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Graphical abstract
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A fluorescent probe for simultaneous discrimination of cysteine/lhomocysteine and glutathione was
developed to visualize biothiols in living cells and Daphnia magna.
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Abstract

Biological thiols, including cysteine (Cys), homatgine (Hcy) and glutathione
(GSH), play crucial roles in living organisms, suedh maintaining the cellular redox
equilibrium, and are closely related to many diesa3he development of efficient
fluorescent probes that can diacritically detectHhipls with similar reactivity are of
great desirable for the study of biological proess§he conventional single-emission
fluorescent probes may be disturbed by surroundingironment and biological
systems, which is greatly lose the accuracy ofdisection. Herein, we have
constructed a fluorescent probECF-NBD) by connecting two fluorophores with a
biothiol-reactive linker, which has two separatetigsions at 547 nm and 610 nm via

different excitations (470 nm and 570 nm, respetylv for simultaneously fast
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detecting Cys/Hcy and GSH with high selectivity ashsitivity. Furthermore, the
probeTCF-NBD exhibits low cytotoxicity and was successfully bgg to visualize
intracellular biothiols in living cells anBaphnia magna by fluorescence imaging. We
believe thatTCF-NBD can be a powerful tool for conducting the reseanth
thiol-related diseases.

Keywords: Fluorescent probe; Biothiols; Bioimaging; SepaiatenissionsPaphnia
magna.

1. Introduction

Intracellular biothiols, such as cysteine (Cys)nlooysteine (Hcy) and glutathione
(GSH), play essential roles in many physiologigalcesses, especially in maintaining
cellular redox homeostasis [1-3]. Much studies hslvewn that abnormal levels of
cellular thiols are closely related with a variaafsdiseases including liver damage,
Parkinson’s disease, leucocyte loss, psoriasisliamascular diseases, Alzheimer’s
and hair depigmentation [4-9]. Consequently, thifective detection of biothiols is
significant for intensive understanding the relasioip between diseases and biothiols
and evaluating the disease progression.

Fluorometry have attracted more attention duestbiggh sensitivity, fast-response,
good biocompatibility, high spatiotemporal resaatiand simple operation [10-18],
which are conducive to be applied in biological tegss. According, various of
fluorescence probes based on the strong nucleoiphitir the high binding affinity
towards metal ions of the biothiols have been ded to visualize the thiols in vitro

and vivo [19-32]. Most of the optical probes inwlspecific reactions between thiols

2



45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

and probes including Michael addition, cyclizatimncleavage reaction [33-56]. Yao
and co-workers reported a coumarin-benzothiazolflworescent probeBCC) for
selectively detect Cys, Hcy and GSH in DMSO/PBS {#, 10 mM, v/v 6:4) [54].
Sun et al identified a commercial compound, 2,3tétGafluoroterephthalonitrile
(4F-2CN), which was used for simultaneously distinguists Cyicy and GSH with
the addition of CTAB and a detection time up to[28] (Table S1). However, many
of them also suffer from various of deficienciescls as longer response time, the
inability to distinguish between Cys/Hcy and GShk heed for surfactants or higher
ration of organic solveniTéble SJ). Since the concentration of Cys (30-200) and
Hcy (5-12uM) are much lower than GSH (1-10 mM) in cells adlas the similar
structures and reaction activities of Cys/Hcy ar@HGit would be highly desirable to
construct fluorescent sensor that could simultasatistinguish Cys/Hcy and GSH
with few interferences and a rapid response timechvis helpful to understand their
generation and metabolism mechanisms [57,58].

