

Available online at www.sciencedirect.com

Tetrahedron Letters 47 (2006) 3835-3837

Tetrahedron Letters

An unusual palladium-catalyzed carbonylative cyclization of β-bromovinyl aldehydes leading to lactones

Chan Sik Cho^{a,*} and Hyung Sup Shim^b

^aResearch Institute of Industrial Technology, Kyungpook National University, Daegu 702-701, South Korea ^bDepartment of Applied Chemistry, Kyungpook National University, Daegu 702-701, South Korea

> Received 7 March 2006; revised 27 March 2006; accepted 29 March 2006 Available online 27 April 2006

Abstract— β -Bromovinyl aldehydes are carbonylatively cyclized under carbon monoxide pressure in MeCN at 100 °C in the presence of a catalytic amount of a palladium catalyst along with a base to give the corresponding lactones in high yields. © 2006 Elsevier Ltd. All rights reserved.

Palladium-catalyzed carbonylative cyclization process has been recognized as a useful synthetic tool for heterocyles, which play an important role as a basic unit for the design of many pharmacologically and biologically active compounds.1 Many methods for such a palladium-catalyzed version have also been attempted for the construction of lactones because of the facility and efficiency of reaction and the wide availability of substrate.² During the course of our ongoing studies on palladium-catalyzed cyclization reactions, we also recently reported on the synthesis of various heterocycles such as isoindolinones, ${}^{3}\beta$ -lactams⁴ and phthalides⁵ via a carbonylative cyclization. Among them, in connection with this report, 2-bromobenzaldehyde was found to be cyclized with carboxylic acids in the presence of a palladium catalyst and a base under carbon monoxide pressure to afford 3-oxo-1,3-dihydro-1-isobenzofuranyl alkanoates.⁶ The present work was disclosed during the course of the extension of this protocol to the reaction with β bromovinyl aldehydes, which are readily prepared from ketones via the bromo analogue of Vilsmeier reaction (Scheme 1).7 Herein, we describe an unusual palladium-catalyzed lactonization of β-bromovinyl aldehydes via intrinsic carbonylative cyclization.8

The results of several attempted carbonylative cyclizations of 2-bromocyclohex-1-enecarbaldehyde (1a) under

Scheme 1.

various conditions are listed in Table 1. In contrast to our recent report on palladium-catalyzed synthesis of 3-oxo-1,3-dihydro-1-isobenzofuranyl alkanoates from 2-bromobenzaldehyde and carboxylic acids,⁶ treatment of 1a with 4 equiv of acetic acid in MeCN in the presence of PdCl₂/4PPh₃ along with Et₃N under carbon monoxide pressure (20 atm) afforded 4,5,6,7-tetrahydro-3H-isobenzofuran-1-one (2a) in 53% yield, no cyclized product 3 incorporated with acetic acid being produced (entry 1).⁹ This result indicates that the present cyclization proceeds irrespective of acetic acid. Thus, when the reaction was carried out in the absence of acetic acid, 2a was also obtained as a sole cyclized product with complete conversion of 1a on TLC (entry 2).¹⁰ However, the present reaction did not proceed at all under atmospheric pressure of CO. The reaction was monitored until 1a had disappeared on TLC, which occurred within 3 h. From the activity of several palladium precursors examined under the employment of Et₃N as base, PdCl₂(PPh₃)₂ is revealed to be the catalyst of choice (entries 2-7). Other palladium catalytic systems such as PdCl₂/4PPh₃, Pd(OAc)₂/4PPh₃ and $Pd(PPh_3)_4$ were moderately effective for the formation of 2a. With other bases such as K_2CO_3 and NaOAc combined with PdCl₂(PPh₃)₂, the yield of 2a was lower than that when Et₃N was employed (entries 8 and 9).

Keywords: β-Bromovinyl aldehydes; Carbon monoxide; Carbonylative cyclization; Lactones; Palladium catalyst.

