Bioorganic & Medicinal Chemistry Letters 21 (2011) 1601-1606

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Synthesis and evaluation of novel pyrimidine-based dual EGFR/Her-2 inhibitors

Naoyuki Suzuki^{*}, Takeshi Shiota, Fumihiko Watanabe, Norihiro Haga, Takami Murashi, Takafumi Ohara, Kenji Matsuo, Naoki Oomori, Hiroshi Yari, Keiji Dohi, Makiko Inoue, Motofumi Iguchi, Jyunko Sentou, Tooru Wada

Shionogi Medicinal Research Laboratories, Shionogi & Co., Ltd, 12-4, Sagisu 5-chome, Fukushima-ku, Osaka 553-0002, Japan

ARTICLE INFO

Article history: Received 26 October 2010 Revised 25 January 2011 Accepted 26 January 2011 Available online 2 February 2011

Keyword: Receptor tyrosine kinase Kinase inhibitor EGFR Her-2 Pyrimidine

ABSTRACT

A structure-activity relationship study of 4-anilinopyrimidines for dual EGFR/Her-2 inhibitor has resulted in the identification of 4-anilino-5-alkenyl or 5-alkynyl-6-methylpyrimidine derivatives that have exhibited effective inhibitory activity against both enzymes. The presence of 5-alkenyl or 5-alkynyl moiety bearing terminal hydrophilic group played important role for inhibition of these enzymes. Selected compounds in the series demonstrated some activity against Her-2 dependent cell line (BT474). © 2011 Elsevier Ltd. All rights reserved.

Receptor tyrosine kinases, critical components of cellular signal transduction, are involved in many diseases, particularly cancer.¹ Epidermal growth factor receptor (EGFR/ErbB-1) and Her-2(ErbB-2), members of the Type 1 receptor tyrosine kinase family, play a key role in cell proliferation and differentiation.² Overexpression of these receptors is found in a variety of cancers such as breast, ovarian, colon and prostate cancers, and has been associated with poor prognosis in patients.³ The ErbB receptors can be activated through homo or heterodimerization with other receptors resulting in phosphorylation events and downstream signaling that produces excessive growth by inducing cell proliferation and inhibiting apoptotic pathways.² Therefore, simultaneous inhibition of EGFR and Her-2 has been expected to provide better efficacy than single receptor targeting. Lapatinib ditosylate (Tykerb, 1) (Fig. 1), an oral dual EGFR and Her-2 inhibitor, was recently been approved for treatment of patients with Her-2 over-expressing advanced or metastatic breast cancer.⁴ This drug has effective dual EGFR/Her-2 inhibitory activity and high selectivity against other kinases.⁵ and shows good therapeutic efficacy in clinical practice.

Among known kinase inhibitors, the 4-anilinoqunaizoline scaffold is the most common template for inhibitors of the ErbB family. The quinazoline moiety fits into the ATP-binding pocket in the kinase domain, while the aniline ring fills an adjacent lipophilic pocket.⁶ However, the lipophilic character of the 4-anilinoquinazoline moiety may cause their poor aqueous solubility, which influences their ADME aspect, and has posed a variety of challenges for their drug development.⁷ Therefore, intense research has recently been devoted to exploring alternatives to the quinazoline moiety, and other fused heteroaromatic derivatives, such as pyrrolotriazine thienopyrimidine and thiazolopyrimidine⁸ were reported as dual EGFR/Her-2 inhibitor. However, monoheteroaromatic derivatives which display effective antiproliferative activities against tumor cell lines have been limited.⁹

In our effort to discover and develop non-quinazoline derivatives for effective EGFR/Her-2 dual inhibitors as antitumor agents, we focused on the pyrimidine scaffold, which could mimic the function of the quinazoline moiety and could be expected to offer better physicochemical properties. In this Letter, we will report an SAR study of pyrimidine derivatives for EGFR/Her-2 dual inhibitors.

Lapatinib (1), Gefitinib (2)¹⁰ and Erlotinib (3)¹¹ are ATP-competitive EGFR inhibitors that contain a 4-anilinoquinazoline and a linker at the C-6 position with the terminal hydrophilic part as a common structural feature. However, only Lapatinib displays effective potency against Her-2, with 100-fold greater activity than that of either Gefitinib or Erlotinib.¹² The differences in Her-2 inhibitory potency suggested that the large 4-benzyloxy aniline moiety present in Lapatinib plays an important role for the inhibition of Her-2. From these findings, we assumed that the large aniline part at C-4, the linker at C-5 or C-6 and the terminal hydrophilic moiety were necessary for pyrimidine derivatives to gain effective inhibitory activity against both enzymes (Fig. 1). Based on this hypothesis, we decided to utilize the 4-benzyloxy aniline moiety of Lapatinib to maximize the chances of identifying

^{*} Corresponding author. Tel.: +81 6 6458 5861; fax: +81 6 6458 0987. E-mail address: naoyuki.suzuki@shionogi.co.jp (N. Suzuki).