The single-emission fluorescent probes may be distl by surrounding
environment and biological systems, but, by contrdge two-emissions channels
fluorescent probes could effectively avoid theséerfierences due to its good
self-calibration of two build-in excitation and ession wavelengths [59,60]. In this
work, we develop a fluorescent probe for simultarsipdetecting Cys/Hcy and GSH
with different emissions via two independent exeia wavelengths, as shown in
Scheme 1 The probe TCF-NBD consists of two parts: a

dicyanomethylenedifuran-based fluorophor€CEF-OH) and 7-Nitrobenzofurazan
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(NBD), connecting by an ether linker which serves as riacognitive group for
Cys/Hcy and GSH and allow the probe exhibits twoasated emission signals upon
reaction with biothiols. The probBIR-HNO is non-fluorescent state due to the
intramolecular electron transfer (ICT) blocked qeheng [61-63]. Since Cys/Hcy
would induce the occurrence of intramolecular r@gement cascade reaction
[64-67], in the presence of Cys/Hcy, there were sgparated different fluorescence
emissions, including\BD moiety in 547 nm and CF-OH in 610 nm with two
independent excitations (470 nm and 570 nm, seggyatDue to the lack of a
proximal amine group, however, GSH was unable tdude intramolecular
rearrangement reaction, which resulting that omlg emission oT CF-OH (610 nm)
was observed in the presence of GSH [61, 63]. Tabgl CF-NBD exhibited high
sensitivity and selectivity to distinguish betwe€gs/Hcy and GSH toward others
amino acids by dual fluorescence signals in vitnd givo and a rapid response time
(about four minutes). Moreover, the probe is loviotyxicity and was successfully
applied to visualize intracellular Cys/Hcy and GBHiving HelLa cells andaphnia

magna by fluorescence imaging.
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Scheme 1Chemical structure ancesponse mechanism ®CF-NBD for Cys/Hcy

and GSH

2. Experimental section
2.1. Materials and instruments

All chemicals and solvents were purchased from ceroral suppliers and used
without further purification unless otherwise stht@he solvents were purified by
traditional methods before used. 4-chloro-7-nitratmgc], [1,2,5] oxadiazole was
purchased from TCI chemical. Silica gel (200-300shjeused for flash column
chromatography was purchased from Qingdao Haiydmegntizal Co., Ltd'HNMR
and*CNMR spectra were determined by 400 MHz and 100 Msing Bruker NMR
spectrometers. Chemical shift§ (vere expressed as parts per million (ppm, in GDCI
or DMSO). Meanwhile, high-resolution mass spectroyn@as achieved with
ESI-TOF instrument. The absorption spectra andréisiience spectra were measured
on a PerkinElmer Lambda 35 UV-vis spectrophotomatet Agilent Technologies
CARY Eclipse fluorescence spectrophotometer respmdygt The pH values of

detection solutions were determined with a prepidemeter pHS-3C. MTT assays
5
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experiments were conducted on the Varioskan LUXtivhdde Microplate Reader.
The Olympus FV 1000 confocal microscopy was used lfee Hela cells

fluorescence imaging

2.2. The preparation of TCF-NBD

Compound 1:NaOEt (0.9 g, 13 mmol) was added to EtOH (10 nudlytson which
include 3-hydroxy-3-methyl-2-butanone (9 g, 88 mymahd malonitrile (12 g, 181
mmol) and then stirred for 1 h. After that, 30 miOH was added and the mixture was
then refluxed for 1 h, which was then cooled imigefrator. The solid precipitate was
filtered and washed with minimal amount of cold Bt@ffording the compountl as
off-white crystalline solid (8.8 g, 44 mmol, 50.0.% NMR (400 MHz, DMSOds) &
(ppm): 2.37 (s, 3H), 1.60 (s, 6H). MS (ESI-TOF)icadated for GiHgN3O', [M-H]',
m/z, 198.07, found: 198.42.

TCF-OH: The 4-hydroxybenzaldehyde (0.122 g, 1 mmol) andpmmd1 (0.3 g,
1.15 mmol) were mixed in EtOH (10 mL), then two paf piperidine were added to
the mixture. The reaction was conducted in the omieve reactor for 20 min at 1)
which was then cooled to room temperature. Aftesdleent was removed, the residue
was purified by column chromatography with &Hp: MeOH (50:1) to afford the
desire product as a deep brown solid (0.197 gdy6&.0%)'H NMR (400 MHz,
DMSO-de) 6 (ppm): 10.61 (s, 1H), 7.90 (d,= 16.2 Hz, 2H), 7.80 (dl = 8.5 Hz, 2H),
7.02 (d,J = 16.3 Hz, 1H), 6.90 (dJ = 8.6 Hz, 2H), 1.77 (s, 6H). MS (ESI-TOF):

calculated for ggH12N3O2, [M-H] ", m/z, 302.09, found: 302.36.