^{*}Corresponding author. Tel.: +82 53 950 7318; fax: +82 53 950 6594; e-mail: cscho@knu.ac.kr

^{0040-4039/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.03.184

Table 1. Palladium-catalyzed carbonylative cyclization of 1a undervarious conditions^a

CHO Br 1a	D cat. [Pd], CO MeCN, 100 °C, 3 h	2a	$ \begin{array}{c} $
Entry	Palladium catalysts	Bases	Isolated yield (%)
1 ^b	PdCl ₂ /4PPh ₃	Et ₃ N	53
2	PdCl ₂ /4PPh ₃	Et ₃ N	62
3	Pd(OAc) ₂ /4PPh ₃	Et ₃ N	65
4	PdCl ₂ (PhCN) ₂	Et ₃ N	52
5	$Pd(dba)_2$	Et ₃ N	47
6	$Pd(PPh_3)_4$	Et ₃ N	66
7	PdCl ₂ (PPh ₃) ₂	Et ₃ N	85
8	PdCl ₂ (PPh ₃) ₂	K_2CO_3	34
9	PdCl ₂ (PPh ₃) ₂	NaOAc	59

^a Reaction conditions: **1a** (0.5 mmol), palladium catalyst (0.025 mmol), base (2 mmol), CO (20 atm), MeCN (5 mL), 100 °C, for 3 h.

^b Acetic acid (2 mmol) was added.

Having the established reaction conditions, various β bromovinyl aldehydes were subjected to cyclize with carbon monoxide in order to investigate the reaction scope and several representative results are summarized in Table 2. With cyclic β -bromovinyl aldehydes (1a–e), the carbonylative cyclized α,β -butenolides (2a-e) were formed in the range of 79-89% yields without any identifiable side product. Here again, the starting substrates completely disappeared within 3 h. The product yield was not significantly affected by the ring size of 1a-e. Bromo-5-methylcyclohex-1-enecarbaldehyde (1f) was also cyclized under the employed conditions to give 5methyl-4,5,6,7-tetrahydro-3*H*-isobenzofuran-1-one (2f) in 78% yield. To test for the effect of the position of formyl group and bromide on cyclic β-bromovinyl aldehydes, 1g and 1h were employed. However, the carbonylative cyclization took place similarly irrespective of the position. Lower reaction rate and yield were observed with acyclic β -bromovinyl aldehyde **1i**,¹¹ the carbonylative cyclized product 3-phenyl-5H-furan-2one (2i) being obtained in only 23% yield (24% yield for 20 h).

As to the reaction pathway, it seems to proceed via the initial carbonyl reduction of β -bromovinyl aldehyde to bromoallyl alcohol, which in turn triggers carbonylative cyclization to give α,β -butenolide. However, unfortunately, we confirmed in a separate experiment that 2-bromocyclohex-1-enylmethanol did not undergo carbonylative cyclization under the employed conditions. Thus, this result indicates that the present reaction excludes the initial carbonyl reduction pathway.

General experimental procedure: To a 50 mL stainless steel autoclave were added β -bromovinyl aldehyde 1 (0.5 mmol), PdCl₂(PPh₃)₂ (0.025 mmol), Et₃N (2 mmol) and MeCN (5 mL). After the system was flushed and then pressurized with carbon monoxide to 20 atm, the mixture was stirred at 100 °C for 3 h. The reaction mixture was passed through a short silica gel column (ethyl acetate–hexane) to eliminate inorganic salts. Removal of

Table 2. I allactulif-catalyzed synthesis of factories 2	Table 2.	Palladium-catalyzed	synthesis	of	lactones 2 ^a
---	----------	---------------------	-----------	----	-------------------------

3 5		
β-Bromovinyl aldehydes 1	Lactones 2	Yield (%)
CHO Br		85
CHO Br		79
1b CHO Br		86
IC CHO Br		80
Id CHO Br	2d	89
Te CHO Br	2e O 2f	78
CHO Br Ig		61
Br CHO Ih		73
Ph_Br CHO 1i		23

^a Reaction conditions: **1** (0.5 mmol), PdCl₂(PPh₃)₂ (0.025 mmol), Et₃N (2 mmol), CO (20 atm), MeCN (5 mL), 100 °C, for 3 h.

the solvent left a crude mixture, which was separated by thin layer chromatography (silica gel, ethyl acetate-hexane mixture) to give α , β -butenolides **2**.