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter \odot 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2011.01.119

Figure 1. Examples of clinical ErbB family inhibitors and the putative pharmacophore model of the pyrimidine analogue.

analogue.

poorer as inhibitors of both EGFR and Her-2 (12, 13). Such a pro-

nounced drop in activity against the enzymes suggested that the

C-6 position of the pyrimidine nucleus is close to the hinge region

of EGFR or Her-2, and it would be difficult to introduce a linker

moiety at this position. Unfortunately, compound 11 did not exhi-

bit effective antiproliferative activity against the Her-2 dependent

cell line (BT474) (data not shown). Therefore, we turned our atten-

tion to explore the C-5 substituent of the 6-methylpyrimidine

stituent at the C-5 position was required to be coplanar with the

pyrimidine ring. Thus, we tried to find a linker that could maintain

coplanarity with the pyrimidine nucleus. Table 2 summarizes the

primary SAR of different linkers at the C-5 position. We carried

out this exploration using a morpholine substituent at the terminal

position because it was utilized as the hydrophilic group in gefiti-

We thought that the linker in our pyrimidine series should be in similar orientation as the phenyl ring of quinazoline, that is, a sub-

a dual inhibitor, and focus our SAR effort on the C-5 and C-6 substituents of the pyrimidine ring.

We first explored the C-6 substituent (Table 1). These compounds were evaluated for their inhibitory activity toward tyrosine phosphorylation of the EGFR and Her-2 kinases by homogeneous time-resolved fluorescence (HTRF) assay.¹³ IC₅₀ values were calculated using the XLFit (IDBS, Guildford, United Kingdom) curve-fitting tool from Microsoft Excel. The parent pyrimidine compound **4** exhibited modest inhibitory activity against EGFR and low potency against Her-2. Methyl or phenyl substitution at C-6 maintained the EGFR activity, and showed the modest improvement of the potency against Her-2 (**5**, **6**). Compounds containing heteroaryl, amime or phenol at the C-6 position were not potent inhibitors, especially against Her-2 (**7–10**). Incorporation of a 5-methyl group into compound **5** provided analogue **11** which showed significant improvement in potency against both enzymes. However, the corresponding 6-ethyl and the 6-phenyl derivatives were

Table 1

Structure-activity relationships for the C-6 position

Compound	R ¹	R ²	EGFR $IC_{50}^{a}(\mu M)$	Her-2 IC_{50}^{a} (µM)	Compound	R ¹	R ²	EGFR IC_{50}^{a} (μM)	Her-2 IC_{50}^{a} (μ M)
4	Н	Н	0.92	25	9	∩_N_	Н	>100	>100
5	CH₃	Н	1.1	6.5	10		Н	10	>100
6		Н	1.2	6.3	11	CH ₃	CH_3	0.017	0.14
7	N=>-	Н	47	>100	12	CH ₃ CH ₂	CH_3	0.64	2.9
8	S	Н	22	36	13		CH_3	20	65

nib and could be introduced onto the terminal part easily. The aliphatic alkyne compound (**17**) and acrylamide derivative (**19**) displayed effective EGFR and Her-2 dual inhibitory activity, while the phenylacetylene (**18**) and styrene (**20**) derivatives exhibited lower inhibitory potency. Oxime analogues (**14**, **15**) which were expected to hold similar orientation with alkenyl derivatives, exhibited lower potency than **17**. Phenyl ring substitution did not showed effective inhibitory activity because of the difficulty of holding coplanarity (**16**). These SAR results indicated that an alkenyl or alkynyl pyrimidine moiety mimicked the quinazoline scaffold well, and these derivatives could bind to EGFR or Her-2 in a similar fashion to Lapatinib.

