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Abstract: Biothiols such as cysteine (Cys), homocysteine jHeyd glutathione (GSH)
play vital roles in various physiological and pdtdgical processes. In this work, a
BODIPY-based fluorescent prob@CN was synthesized from multi-step reactions. We first
synthesized a BODIPY derivative with a cyano anttramine moiety attached to the
8-diphenylaminophenyl substituent of BODIPY, follev by the reaction with
p-aminothiophenol under basic condition. InteredtingompoundXCN was successfully
obtained with thg-aminophenylthio moiety introduced into one of tivpositions of the
pyrrolic units. This reaction may compose an edfti approach for synthesizing novel
BODIPY derivatives with substituents attached te thyrrolic unit without previously
brominating it. XCN can be used as a fluorescence turn-on probe ¢otselly detect Cys
and Hcy using the cyano group as the recognitit®) siith thep-aminophenylthio moiety
left unreacted XCN was found to be nearly nonfluorescent, and it lgxhionly slight

fluorescence enhancement when treated with GSH.eMeny upon interaction with Cys or
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Hcy, the fluorescence was enhanced by 1081 and fbld§ respectively. In additiocXCN
exhibits good selectivity and sensitivity towardgsGnd Hcy over GSH and other amino
acids in a wide pH range from 2 to 10 in aqueouffes Furthermore XCN was
successfully used for imaging biothiols in living#9 lung cancer cells.

Keywords. Fluorescent probes; Biothiols; BODIPY; Cell imagi

1. Introduction

In recent years, biothiols like cysteine (Cys), loaysteine (Hcy) and glutathione (GSH)
have attracted extensive interest because of thi@ roles in a variety of physiological
processes [1-5]. Abnormal levels of the three gseniay cause diseases. For example, Cys
deficiency may result in syndromes like liver damaglower development of children,
detoxification weakening and skin lesions [6-8].m&bmal concentration of Hcy may be a
sign for cardiovascular diseases [9-10]. Lack oH@8ay change intracellular redox state
and lead to severe diseases such as cancer, ahdirAé&a’s [11-14]. Hence, it is of great
importance to qualitatively and quantitatively ntoni these biothiols. Among various
techniques, fluorescent probes have been dematbtitat be powerful tools with the
advantages of simplicity, high sensitivity and awellular bioimaging capacity.

So far, a number of fluorescent probes have besigmed and synthesized to detect the
three biothiols. These probes are mostly reactmsed, utilizing mechanisms like
nucleophilic substitution, Michael addition, andcl¥ation reactions with aldehydes and
other functional groups [15-23]. However, it idlsdi great challenge to discriminate each of

the three biothiols because of their similar stite$s and reactivity. Only a few reported
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sensors can be used to distinguish Cys, Hcy and fB®ione another. In this respect, Yang
and coworkers reported a BODIPY-based ratiomethimréscent sensor, which could

selectively discriminate Cys and Hcy from GSH takadvantage of the nucleophilic attack
of the thiol moiety followed by the displacementiwihe amino group to regenerate the thiol
moiety, while the 2nd step was not observed for G34]. Later the same group reported
another probe for selectively detecting Cys ovely Hg means of different rates of the
intramolecular displacement reactions [25]. Yool @oworkers reported a biothiol probe
based on nitrobenzothiadiazole substituted witp-aminophenylthio moiety, which also

could selectively detect Cys and Hcy based on tiaiteophilicity [26]. Besides, Liang and

coworkers have reported a fluorescent probe, uigizz cyano group as the recognition
moiety, which could distinguish Cys from the othso [27].

Inspired by the excellent studies mentioned abowe,aimed to design and synthesize
fluorescent probes to selectively detect the badghiHerein, we report the synthesis of a
fluorescent prob&CN (Scheme 1) by introducing @aminophenylthio and a cyano group
into a BODIPY moiety. Interestingl){CN can be used as a fluorescence turn-on probe to
selectively detect Cys and Hcy over GSH using §f@o group as the recognition site, with
the p-aminophenylthio moiety left unreacted. Furthermo¢€N was successfully used for

imaging biothiols in living A549 lung cancer cells.