120 TCF-NBD: The EtN (0.056 mL, 0.4 mmol) was added to a mixturel 6fF-OH

121 (60.4 mg, 0.2 mmol) and NBD-@0 mg, 0.4 mmol) in 5 mL of DMF. The mixture
122 was stirred overnight at Z& under argon atmosphere. After the reaction coteqje
123 50 mL of water was added to the mixture and extghetith dichloromethane for three
124  times, dried over anhydrous }s0,. After he solvent was removed, the residue was
125  purified by silica gel column chromatography withl4Cl,: MeOH (20:1) as the eluent
126  to afford the desired product as yellow solid (58, 163.3%).*H NMR (400 MHz,
127 DMSO-dg) 5 (ppm): 8.68 (dJ = 8.4 Hz, 1H), 8.14 (dl = 8.5 Hz, 2H), 7.98 (dl = 16.3
128  Hz, 1H), 7.55 (d)J = 8.5 Hz, 2H), 7.29 (d] = 16.8 Hz, 1H), 6.93 (d} = 8.6 Hz, 1H),
129  1.82 (s, 1H)**C NMR (101 MHz, DMSOdg) & (ppm): 177.52, 175.46, 156.36, 152.50,
130 146.17, 145.92, 144.93, 135.71, 133.26, 132.40,48631121.77, 116.48, 113.08,
131 112.24,111.82, 111.22, 100.46, 99.97, 55.21, 255MS (ESI-TOF): calculated for

132 CoH1aNOs, [M-H]", m/z, 465.0953, found: 465.0959.

133  2.3. Spectral studies

134 The probeTCF-NBD was dissolved in DMSO to form the stock solutionaat
135  concentration of 2 mM. The stock solutions (10 mdf)Cys, Hcy and GSH were
136 prepared in ultrapure water. The following soluio(60 mM) were prepared in
137  deionized water: amino acids (His, Asp, Val, Phg, Ala, Ser, Leu, Arg, Pro, Thr,
138  Trp, Lys), and inorganic salts (NaHGNaCIQ,, NaOAc, AgNQ, NaSCN, PdGl
139  MgCl,, NaF, KBr, Kl, NaSQO,, Na&SQG;, NaS, FeC4, CaC}, ZnCh, CuCl). For the

140  spectral test, the probe stock solution was diluted0 pM in 10 mM PBS buffer
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(containing 10% DMF) solutions and then the variofisanalytes were added and
reacted at 37 °C for 10 min. Unless otherwise dtdtee excitation wavelength is 470
nm and 570 nm for all measurements.
2.4, Determination of detection limits

The calibration curve was determined by the reteiip between the specific
wavelength fluorescence intensity and the analgteentration (Cys, Hcy or GSH).
The probe detection limit was calculated usinge&faation: Detection limit =a&k.
Whereo is the standard deviation of the blank sample =& is the slop between

the fluorescence intensity versus the concentratdibiothiols.