This encouraged us to further pursue SAR within acrylamide and aliphatic alkyne derivatives. In the acrylamide series (Table 3), replacement of the α -methyl with α -fluoro retained the inhibitory activities against both receptors (**21**), but the desmethyl derivative (**22**) decreased the potency. Changing the terminal morpholine in **21** to pyrrolidine resulted in an approximately sevenfold increase in inhibitory activity against both receptors (**23**), while the non-basic methylsulfone compound **24** displayed a slight increase in potency. This result suggested that the terminal amine group is not essential for the EGFR/Her-2 dual inhibitor. On the other hand, the conformationally restricted amide compound **25** exhibited reduced potency against EGFR and Her-2. Thus, the direction of the hydrophilic part may influence the inhibitory ability of these kinases.

The SAR of aliphatic alkyne derivatives is presented in Table 4. Shortening the length between the sp carbon and morpholine by one methylene maintained the inhibitory activities against both receptors (**26**), but truncating two methylenes resulted in significant loss of potency (**27**). In addition, insertion of an oxime moiety led to retention of the potency against EGFR and Her-2 (**28**). These results indicated that the length of this part needed more than two

Table 2

Structure-activity relationships for the C-5 linker part

Compound	R	EGFR IC_{50}^{a} (μM)	Her-2 IC_{50}^{a} (µM)	
14		0.068	0.74	
15	° N(J)°, 3N ≪	0.065	1.8	
16		0.59	3.75	
17		0.034	0.15	
18		0.24	0.44	
19	O N H CH ₃	0.028	0.081	
20		0.12	0.19	

Table 3

Structure-activity relationships for the alkenyl pyrimidines

Compound	R	EGFR IC_{50}^{a} (μM)	Her-2 IC_{50}^{a} (µM)	
21	0 N H F	0.018	0.078	
22	0 N H	0.114	0.318	
23	O N H F	0.003	0.019	
24	H_3C	0.019	0.071	
25	N F CH ₃	0.156	0.102	
$a_{n=3}$				

carbons. In terms of the terminal hydrophilic part, the pyrrolidine analogue (29) exhibited similar activity to compound 17, while the *N*-ethylpiperadine derivative (30) displayed slight improvement in potency against both EGFR and Her-2. However, the benzylamine analogue (31) decreased the inhibitory activities against both receptors.

A proposed binding mode for compound **30**, modeled on the Lapatinib/EGFR X-ray structure (PDB code 1XKK),¹⁴ is shown in Figure 2. In this model, the pyrimidine core and aniline portion

Table 4

Structure-activity relationships for the alkynyl pyrimidines

Compound	R	$\text{EGFR IC}_{50}{}^{a}(\mu M)$	Her-2 $IC_{50}^{a}(\mu M)$	
26		0.013	0.074	
27		4.13	5.38	
28		0.038	0.070	
29		0.011	0.095	
30		0.009	0.036	
31	N H	0.27	0.81	

^a n = 3.

Figure 2. Alkyne analogue 30 docked into the X-ray structure of EGFR/Lapatinib.

are oriented in a manner similar to Lapatinib. The C-5 linker extends out of the ATP pocket into the solvent exposed region, and the alkynyl moiety is coplanar with the pyrimidine ring, as we predicted. The terminal pyrrolidine moiety is in the proximity of Asp

Table 5

Inhibition of BT474 proliferation by dual inhibitors

776, suggesting that the pyrrolidine can form ionic interactions with this residue. Therefore, the length of the spacer between the sp2 or sp carbon and terminal hydrophilic group may influence the enzyme inhibitory activity, and the SARs of acrylamide and aliphatic alkyne analogues agree with this proposed model.

The antiproliferative activities for BT474 for selected compounds are shown in Table 5.⁴ Compound 23 and 30 showed significant loss of potency compared to their enzyme inhibitory activities [BT474/Her-2: 59.4 (23), 40.00 (30)]. On the other hand, compound **18** and **20** inhibited the growth of BT474 as expected from their potencies of enzyme inhibition [BT474/Her-2: 0.900 (18), 3.39 (20)]. The reason for this is not clear, but cellular permeability might influence the antiproliferative activity. Compound 18 and 20, containing a phenyl ring in the linker part were more lipophilic than 23 and 30 [S log P:¹⁵ 6.96 (18), 7.73 (20) vs 5.98 (23), 6.23 (**30**)], and might have an advantage in penetrating the cell membrane. In addition, compound **18** had a good aqueous solubility compared to Lapatinib. Therefore, we thought that the further exploration of the 5-alkenyl pyrimidine analogue had promise for the discovery of well-balanced compound in terms of the antiproliferative potency and physicochemical properties.