2. Experimental section
2.1 Materials and instrumentation

Commercially available solvents and reagents weesl @s received. Water was used after
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redistillation. Deuterated solvents for NMR measugats were available from Aldrich. UV-
VIS absorption spectra were recorded on a Varian C&§ 4pectrophotometer and
fluorescence spectra were recorded on a Varian Eciyse fluorescence spectrophotometer,
with a quartz cuvette (path length = 1 cm); botecspphotometers were standardizéd.
NMR and °C NMR spectra were obtained using a Bruker AM 4@@csrometer with
tetramethylsilane (TMS) as the internal standaighHesolution mass spectra (HRMS) were
measured on a Waters LCT Premier XE spectrometarfoCal laser scanning microscope

(CLSM) images were taken on an inverted fluoreseenicroscope (Nikon A1R/AL).

oot OO 0o

@ (iii )
\0 ~
2

CN Br

SA®

(i) 4-lodobenzonitrile, Pgdba), BINAP, t-BuONa, xylene, 120, 60.5%; (ii) POG, DMF,
CICH.CH.CI, 601, 30.2%; (iii) NBS, CHCI,, 85.0%; (iv) pyrrole, TFA, 57.3%; (v) (a) DDQ;
(b) E&N, BFs- ELO, 63.2%; (vi)p-aminothiophenol, BN, THF, reflux, 23.6%.

Scheme 1 Synthetic route of prob¥CN

2.2 pH influence measurements
pH influence measurements were carried out in theunes of DMSO and the following

buffers (2/1, v:v): NgHPO-citric acid buffer (20 mM, pH 2.0, 3.0, 4.0, 5.0),
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NaHPOy-KH PO, buffer (20 mM, pH 6.0, 7.0, 7.4), glycine-NaOH tauf(50 mM, pH 9.0,
10.0), NaHPO,-NaOH buffer (20 mM, pH 12.0).
2.3 Céll culture

Human lung adenocarcinoma A549 cells were supgiedhe Institute of Cell Biology
(Shanghai, China). The cell lines were cultured3@t°C under a humidified 5% GO
atmosphere in the RPMI-1640 medium (GIBCO/InvitnmgeCamarillo, CA, USA)
supplemented with 10% fetal bovine serum (FBS, ®jmal Industry, Kibbutz Beit Haemek,
Israel) and 1% penicillin-streptomycin (10,000 U/ménicillin and 10 mg/mL streptomycin,

Solarbio life science, Beijing, China).

2.4 Syntheses of the compounds
2.4.1 Synthesis of compound 1

Diphenylamine (5.42, 32.0 mmol), 4-iodobenzoniti{fle33, 32.0 mmol), Rgdba) (660
mg, 0.720 mmol), BINAP (678 m, 1.09 mmol), t-BuO{#.8 g, 112 mmol) and xylene (240

mL) were added into a 500 mL three-neck flask. iireture was stirred for 24 hours at 120
under nitrogen. Xylene was removed under reducesdspire and the residue was purified on
a silica gel column using GEI,/PE (1/2, v:v) as the eluent to give a pale sd@i@3 g, yield
60.5%).'H NMR (CDCL, 400 MHz, ppm)5 7.41 (d,J=8.8 Hz, 2H), 7.33 (tJ=8.0 Hz, 4H),

7.18-7.19 (m, 6H), 6.96 (=8.8 Hz, 2H).

2.4.2 Synthesis of compound 2
To the solution of compountl (5.00 g, 18.5 mmol) in dry 1,2-dichloroethane (360),
was added the Vilsmeier reagent freshly preparedm fr the reaction of

N,N-dimethylformamide (DMF, 23.0 mL) with PO£{14.0 mL, 185 mmol). The mixture
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was stirred at reflux for 24 hours under nitrog€he reaction mixture was cooled, washed
with water and extracted with GBI,. The organic solvent was evaporated to drynesshand
residue was purified on a silica gel column using@HPE (1/2, v:v) as the eluent to give a
canary yellow solid (1.66 g, yield 30.29%8H NMR (CDCk, 400 MHz, ppm)3 9.89 (s, 1H,
-CHO), 7.77 (dJ=8.8 Hz, 2H, ph-H), 7.52 (dI=8.8 Hz, 2H, ph-H), 7.40 (t=8.0 Hz, 2H,
ph-H), 7.25 (tJ=7.6 Hz, 1H, ph-H), 7.18-7.13 (m, 6H, ph-H).
2.4.3 Synthesis of compound 3