In summary, we have demonstrated that β -bromovinyl aldehydes undergo an unusual carbonylative cyclization under carbon monoxide pressure in the presence of a palladium catalyst and a base to afford α , β -butenolides. The mechanistic rationale and synthetic applications are currently under investigation.

Acknowledgement

This present work was supported by a Research Professor Grant of Kyungpook National University (2005).

References and notes

- 1. Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley: New York, 2002; Vol. II, pp 2309–2712.
- Colquhoun, H. M.; Thompson, D. J.; Twigg, M. V. Carbonylation: Direct Synthesis of Carbonyl Compounds; Plenum Press: New York, 1991; p 173.
- (a) Cho, C. S.; Lee, J. W.; Lee, D. Y.; Shim, S. C.; Kim, T. J. *Chem. Commun.* **1996**, 2115; (b) Cho, C. S.; Chu, D. Y.; Lee, D. Y.; Shim, S. C.; Kim, T.-J.; Lim, W. T.; Heo, N. H. *Synth. Commun.* **1997**, 27, 4141; (c) Cho, C. S.; Jiang, L. H.; Shim, S. C. *Synth. Commun.* **1998**, 28, 849; (d) Cho, C. S.; Jiang, L. H.; Lee, D. Y.; Shim, S. C.; Lee, H. S.; Cho, S.-D. *J. Heterocycl. Chem.* **1997**, 34, 1371.
- 4. Cho, C. S.; Jiang, L. H.; Shim, S. C. Synth. Commun. 1999, 29, 2695.
- (a) Lee, D. Y.; Cho, C. S.; Jiang, L. H.; Wu, X.; Shim, S. C. Synth. Commun. 1997, 27, 3449; (b) Cho, C. S.; Baek, D. Y.; Shim, S. C. J. Heterocycl. Chem. 1999, 36, 1101; (c) Cho, C. S.; Lim, D. K.; Kim, T.-J.; Shim, S. C. J. Chem. Res. (S) 2002, 550.

- Cho, C. S.; Baek, D. Y.; Kim, H. Y.; Shim, S. C.; Oh, D. H. Synth. Commun. 2000, 30, 1139.
- (a) Coates, R. M.; Senter, P. D.; Baker, W. R. J. Org. Chem. 1982, 47, 3597; (b) Ray, J. K.; Haldar, M. K.; Gupta, S.; Kar, G. K. Tetrahedron 2000, 56, 909; (c) Zhang, Y.; Herndon, J. W. Org. Lett. 2003, 5, 2043; (d) Mal, S. M.; Ray, D.; Ray, J. K. Tetrahedron Lett. 2004, 45, 277; (e) Cho, C. S.; Patel, D. B.; Shim, S. C. Tetrahedron 2005, 61, 9490; (f) Ray, D.; Mal, S. K.; Ray, J. K. Synlett 2005, 2135; (g) Some, S.; Dutta, B.; Ray, J. K. Tetrahedron Lett. 2006, 47, 1221.
- For our recent report on palladium catalysis: (a) Cho, C.
 S.; Lim, D. K.; Heo, N. H.; Kim, T.-J.; Shim, S. C. *Chem. Commun.* 2004, 104; (b) Cho, C. S.; Lim, D. K.; Zhang, J.
 Q.; Kim, T.-J.; Shim, S. C. *Tetrahedron Lett.* 2004, 45, 5653; (c) Cho, C. S. J. Mol. Catal. A: Chem. 2005, 240, 55; (d) Cho, C. S. J. Organomet. Chem. 2005, 690, 4094.
- 9. Crisp, G. T.; Meyer, A. G. J. Org. Chem. 1992, 57, 6972.
- A slightly lower yield of 2a (58%) was observed under a lower amount of PPh₃ (PdCl₂/2PPh₃).
- 11. About trans/cis = 1/10 mixture, which could not be separated by chromatography: Knobloch, K.; Koch, J.; Keller, M.; Eberbach, W. *Eur. J. Org. Chem.* **2005**, 2715.