The synthetic route to the 5-acrylamide analogues is shown Scheme 1. Compound **32** was prepared from commercially available diethyl malonate by a two-step reaction sequence. Ring closure reaction with formamidine followed by the chlorination with POCl₃ provided 4-chloropyrimidine (**33**). This intermediate was coupled with the 4-benzyloxy aniline¹⁶ to afford compound

Compound	EGFR IC ₅₀ (μ M)	Her-2 IC ₅₀ (µM)	BT474 IC_{50}^{a} (μM)	Ratio BT474/Her-2	S log P	Solubility ^b (μM)
18	0.24	0.44	0.394	0.900	6.96	>50
20	0.12	0.19	0.644	3.39	7.73	2 ^d
23	0.003	0.019	1.13	59.4	5.98	>50
30	0.009	0.036	1.44	40.0	6.23	>50
Lapatinib ^c	0.010	0.009	0.10	11.11	6.67	24 ^e

^a n = 1.

^b The solubility is measured in high-speed solubility screening assay using DMSO solutions. The solvent is Japanese Pharmacopoeia XIV (JP) disintegration media JP 2nd-fluid (JP2; pH 6.8) plus Taurocholic acid.

^c Ref. 4.

^d Solubility of HCl salt.

e In-house data.

Scheme 1. Reagents and conditions: (a) acetyl chloride (1 equiv), Et₃N (2 equiv), MgCl₂ (1 equiv), MeCN, 0 °C, 100%; (b) Et₂SO₄ (1.2 equiv), K₂CO₃ (1.2 equiv), DMF, 60 °C, 66%; (c) formamidine acetate (1.2 equiv), K^tOBu (2.2 equiv), EtOH, rt, 73%; (d) POCl₃ (2 equiv), toluene, 120 °C, 43%; (e) ArNH₂ (1 equiv), DIPEA (1 equiv), toluene, reflux, 67%; (f) LiAlH₄ (1.5 equiv), THF, rt, 94%; (g) (COCl₂ (1.5 equiv), DMSO (3 equiv), Et₃N (5 equiv), CH₂Cl₂, -78 °C to rt, 55%; (h) phosphonate (1.1 equiv), NaH (1.1 equiv), DMF, rt, 85–95%; (i) 2 N NaOH (2 equiv), THF, MeOH, 60 °C, 100%; (j) amine (1 equiv), HOBt (1 equiv), WSCD-HCl (1 equiv), Et₃N (2 equiv), CH₂Cl₂, rt, 40–90%.

Scheme 2. Reagents and conditions: (k) formamidine acetate (1.2 equiv), Na (2.2 equiv), EtOH, rt, 75%; (l) ICl (1 equiv), AcOH, 60 °C, 100%; (m) POCl₃ (2 equiv), toluene, rt, 35%; (n) ArNH₂ (1 equiv), EtOH, reflux, 54%; (o) alkyne (1.5 equiv), PdCl₂(PPh₃)₂ (5 mol %), Cul (10 mol %), Et₃N (5 equiv), DMF, 80 °C, 50–90%; (p) phenylvinylbronic acid pinacol ester (1.2 equiv), Pd(OAc)₂ (10 mol %), PPh₃ (30 mol %), 2 M K₂CO₃ (4 equiv), DMF, 100 °C, 65%; (q) LiAlH₄ (1.5 equiv), THF, rt, 77%; (r) MnO₂ (10 equiv), THF, rt, 77%; (s) morpholine (4 equiv), NaBH(OAc)3 (4 equiv), AcOH (1 equiv), rt to 50 °C, 82%.

34. Reduction of 34 with LiAlH₄, followed by Swern oxidation provided the aldehyde 35. Horner-Wadsworth-Emmons reaction of 35 with phosphonates afforded the acrylate 36. Hydrolysis of 36 with NaOH followed by condensation with the amines provided the acrylamide analogues (37).

The synthetic route to 5-alkynyl analogues and compound 20 is shown Scheme 2. 6-Methyl pyrimidone (38) was obtained by the reaction of ethyl acetoacetate with formamidine acetate under basic condition. Treatment of 38 with ICl was followed by chlorination with POCl₃ to give 5-iodo-4-chloro-6-methylpyrimidine (**39**). The reaction of **39** with the 4-benzyloxy aniline provided **40**. Sonogashira coupling reaction of 40 with alkynes provided 5-alkynyl analogues (41). On the other hand, Suzuki-Miyaura coupling reaction of 39 with phenylvinylborate provided compound 42. Conversion of the terminal methyl ester into aldehyde, followed by reductive amination with morpholine provided compound 20.