To a solution of compoun@ (248 mg, 0.83 mmol) in dichloromethane (30 mL),
N-bromosuccinimide (NBS, 236 mg, 1.33 mmol) was adgeadually. The reaction mixture
was stirred at room temperature for 4 hours. Thiea, mixture was washed with water,
extracted with dichloromethane and dried oves3@. Then the solvent was removed under
reduced pressure and the residue was purified dita gel column using C§CI./PE (1/1,
v:v) as the eluent to give a brown solid (266 nig|dy85.0%)."H NMR (CDCk, 400 MHz,
ppm):5 9.89 (s, 1H, -CHO), 7.77 (d=8.4 Hz, 2H, ph-H), 7.53 (d=8.8 Hz, 2H, ph-H), 7.48
(d, J=8.4 Hz, 2H, ph-H), 7.14 (d=8.8 Hz, 2H, ph-H), 7.11 (d=8.8 Hz, 2H, ph-H), 7.01 (d,
J=8.8 Hz, 2H, ph-H).
2.4.4 Synthesis of compound 4

Compound3 (262 mg, 0.690 mmol) and pyrrole (5.00 mL, 34.8 si)mvere added into a
100 mL flask. The reaction mixture was stirred abobm temperature for 30 min
after trifluoroacetic acid (TFA, 156L, 2.00 mmol) was added. Then triethylamine (2.0 m
was added into the flask to quench the reactioenThe solvent was removed under reduced

pressure and the residue was purified on a silicaayemn using CHCI./PE (2/3, v:v) as the
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eluent to give a brown solid (195 mg, vield 57.3%) NMR (CDCk, 400 MHz, ppm)35 8.0
(s, 2H, -NH), 7.43 (dJ=8.4 Hz, 4H, ph-H), 7.18 (d=8.0 Hz, 2H, ph-H), 7.06-6.95 (m, 6H,
ph-H), 6.73 (s, 2H, pyrrolic), 6.17 (s, 2H, pyr®)li 5.92 (s, 2H, pyrrolic), 5.46 (s, 1H,
meso-H). °C NMR (CDCE, 100 MHz, ppm):é 157.52, 150.76, 147.43, 145.74, 142.84,
138.77, 134.60, 132.61, 132.39, 131.06, 128.33,3¥26126.16, 119.41, 118.08, 116.72,
115.31, 55.56. HRMS (ESI, m/z): [M+Htalcd for GgH0BrN4: 491.0871, found: 491.0871.
2.4.5 Synthesis of compound 5

Compound (195 mg, 0.390 mmol) was added into a 100 mL tmesek flask, followed by
addition of 2,3-dichloro-5,6-dicyano-1,4-benzoquieDDQ) (108 mg, 0.470 mmol) under
nitrogen. Then triethylamine (336, 2.34 mmol) was added into the flask and stirficad5
min at room temperature. Next, BELO (294 uL, 2.34 mmol) was added, and the reaction
mixture was stirred for 6 hours. After that, thextare was washed with sodium bicarbonate
solution and extracted with dichloromethane foeétimes, followed by washing with water
and extraction with dichloromethane. Then the salweas removed under reduced pressure
and the residue was purified on a silica gel colusing CHCI./PE (1/1, v:v) as the eluent to
give an orange solid (133 mg, vield 63.29%6).NMR (CDCk, 400 MHz, ppm)5 7.94 (s, 2H,
pyrrolic), 7.56-7.52 (m, 6H, ph-H), 7.22 (8.4 Hz, 2H, ph-H), 7.15 (d]=8.4 Hz, 2H,
ph-H), 7.09 (dJ=8.4Hz, 2H, ph-H), 7.01 (dl=3.6 Hz, 2H, pyrrolic), 6.58 (s, 2H, pyrrolic).
HRMS (ESI, m/z): [M+H] calcd for GgH19BBrF.N4: 539.0854, found: 539.9557.
2.4.6 Synthesis of probe XCN