2.5. Cell culture and cell viability assay

Human cervical cancer cells (HeLa) were purchasaun finstitute of Basic
Medical Sciences (IBMS) of the Chinese Academy @&dMal Sciences. HelLa cells
were cultured in 90% Dulbecco's Modified Eagle Medi(DMEM) including with
10% FBS and 1% antibiotics (100 U/mL penicillin ab@0 pg/mL streptomycin) in
an atmosphere of 37°C and 5% £®he MTT method was employed to evaluate the
cytotoxicity of probeTCF-NBD. Before experiments, HelLa cells at a density of
1x1(f cells/well were seeded into 96-well plates anduzeli for 24 h. Then the fresh
culture with different concentrationd TCF-NBD (0-30 uM) (n = 6) were used to
replace the previous media, and further incubdbor24 h. After that, 10 puL of MTT
(5 mg/mL in PBS) was added into per well and in¢etddor another 4 h. Finally, 100

pL of DMSO was then added to dissolve formazan. dlsorbance at 490 nm was
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measured, and the cell viability (%) was calculatatording to the following
equation: Viability (%) = [OD490 (sample) - OD49blgnk)] / [OD490 (control) -

OD490 (blank)] x 100

2.6. Cell imaging experiments

One day before imaging, the Hela cells were repthnseparately on
glass-bottomed dishes and incubated for 24h. Iditsiecontrol experiment, the cells
were pretreated with or without NEM (5Qd/1) at 37 °C for 30 min, then washing
cells with PBS, the cells were further incubatethvine probel CF-NBD (10 uM) at
37°C for 30 min before imaging. In the second ekpents, the HelLa cells were
pretreated with NEM (500M) at 37°C for 30 min and washed three times wig#SP
then the cells were further incubated with 100 Cys, Hcy or GSH respectively for
30 min, then incubated with the prob€F-NBD (10 uM) at 37 °C for 30 min before

imaging.

2.7. Fluorescence imaging experiment idaphnia magna

The Daphnia magna (age < 72 h) were cultured in clean non-chloriddsg water
under cool-white light (14 h)-dark (10 h) photopeki The animals were pretreated
with or without 500uM NEM for 30 min, and then incubated with M TCF-NBD

for another 30 min, followed by washing twice WRBS before imaging.

3. Results and discussion
3.1. Synthesis of TCF-NBD

TCF-NBD was readily synthesized by couplingTCF-OH  with
9
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4-chloro-7-nitro-1,2,3-benzoxadiazole in the presenf EZN at room temperature
(Scheme S} The target compound was well characterizedHhNMR, °C NMR,
HR-MS (Figs. S6-S12

3.2. Spectral response of TCF-NBD to Cys/Hcy and G5

The optical spectra evaluation mfobe and its reaction with Cys, Hcy and GSH were
initially measuredn PBS (10 mM, pH 7.4, 10% DMF). As shown kig. 1A, the
probe TCF-NBD shows the obvious absorption peak at 400 nm. WherCys and
Hcy were added respectively, significant absorptieak appeared at both around 470

nm and 570 nm. While in case of GSH, the main glisnr peak appeared only at

Absorbance
FL Intensity (a.u)

.0 0 v Z :
300 400 500 600 700 500 550 650 700

Wavelength (nm) Wavelength (nm)
570 nm.
Fig.1 The absorption spectra (A) and fluorescence spe®) changes of probe
TCF-NBD (10 uM) prior and after addition of Cys, Hcy, GSH (1081 each) in PBS
(10 mM, pH 7.4, 10% DMF) at 3€ for 10 min. For fluorescence measurements,

=470 nm and 570 nm f&dBD moiety andT CF—OH moiety respectively.

Due to the presence of intramolecular electronstean(ICT) blocked quenching, the
probe is non-fluorescent when the excitation wavglle is 470 nm or 570 nm. The
fluorescence responses of the prdiid--NBD (10 uM) to different concentration of

Cys/Hcy or GSH are summarized fiigs. 2A-l. Upon increasing the concentrations
10
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of Cys or Hcy, both the fluorescence intensity 47 53:)m and 610 nm gradually
increased when excitation wavelengths were 470 min5&0 nm, respectivelyigs.
2A-F). The fluorescence intensity at 547 nm and 610reached plateau when 100
uM analytes were addedrif). SI). And the detection limit of Cys and Hcy were
calculated to be 0.0V and 0.034uM respectively Table S2. In the case of GSH,
the fluorescence intensity at 610 nm increased ugild and the fluorescence
emission signal at 547 nm did not change signifigafFigs. 2G-I). The detection
limit for GSH were determined to be 0.0301 (Table SJ. In order to make a deeper
understanding of the reaction mechanism, we mardtdhe reaction process of the
probeTCF-NBD and biothiols by HRMS. The new peak appeared at812.0937
[M]" was attributed tdCH-OH and another peak appear at m/z=283.0150 M
assigned ta CF-Cys (Fig. S4; similarly, inFig. S5 the peak at m/z= 469.0783 was
the productTCF-GSH. Thus, the prob&dCF-NBD can simultaneous differentiate