In summary, we have described early SARs leading to novel alkenyl and alkynyl pyrimidine compounds which have effective EGFR/Her-2 dual inhibitory activity. The key modification was the introduction of a 5-alkenyl or alkynyl moiety that contained hydrophilic groups at the appropriate position. Although acrylamide and aliphatic alkyne analogues did not exhibit potent antiproliferative activity against BT474, we found that introducing an aromatic ring into the terminal hydrophilic part could improve cellular activity. Further exploration of these 4-anilinopyrimidine derivatives as EGFR/Her-2 dual inhibitors will be reported in due course.

References and notes

- 1. Supuran, C. T.; Scozzafava, A. Expert Opin. Ther. Patents 2004, 14, 35.
- Olayioye, M. A.; Neve, R. M.; Lane, H. A.; Hynes, N. E. EMBO J. 2000, 19, 3159.
- Kersemaekers, A.-M. F.; Fleuren, G. J.; Kenter, G. G.; Van den Broek, L. J. C. M.;
- Uljee, S. M.; Hermans, J.; Van de Vijver, M. J. *Clin. Cancer Res.* **1999**, *5*, 577. Rusnak, D. W.; Lackey, K.; Affleck, K.; Wood, E. R.; Alligood, K. J.; Rhodes, N.; 4. Keith, B. R.; Murray, D. M.; Glennon, K.; Knight, W. B.; Mullin, R. J.; Gilmer, T. M. Mol. Cancer Ther. 2001, 1, 85.