p-Aminothiophenol (250 mg, 2.00 mmol), triethylami420 uL) and tetrahydrofuran

(8.00 mL) were added into a 100 mL three-neck flaskl stirred for 15 min. Then,
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compounds (539 mg, 1.00 mmol) was added into the flask, tedmixture was refluxed for
16 hours under nitrogen. After that, the solvens wemoved under reduced pressure and the
residue was purified on a silica gel column using@HPE (1/1, v:v) as the eluent to give
unreacted compounl (178 mg) and an amaranthine solidXd@N (92.0 mg, yield 23.6%).
'H NMR (DMSO-ds, 400 MHz, ppm)5 7.79 (s, 1H, pyrrolic), 7.70 (d=8.8 Hz, 2H, ph-H),
7.61 (d,J=8.8 Hz, 2H, ph-H), 7.58 (d=8.4 Hz, 2H, ph-H), 7.29 (dI=8.8 Hz, 2H, ph-H),
7.22 (d,J=8.4 Hz, 2H, ph-H), 7.19 (dl=8.8 Hz, 2H, ph-H), 7.11 (d=8.8 Hz, 2H, ph-H),
7.03 (d,J=4.4 Hz, 1H, pyrrolic), 6.82 (dJ=3.6 Hz, 2H, pyrrolic), 6.66 (dJ=8.8 Hz, 2H,
ph-H), 6.55 (ddJ;=4.0 Hz,J,=2.4 Hz, 1H, pyrrolic), 5.92 (d=4.8 Hz, 1H, pyrrolic), 5.79 (s,
2H, -NH). 3C NMR (CDCE, 100 MHz, ppm):s 165.22, 150.52, 148.66, 147.73, 144.72,
140.11, 138.98, 137.17, 137.04, 133.57, 133.41,2¥33132.02, 131.63, 131.23, 129.91,
128.04, 126.64, 123.85, 121.92, 119.49, 119.11,9018116.50, 115.88, 115.45, 115.30,

104.99. HRMS (ESI, m/z): [M+H]calcd for G4H,4NsSBriB: 662.0997, found: 662.1005.

3. Results and discussion
3.1 Design and syntheses

As mentioned above, BODIPY has advantages in dpwediuorescent probes, and both
the cyano angb-aminophenylthio groups may be utilized as the tieacsite to selectively
detect biothiols based on their specific reactiamh biothiols. Inspired by the successful
examples [26-27], we herein synthesized a new dismant probe for biothiols by introducing
both of the reaction moieties into a BODIPY plathorThus, we first synthesized a BODIPY

derivative 5 with a cyano and a bromine moiety attached to &phenylaminophenyl
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substituent of the BODIPY fluorophore (Scheme 19lloived by the reaction with
p-aminothiophenol under basic condition. Interesginthe p-aminophenylthio moiety was
not attached to the 8-diphenylaminophenyl moietyrdégylacing the bromine atom. Instead,
compoundXCN was obtained with th@-aminophenylthio moiety attached to one of the
a-positions of the pyrrolic units, which can be clgavidenced by the molecular ion peak at
662.1005 and the isotope pattern characteristi¢therpresence of the bromine atom in the
HRMS (Fig. S11). Consistent to this, one of the fworolic a-protons disappeared in the
NMR spectrum ofXCN, as compared to that of compoubd(Fig. 1). In addition, the
remaininga-proton of XCN was up-field shifted t@ = 7.79 ppm because of the electron
donating effect of the-aminophenylthio moiety. The two protons of the mongroup exhibit

a singlet peak at 5.79 ppm, which disappears ugatnent with RO (Fig. S12). In addition,
from the two-dimensional COSY and NOESY spectr& @GN, five pyrrolic protons can be
identified, and the H1-H6, H6-H7 and H7-H8 coupsraye clearly observed (Fig. S13, S14).
All these observations unambiguously indicate thafp-aminophenylthio group was attach
to thea-position of the pyrrole unit.

This reaction may compose an efficient approach dgnthesizing novel BODIPY
derivatives with substituents attached to the pirnanit without previously brominating it.
The synthesized compounXiCN was found to be nearly nonfluorescent, which igoad
starting point for developing fluorescence turngsaobes. Hence, we continued to check the
biothiol sensing behavior ¢CN and elucidate the respective roles ofgke@minophenylthio

and the cyano moieties.



189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

=~ N
two pyrrolic a-H Cﬂ
e ‘ four pyrrolic B-H N
| H NI G
\ ,u \\it/-N\B,, N=/
v AT FF
SR
Li)LN/*xJ
Q
H6 H7 53-:( I /Hzm ng
HAIQU N, N
H5l H ﬂlll i We 8l (M HI
‘ | H. | H2 H3 || HAF F S H8 H
Il W 4\‘ T |l o o/ NH I
J‘;M ‘N‘ "4 Wl “\ M‘ ﬁ V\ 'J
Wi \ LM N
e, Uu\yU Lz’ VRV, U \, UL ) I N

82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57
m

Fig. 1 The low field region of théH NMR spectra 06 andXCN in DMSO-ds.