Cys/Hcy and GSH with different excitation waveldrsgt

11
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Fig. 2 Fluorescence spectra of TCF-NBD (M) upon addition of varied
concentration of Cys (A), Hcy (D) and GSH (G) redpely in PBS (10 mM, pH 7.4,
10% DMF). Fluorescence intensity changes at 54 asrma function of concentrations
of Cys (B), Hcy (E) and GSH (H) respectively and6di0 nm as a function of
concentrations of Cys (C), Hcy (F) and GSH (l) exgjvely. For fluorescence
measurementsiex =470 nm and 570 nm foNBD moiety andTCF—-OH moiety

respectively.

3.3. Time-dependent and pH-dependent fluorescence hanges of probe
TCF-NBD
We then investigated the time-dependent fluoresceresponse of the probe

TCF-NBD in the presence of 10@M Cys/Hcy and GSHKig. 3). Upon addition of

12
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Cys and Hcy, the fluorescence intensity of prob&4%&t nm and 610 nm increased
rapidly and reached plateau within 10 min. When G&t$ added, the fluorescence
intensity at 610 nm could reach its strongest dftemin of reaction, while there was
almost no significant fluorescence change at 54%uitim the extended response time.
Meanwhile, the effect of pH from pH 5.0-9.0 on tHaorescence detection of
Cys/Hcy and GSH were carried out. As showkio S2 in the absence of thiols, the
probe TCF-NBD shows little fluorescence change but displays isogmt

fluorescence enhancement at 610 nm in the pH rioge6.0-8.0 with 10QM Cys,

Hcy and GSH, respectively. Meanwhile, Cys/Hcy ctso ancrease the fluorescence

A so i
—— Prabe Ex at 470 nm B s e Fxat 570 nm
. —8— Probe+Cys p
2 400 == ProbetHey 2 400
& —¥— Probe+GSH =
2300 2300
= -
17 w
£ 200 g 200
2
= =
100 = oo
= =3I T =
i 0

0 2 3 10 0 2 8 1

4 6 4 [
Time (min) Time (min)

intensity at 547 nm in the pH range of 7.0-9.0. Skhelata show that the probe is

capable of detecting biothiol under physiologiaahditions.

Fig. 3 Time-dependent changes of fluorescence intensibda nm (A) and 610 nm
(B) of probeTCF-NBD (10 uM) upon addition of 10@M Cys, Hcy, GSH in PBS (10
mM, pH 7.4, 10% DMF)Lex =470 nm and 570 nm.
3.4. Selectivity of probe TCF-NBD

High selectivity is a necessary and crucial inaicdbr the application of the
fluorescent probe to biological system. We therduss&ious analytes, such as amino
acids (His, Asp, Val, Phe, Tyr, Ala, Ser, Leu, ARyp, Thr, Trp, Lys,) and ions (HGD