- 5. Fabian, M. A.; Biggs, W. H., III; Treiber, D. K.; Atteridge, C. E.; Azimioara, M. D.; Benedetti, M. G.; Carter, T. A.; Ciceri, P.; Edeen, P. T.; Floyd, M.; Ford, J. M.; Galvin, M.; Gerlach, J. L.; Grotzfeld, R. M.; Herrgard, S.; Insko, D. E.; Insko, M. A.; Lai, A. G.; Lelias, J.-M.; Mehta, S. A.; Milanov, Z. V.; Velasco, A. M.; Wodicka, L. M.; Patel, H. K.; Zarrinkar, P. P.; Lockhart, D. J. *Nat. Biotechnol.* **2005**, *23*, 329.
- Liao, J. J. J. Med. Chem. 2007, 50, 409.
- (a) Bergman, E.; Forsell, P.; Persson, E. M.; Knutson, L.; Dickinson, P.; Smith, R.; 7 Swaisland, H.; Farmer, M. R.; Cantarini, M. V.; Lennernäs, H. Int. J. Pharm. 2007, 341, 134; (b) Koch, K. M.; Reddy, N. J.; Cohen, R. B.; Lewis, N. L.; Whitehead, B.; Mackay, K.; Stead, A.; Beelen, A. P.; Lewis, L. D. J. Clin. Oncol. 2009, 27, 1191; (c) Bubendorf, A. G.; Hennig, M.; Hidber, P.; Rimmler, G.; Rohrer, F. WO 2004072049 A1
- (a) Gavai, A. V.; Fink, B. E.; Fairfax, D. J.; Martin, G. S.; Rossiter, L. M.; Holst, C. L.; Kim, S.-H.; Leavitt, K. J.; Mastalerz, H.; Han, W.-C.; Norris, D.; Goyal, B.; Swaminathan, S.; Patel, B.; Mathur, A.; Vyas, D. M.; Tokarski, J. S.; Yu, C.; Oppenheimer, S.; Zhang, H.; Marathe, P.; Fargnoli, J.; Lee, F. Y.; Wong, T. W.; Vite, G. D. J. Med. Chem. 2009, 52, 6527; (b) Rheault, T. R.; Caferro, T. R.; Dickerson, S. H.; Donaldson, K. H.; Gaul, M. D.; Goetz, A. S.; Mullin, R. J.; McDonald, O. B.; Petrov, K. G.; Rusnak, D. W.; Shewchuk, L. M.; Spehar, G. M.; Truesdale, A. T.; Vanderwall, D. E.; Wood, E. R.; Uehling, D. E. Bioorg. Med. Chem. Lett. 2009, 19, 817; (c) Lin, R.; Johnson, S. G.; Connolly, P. J.; Wetter, S. K.; Binnun, E.; Hughes, T. V.; Murray, W. V.; Pandey, N. B.; Moreno-Mazza, S. J.; Adams, M.; Fuentes-Pasquera, S. A.; Middleston, S. A. Bioorg. Med. Chem. Lett. 2009. 19. 2333
- (a) Waterson, A. G.; Stevens, K. L.; Reno, M. J.; Zhang, Y.-M.; Boros, E. E.; Frederic, B.; Rastagar, A.; Uehling, D. E.; Dickerson, S. H.; Reep, B.; McDonald, O. B.; Wood, E. R.; Rusnak, D. W.; Alligood, K. J.; Rudolph, S. K. Bioorg. Med. Chem. Lett. 2006, 16, 2419; (b) Xu, G.; Searle, L. L.; Hughes, T. V.; Beck, A. K.; Connolly, P. J.; Abad, M. C.; Neepe, M. P.; Struble, G. T.; Springer, B. A.; Emanuel, S. L.; Gruninger, R. H.; Pandey, N.; Adams, M.; Moreno-Mazza, S.; Fuentes-Pesquera, A. R.; Middleton, S. A.; Greenberger, L. M. Bioorg. Med. Chem. Lett. 2008, 18, 3495; (c) Xu, G.; Abad, M. C.; Connolly, P. J.; Neeper, M. P.; Struble, G. T.; Springer, B. A.; Emanuel, S. L.; Pandey, N.; Gruninger, R. H.; Adams, M.; Moreno-Mazza, S.; Fuentes-Pesquera, A. R.; Middleton, S. A. Bioorg. Med. Chem. Lett. 2008, 18, 4615; (d) Hughes, T. V.; Xu, G.; Wetter, S. K.; Connolly, P. J.; Emanuel, S. L.; Karnachi, P.; Pollack, S. R.; Pandey, N.; Adams, M.; Moreno-Mazza, S.; Middleton, S. A.; Greenberger, L. M. Bioorg. Med. Chem. Lett. 2008, 18, 4896.
- 10. Wakeling, A. E.; Guy, S. P.; Woodburn, J. R.; Ashton, S. E.; Curry, B. J.; Barker, A. J.; Gibson, K. H. Cancer Res. 2002, 62, 5749.
- 11. Moyer, J. D.; Barbacci, E. G.; Iwata, K. K.; Arnold, L.; Boman, B.; Cunningham, A.; DiOrio, C.; Doty, J.; Morin, M. J.; Moyer, M. P.; Neveu, M.; Pollack, V. A.; Pustilnik, L. R.; Reynolds, M. M.; Slaon, D.; Theleman, A.; Miller, P. Cancer Res. 1997, 57, 4838.
- 12. (a) Zhang, Y.-M.; Cockerill, S.; Guntrip, S. B.; Rusnak, D.; Smith, K.; Vanderwall, D.; Wood, E.; Lackey, K. Bioorg. Med. Chem. Lett. 2004, 14, 111; (b) Rusnak, D. W.; Affleck, K.; Cockerill, S. G.; Stubberfield, C.; Harris, R.; Page, M.; Smith, K. J.;

Guntrip, S. B.; Carter, M. C.; Shaw, R. J.; Jowett, A.; Stables, J.; Topley, P.; Wood, E. R.; Brignola, P. S.; Kadwell, S. H.; Reep, B. R.; Mullin, R. J.; Alligood, K. J.; Keith, B. R.; Crosby, R. M.; Murray, D. M.; Knight, W. B.; Gilmer, T. M.; Lackey, K. Cancer Res. **2001**, *61*, 7196. 13. Kolb, A. J.; Kaplita, P. V.; Hayes, D. J.; Park, Y.-W.; Pernell, C.; Major, J. S.; Mathis,

- G. Drug Discovery Today 1998, 7, 333.
- Wood, E. R.; Truesdale, A. T.; McDonald, O. B.; Yuan, D.; Hassell, A.; Dickerson, S. H.; Ellis, B.; Pennisi, C.; Horne, E.; Lackey, K.; Alligood, K. J.; Rusnak, D. W.; Gilmer, T. M.; Shewchuk, L. *Cancer Res.* **2004**, 64, 6652–6659.
- Wildman, S. A.; Crippen, G. M. J. Chem. Inf. Comput. Sci. 1999, 39, 868.
 Carter, M. C.; Cockerill, G. S.; Guntrip, S. B.; Lackey, K. E.; Smith, K. J. WO 9935146 A1.