3.2 Spectroscopic Characteristics

After XCN was successfully synthesized, we firstly checlkedpectral responses to Cys,
Hcy and GSH. As shown in Fig. 2a, the UV-vis spautiof freeXCN showed an absorption
peak at 546 nm. This band decreased sharply upadugr addition of Cys, which was
accompanied with the development of a new pealBatn. As shown in Fig. 2iXCN is
nearly nonfluorescent. Upon adding Cys, a dranfhtarescence enhancement was observed
with an emission peak at 549 nm. The addition oy lttr the solution ofXCN induced
absorption spectral changes and fluorescence eaimamt similar to those observed for Cys
(Fig. S15a, S15b). On the other hand, the treatmeXtCN with GSH only caused slight
fluorescence enhancement (Fig. S16). The resuticated thatXCN can be used to
discriminate Cys and Hcy from GSH. The kineticgdgtof XCN in the presence of Cys and

Hcy was carried out at 37. As shown in Fig. 2c and S15c¢, upon addition of @gd Hcy,
10
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the fluorescence intensity approached their maxintlirwca. 5 min, which indicated fast
response oKCN towards Cys and Hcy [28-29]. When the fluorescemgssion intensity of
XCN was plotted as a function of Cys and Hcy concéntragood linear relationships were
obtained in the ranges of 0.25-0.50 mM and 0-0.2% mespectively (Fig. S18, S19). Thus,
the detection limits for Cys and Hcy were calculatie be 3.1uM and 1.6uM, respectively,

according to the®&k formula [30-33].
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Fluorescence Intensity (a.u.)

2 4 6 8 10 12 2 4 6 8 10 12
Time (min) pH
Fig. 2 (a) UV-vis absorption and (b) fluorescence emisspectra oiXCN (10 uM) upon
addition of Cys (0-60 eq) in DMSQe= 501 nm (the isosbestic point); (c) Kinetics stady
XCN (10 uM) upon interaction with Cys (100 eq) in DMSE,=501 nm; (d) pH dependent
fluorescence intensity at 549 nmX€N (10 uM) in DMSO/buffers (2:1, v/v) upon addition
of Cys (100 eq)kex=501 nm.
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Fig. 3 Fluorescence responses of prob@N (10 uM) at 550 nm towards various analytes
(Cys and Hcy were used at 10M, other analytes were used at 20d). Analytes 1-24:
1-blank, 2-Thr, 3-Pro, 4-Ala, 5-Met, 6-Phe, 7-T8Gly, 9-Glu, 10-Val, 11-GIn, 12-Arg,
13-lle, 14-His, 15-Trp, 16-Asp, 17-Leu, 18-Ser, ASn, 20-Lys, 21-GSH, 2245 23-Cys,
24-Hcy.

210

180-.
150:
120-
90-‘
60-

30+

Fluoresence Intensity (a.u.)

1 3456178 9101114213141516 1471819 20 21122

Fig. 4 Fluorescence intensity responses of pré (10 uM) at 550 nm for Cys (100M)

in the presence of various analytes (200). Black bars represent the addition of a single
analyte. Red bars represent the subsequent additi@Qys to the mixture. Analytes 1-22:
1-none, 2-Thr, 3-Pro, 4-Ala, 5-Met, 6-Phe, 7-Ty¥GB, 9-Glu, 10-Val, 11-GIn, 12-Arg,
13-lle, 14-His, 15-Trp, 16-Asp, 17-Leu, 18-Ser,A$n, 20-Lys, 21-GSH, 22°S

3.3 Slectivity test

Good selectivity is essential for practical appimas of probes. To investigate the
selectivity of XCN towards Cys and Hcy, we checked the fluorescersmonse ofXCN in
the presence of GSH,,H and various amino acids. As shown in Fig. 3, d %R0, only the

addition of Cys and Hcy caused dramatic fluoreseemhancement, and the coexistence of

12
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the interfering species did not seriously disture tesponse okCN towardsCys and Hcy.
All these results indicated that pro&N exhibited excellent selectivity towards Cys and

Hcy.