ClOs, OAc, NOs, SCN, F, CI, Br, I, SQ%, SQ?, &, Pd*, Mg*, Fe*, c&", zn",

13
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Cu?") and others (bD,, NaClO, NO) to investigate the selectivity of tpeobe
TCF-NBD towards Cys/Hcy and GSH. As shownFig. 4 and S3 the fluorescence
intensity of probeTCF-NBD at547 nm and 610 nm are significantly enhanced after
the addition of 10@M Cys or Hcy; and the fluorescence turn-on respamség at 610

nm after addition of 10uM GSH. However, there was no obvious change in
fluorescence response can be observed when the pealoted with other analytes
with the excitation at 470 nm or 570 nm. These Itesudicated that the ability of
TCF-NBD to specifically recognize Cys/Hcy and GSH overeaghrelative analytes

in complexed biosystem.
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Fig. 4 (A) Fluorescence spectra ©€F-NBD (10uM) in the presence of Cys, Hcy or
GSH (100uM) and some relevant species (509): (1) Probe, (2) His, (3) Asp, (4)
Val, (5) Phe, (6) Tyr, (7) Ala, (8) Ser, (9) Led,0) Arg, (11)Pro, (12)Thr, (13)Trp,
(14)Lys, (15) HO,, (16) NaCIO, (17) NO, (18) Cys, (19) Hcy, (20) G8HPBS (10

mM, pH 7.4, 10% DMF). Fluorescence intensityfl@fF-NBD (10 uM) upon addition
14



261  of different analytes: (Blex =470 nMXem =547 nmM (D)Aex =570 NMAem =610 nNm.
262 (C) The cell cytotoxicity of various concentratiohTCF-NBD in Hela cells for 24

263 h.

264  3.5. Fluorescence imaging of probe TCF-NBD in livig cells

Bright Green Channel

Red Channel Overlay Merge

Probe

NEM+Probe

NEM+Cys

+Probe

NEM+Hcey

+Probe

NEM+GSH

+Probe

265

266  Fig.5 Fluorescence imaging for HelLa cells. (A1-A5): Hededls were incubated with
267 10 uM TCF-NBD only for 30 min; (B1-B5): The cells were pretrehigith 500uM
268 NEM for 30 min, and then incubated with 4 TCF-NBD for 30 min. The cells
269  were pretreated with 500M NEM for 30 min, and then treated with 1081 Cys
270  (C1-C5), Hcy (D1-D5) and GSH (E1-E5) respectivety durther incubated with 10

271 uM TCF-NBD for 30 min. Green channélgx =488 nm, collected: 500-550 nm; Red
15
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channeliex =559 nm, collected: 570-630 nm. Scaler baru20

In order to verify the bioavailability of the probEBCF-NBD, we evaluated its
capability to selectively visualize intracellulay€ZHcy and GSH with fluorescence
imaging. Accordingly, the cytotoxicity of CF-NBD was established using MTT
assays with HelLa cells. It was found that the edbilities exceed 94% when
incubated cells for 24 h withi@M TCF-NBD, demonstrating that the probe
TCF-NBD is of low cytotoxicity and is suitable for fluorm@nce confocal biological
imaging Fig. 4C).

As shown inFig. 5A, when the Hela cells were only incubated with prob
TCF-NBD (10 uM), it shows fluorescence signals in green and cednnels
simultaneously, which were caused by the endogebaikiols in HeLa cells. We
then performed a series of control experimentdhabto evaluate selective responses
of probe TCF-NBD toward Cys/Hcy and GSH in living cells. When
N-ethylmaleimide (NEM, a thiol-consumptive agentgfoeated cells were further
incubated withiTCF-NBD for 30 min, howeveran obvious fluorescence reduction in
both green and red channels can be observigd §B), indicating that thiols were
completely reacted with NEM [68]. In contrast, whREM-pretreated HelLa cells
were incubated with Cys/Hcy and then treated witbbp TCF-NBD for 30 min,
strong fluorescence signals occurred in green addchannelsKigs. 5C and 5D.
Upon the addition of 100M GSH to NEM-pretreated cells followed by incubatio
with probe, only obvious red fluorescence signak vedserved Kig. 5E). These

above experiments indicated tH&ZF-NBD could discriminate intracellular Cys/Hcy
16
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the metabolism and mechanism of biothiols.

