., Fracchiolla G., Tortorella P., Laghezza A., Lavecchia A., Novellino E., Mazza F., Crestani M., J. Biol. Chem., 282, 17314–17324 (2007).
- 39) Wilson R. J., Mills I. H., J. Clin. Pathol., 23, 286-290 (1970).