3.4 pH dependence

To identify the pH influence on the sensing behavpH influence experiments were
carried out at different pH within the range froma@12. As shown in Fig. 2d and S15d,
apparent fluorescence enhancement could be obsepeedaddition of Cys and Hcy within a

wide pH range of 210, which is favorable for the practical applicasamfXCN.

3.5 Sensing mechanism study

Researches on the sensing mechanism of pfalié¢ were also carried out. Consistent with
the reported results [26], the detection of Cys tm@wachieved by the nucleophilic addition of
the thiol group at the cyano moiety followed by th@mation of a five-membered
heterocycle (Scheme S1), which may be evidencedhbyabsorption and fluorescence
spectra of the main reaction product (Fig. S21)wall as the observed m/z of 779.0920,
corresponding to the hypothesized producKCN-Cys-H]" (calcd.779.0881 for
CsH27BBrF:NgO,S;) (Fig. S22). Similarly, the m/z peak of the prod[lCN-Hcy-H] can
also be observed in the HRMS (Fig. S23), indicat¥ex similar reaction mechanism. The
reaction of the biothiols at the cyano moiety ratt@an thep-aminophenylthio moiety may
be ascribed to the more electron deficient charaxdftéhe cyano group as compared with the

p-aminophenylthio moiety.
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Fig. 5 (A-D) Confocal fluorescence and bright-field imag#sA549 cells incubated with
probe XCN (5 uM) for 40 min after preincubation with Cys (2@d1) for 30 min. (E-H)
Confocal fluorescence and bright-field images of A%4lls incubated with prob€CN (5
uM) for 40 min after preincubation with NEM (1 mMrf 40 min. (I-L) Confocal
fluorescence and bright-field images of A549 ceitsubated with prob&CN (5 uM) for 40
min. (A, E, 1) bright-field images; (B, F, J) rethannel images; (C, G, K) green channel
images; (D, H, L) overlay.

3.6 Cell imaging
Encouraged by the above results, we continueduestigate the application &fCN in

biosystems. Thus, the fluorescent imaging behavas checked in living A549 lung cancer
cells (Fig. 5). When A549 cells were incubated WiiGN (5 uM) after preincubation with
Cys (200uM), bright fluorescence in green and red channaeevobserved simultaneously
(Fig. 5B, 5C). However, when the cells were pragdavith 1 mMN-ethylmaleimide (NEM),
a well-known thiol-blocking agent, before incubatiwith probeXCN (5 uM), only very
weak fluorescence was observed (Fig. 5F, 5G). Thessilts indicated the good

membrane-permeability, biocompatibility and abilitfyXCN to detect exogenous biothiols.
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Then, detection of endogenous biothiols was alseckdd. Apparent fluorescence was
observed both in red and green channels upon itionbaf probe XCN without
preincubation of Cys (Fig. 5J, 5K). These resulthdate that prob¥CN can detect not only
exogenous biothiols, but also endogenous biothitthe excellent performance &fCN in

cell imaging revealed that it may be practicallgdisn bioimaging.

4. Conclusion

In summary, we herein report a new fluorescent @GN based on BODIPY. We first
synthesized a BODIPY derivative with a cyano andramine moiety attached to the
8-diphenylaminophenyl substituent of BODIPY, folleav by the reaction with
p-aminothiophenol. Interestingly{CN was obtained with th@-aminophenylthio moiety
attached to one of the-positions of the pyrrolic units. This reaction magmpose an
efficient approach for synthesizing novel BODIP Yidatives with functionalities attached to
the pyrrolic unit without previously brominating IKCN can be used as a fluorescence
turn-on probe to selectively detect Cys and Hcyr dv8H and other amino acids using the
cyano group as the recognition site, with fhaminophenylthio moiety left unreacted. The
detection works well in a wide pH range from 2 id aqueous buffers. FurthermokXCN
was successfully used for imaging biothiols inriyicells. These results provide further

insight into developing novel fluorescent probesdaaon BODIPY.
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Highlights
1. A nove fluorescence turn-on probe based on a BODIPY moiety and a cyano group for
discriminating Cys and Hcy from GSH
2. p-aminophenylthio moiety successfully introduced into one of the a-positions of BODIPY
without previously brominating it
3. A novel biothiol probe based on the cyclization reaction between the cyano group and

biothiols