3.6. Fluorescence imaging of probe TCF-NBD iDaphnia magna

Bright Green Channel Red Channel Overlay

Iii||||||||||iii|||||||||Iii|||||||||AS

Merge

Probe

:

Fig.6 Fluorescence images of endogenous biothiol®aphnia magna. (A1-A5)

NEM-+Probe

Daphnia magna were incubated with 1@M TCF-NBD only for 30 min. (B1-B5)
Daphnia magna were pretreated with 500M NEM for 30 min, and then incubated

with 10uM TCF-NBD for 30 min. Scale bar: 3Qdm.

The ability of TCF-NBD for visualizing biothiols in vivo was also evaladtin
living Daphnia magna, a widely used animal as a standard Environméhiatiection
Agency test organism [69], using fluorescence img@gAs shown irFig. 6A, the gut
of Daphnia magna exhibited strong fluorescence signals in green obband red
channel when thBaphnia magna were incubated with 10M TCF-NBD for 30 min,
indicating that there were abundant endogenousibist in the gut ofDaphnia
magna. To verify this resultDaphnia magna were pretreated with 50eM NEM for
30 min, and then incubated with 30M TCF-NBD for further 30 min before

fluorescence imaging. TheDaphnia magna displays almost unobservable
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fluorescence signals in two channdfgy( 6B), suggesting the signals observedrig.
6A were induced by endogenous biothiols. These mesudlicating thafTCF-NBD

could be used for tracking biothiols in compleriiy bodies.

4. Conclusions

In summary, an efficient fluorescent prob&@CF-NBD, for simultaneously
discriminating Cys/Hcy and GSH by separated emmssioa independent excitations
was designed and synthesized. The strategy isupledwo fluorophoresTCF-OH
and NBD with a biothiol-sensitive ether linkage. This peobmits a dual emission
signal toward Cys and Hcy through a substitutiearrangement cascade reaction;
however, a single emission response toward GSH,chwhian be used to
simultaneously distinguish Cys/Hcy and GSH. Takiimg merits of low cytotoxicity
and good selectivity of prob@CF-NBD into consideration, we have successfully
applied it for discriminative detecting of Cys/Haypd GSH in HelLa cells through
fluorescence confocal imaging. More importantlye ih vivo ability of TCF-NBD
was proved by the visualization of endogenous mtghin Daphnia magna.
Therefore, the prob€@CF-NBD would serve as a powerful tool for further elutiag
the physiological role of biothiols and conductingathological analysis of

thiol-related diseases.
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Table S1Comparison of fluorescent probes for the seled®tection of biothiols

Reaction . Two . Biological
Probes . Test system| Selectivity | Detection limit
time signals system
. No
120 min PBS Cys No Cys 3M o
application
Chem Commun., 201046,
5707-5709.
Y
N O 0 Yo
N
Cys 2.96uM
] PBS/EtOH | Cys/Hcy+ HepG-2
60 min No Hcy 6.14uM
=4:1 GSH cells
GSH 6.84uM
Anal.Chem,,
DOI: 10.1021/acs.analchg
m.8b04485.
L Cys 0.02uM
F. F S U.
] Cys/Hcy+ y
F F 120 min PBS+CATB No Hcy 2.27uM Hela cells
CN GSH
GSH 0.24uM
Chem i, 20167,
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256-260.

AL o
Foeqznattve

LA
J S
Cys: 12 min| PBS/DMF Cys 0.64uM BEL[17402
) Cys+Hcy No
Hcy: 20min =9:1 Hcy 3.6 nM cells
Chem. Eur. J., 2012,18,
14520 — 14526.
\ o]
v o
AN ) PBS/DMSO )
6 min Cys No Not mentioned HelLa cells
Anal. Chem.,, 2016,88, =1:1
1908-1914.
Me0\©\
S
N Cys/Hcyl0
seeNy _ CysiHey+ |
P § min PBS GSH No Not mentioned B16 cells
Chem. ci., 2014,5, 3183—| GSH:2 min
3188.
] MeOH/H,0O SGC-H446
20 min Cys No Cys 7.2M
=4:1 cells
Biosens. Biodectron., 2011,
26, 3012-3017.
CN
Ne\ en oo
o, i) )
~ NJQ/NO Cys 0.015uM Hela cells,
o ) PBS/DMF | Cys/Hcy+ .
about 4 min Yes Hcy 0.034uM | Daphnia
=9:1 GSH
GSH 0.03uM | magna

This work
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Figure S1The fluorescence intensity changesT@F-NBD at 547 nm (A) and 610
nm (B) in presence of different concentration atesy The intensity at 547 and 610
nm was obtained with excitation at 470 nm and 570 nespectively.

A 500 B so00
—-—Il:ro:c c Ex at 470 nm ) —&— Probe Ex at 570 nm
— =@ Probe+Cys — %
= 400 —— Probe+Hey : 4004 +§i2:§§[l:
= —p— Probe+GSH \; g Probe+GSH
g 300 E 3004
2 5
@ 200 - 2004
= =
= L
—
E 1004 w1004
= =
0 T 0-
5 6 7 8 9 5 6 7 8 9
pH pH

Figure S2 The fluorescence intensity diCF-NBD (10 uM) at (A) 547 nm and (B)
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610 nm in the presence or absence of lIObiothiols in various pH ranging from
4.0 to 10.0 PBS buffer (10 mM, pH 7.4, 10% DMFxpectively.
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Figure S3Fluorescence spectra ®CF-NBD (10 uM) in the presence of Cys, Hcy or
GSH (100uM) and some relevant species (500): (1) Probe, (2) NaHC®) (3)
NaClQq, (4) NaOAc, (5) AgN@, (6) NaSCN, (7) PdGJ (8) MgCh, (9) NaF, (10) KBr,
(11) KI, (12) NaSQ,, (13) NaSG;, (14) NaS, (15) Fed, (16) CaCj, (17) ZnC4, (18)
CuCh, (19) Cys, (20) Hcy, (21) GSH in PBS (10 mM, pH4,710% DMF).
Fluorescence intensity GICF-NBD (10 uM) upon addition of different analytes: (A)
hex =470 NMAem =547 NnM (Blhex =570 NM ey =610 Nm.

x10 4 [-ESI Scan (rt: 0.283-0.316 min, 3 scans) Frag=150.0V YANGMINGWANG-1203-1.d Subtract (2)
5 .
ofo 5 Ne—
497 HS._~ 8 \_en
NH e &
4 A N 8 — 5 zae
B < Pl e
3.5 & \‘ N l‘\ J\
g
34 § NO; |
254
A «
o
3 B
B[ g . 3 = g
4] ([ s g -] s 3
g g 3 5
= £ S
0.5+ s i l
0 o m L | | N |
' 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640

Counts vs. Mass-to-Charge (m/z)

Figure S4AHRMS spectra of prob€CF-NBD treated with Cys.
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Figure SSHRMS spectra of prob€CF-NBD treated with GSH.
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Figure S6'H NMR of the compound in DMSO-ds
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Figure S7MS of probecompoundl
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Figure S8'H NMR of theTCF-OH in DMSO-dg
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Figure SOMS of probeTCF-OH
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Figure S11**C NMR of theTCF-NBD in DMSO-ds
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Figure S12HRMS of probeT CF-NBD

Table S2 Detection limit of the analytes

Detection limit

Analyte Regression curve equation
Y ) | (kM)

Cys y=13.502x + 13.652, &0.995 0.015
Hcy y=5.937x + 4.684, &0.988 0.034
GSH y=6.672x + 15.822, 0.985 0.030
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Highlights
A new fluorescent probe by combining a dicyanomethylenedifuran (TCF)-based
fluorophore with 7-Nitrobenzofurazan (NBD) was devel oped.
It exhibits two independent fluorescence signals with separated excitation, which
was used to simultaneously distinguish Cys/Hcy and GSH.
The probe displays selective and sensitive recognition towards biothiols with
fast response time.
The probe is low cytotoxicity and has been successfully applied to image

intracellular Cys/Hcy and GSH in living HelLa cells and Daphnia magna.



