

Asymmetric Total Synthesis of (–)-Jorunnamycins A and C and (–)-Jorumycin from ∟-Tyrosine

Ruijiao Chen, Hao Liu, and Xiaochuan Chen*

Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China

Supporting Information

ABSTRACT: Three renieramycin-type antitumor alkaloids, (-)-jorunnamycins A (1) and C (2) and (-)-jorumycin (3), have been synthesized by a new convergent approach, which features a highly regio- and stereoselective Pictet-Spengler cyclization to couple the isoquinoline and the trisubstituted phenylalaninol partners. This synthetic strategy opens an economical access to these important antitumor alkaloids with high yields: (-)-jorunnamycin A, as a common precursor to

other renieramycin-type alkaloids and their analogues, is obtained with 18.1% overall yield from L-tyrosine.

Marine bistetrahydroisoquinoline alkaloids, including the renieramycins (1-5), saframycins (6, 7), and ecteinascidins (8, 9) (Figure 1), have been intensively studied over the

Figure 1. Examples of bistetrahydroisoquinoline alkaloids.

past 37 years because of their remarkable antitumor and antimicrobial activities.¹ Ecteinascidin 743² (8, Et 743, Yondelis), a typical antitumor agent among them, has received marketing authorization from the European commission for the treatment of advanced soft-tissue sarcomas.³ (–)-Jorumycin (3),⁴ (–)-jorunnamycin A (1), and (–)-jorunnamycin C (2),⁵ the three renieramycin-type alkaloids isolated from the marine nudibranchs *Jorunna funebris*, also showed nanomolar inhib-

itory effects in a panel of human tumor cell lines.^{4,5} These bioactive renieramycin alkaloids and their analogues,⁴⁻⁶ with simpler structures than the ecteinacidins, are promising candidates for new anticancer drugs. However, studies on the structure–activity relationships of renieramycin compounds are relatively rare owing to their meager resources in nature.⁷

The biological activities and natural scarcity of these alkaloids have attracted particular attention in the field of synthetic chemistry, and several renieramycins have been synthesized.⁸⁻¹⁰ As a useful and frequent strategy to construct pentacyclic frameworks of bistetrahydroisoquinoline alkaloids, coupling of isoquinoline moiety 12 with amino acid partner 13 via N-acylation followed by successive formation of the C and D rings was adopted in most syntheses of renieramycins (Figure 2a).^{8a,b,9a-c} For this strategy, tetrasubstituted phenylalanines (13: $R^2 \neq H$) are more suitable than trisubstituted counterparts (13: $R^2 = H$), because the latter would result in some undesirable regioisomers (cyclization para to the phenol group) in the formation of the D ring via the N-acylimininium intermediates. The desired products 10 ($R^2 = H$, cyclization ortho to the phenol group) were obtained with unsatisfactory yields (0-51%),^{9c,11} particularly in the synthesis of renier-amycin-type alkaloids.^{11d} However, preparation of the tetrasubstituted phenylalanine derivatives usually requires additional steps and higher costs.^{8a,b,12}

We report herein a new convergent route for the syntheses of renieramycin-type alkaloids, in which isoquinoline moiety 15 and trisubstituted phenylalaninol 16 are coupled via a highly regio- and stereoselective Pictet-Spengler cyclization to produce bistetrahydroisoquinoline intermediate 14 (Figure 2b). Both coupling partners are readily prepared from inexpensive L-tyrosine. The utility of this strategy is

Received: July 8, 2013

Journal of Natural Products

b) Pictet-Spengler reaction coupling strategy

Figure 2. Coupling strategies for the convergent synthesis of bistetrahydroisoquinoline alkaloids from isoquinoline and substituted phenylalanine partners.

demonstrated here through the first synthesis of (-)-jorunnamycin C (2), as well as synthesis of (-)-jorumycin (3).

RESULTS AND DISCUSSION

The synthesis of the key bistetrahydroisoquinoline 22 (14: R^1 = Boc, R^2 = allyl) is illustrated in Scheme 1. Following the approach developed by our group, L-3-hydroxy-4-methoxy-5methylphenylalaninol (16) was easily prepared from L-tyrosine in eight steps with 46% overall yield.¹³ Trisubstituted phenylalaninol 16 not only served as the right partner but also can be transformed further to the left part of 15. The Pictet-Spengler reaction between 16 and benzyloxyacetaldehyde (17) to produce 1,3-cis-tetrahydroisoquinoline 18a, the benzyl ether of MY336-a,¹⁴ was achieved previously in the presence of 3 equiv of AcOH at -10 °C.^{11d} When we reduced the amount of AcOH to 0.25 equiv, the cyclization maintained high regioselectivity at 0 °C to furnish 18a in 89% yield, and only a small amount of its regioisomer 18b (5%) was produced. An increase in the amount of AcOH or reaction temperature led to a drop in regioselectivity. With 18a in hand, several oxidation precursors including 19 and 20 were prepared in high yield by routine protection procedures. Under Swern oxidation conditions, the primary alcohols such as 19 and 20 were converted to the corresponding aldehydes 15 respectively to serve in the subsequent coupling step without further purification.

Subsequently, the key coupling of the left and right partners via the second Pictet–Spengler condensation was investigated (Scheme 1). In the process to form ring D, diverse regio- and stereoisomers probably would be produced owing to unsatisfactory cyclization selectivity and epimerization of the aldehyde partner.¹⁵ Therefore, structurally symmetric L-3,5-dihydroxy-4-methoxyphenylalaninol (23),¹⁶ which could circumvent the problem of regioselectivity in the cyclization, was also used as an alternative right partner. L-3,5-Dihydroxy-4-

Article

Scheme 1. Synthesis of the Key Bistetrahydroisoquinoline

^aConditions: (a) 17, AcOH, CH₂Cl₂/TFE (v/v, 7:1), 4 Å MS, 0 °C, 89%; (b) Boc₂O, Et₃N, CH₂Cl₂, rt, 95%; (c) allyl bromide, CH₃CN, K₂CO₃, 50 °C, 94%; (d) Swern oxidation; (e) AcOH, CH₂Cl₂/TFE (v/v, 7:1), 4 Å MS, 89% from **20** for 2 steps.

methoxyphenylalanine derivatives have been successfully applied to the synthesis of Et 743 (8),¹⁷ phthalascidin 650,¹ and saframycin A (6).¹⁹ The results of experiments showed that the selectivity of the cyclization was highly dependent on the R¹ and R^2 groups in the left partner 15. In most cases, at least two obvious cyclization isomers were obtained even though employing 23 as the right partner. This seemed to imply that these products are more likely to be stereoisomeric. After a survey of aldehyde partners 15 with varying R¹ groups (Boc, Alloc, Cbz, Fmoc) and R² groups (H, allyl, TBS), the condensation of aldehyde 21 (15: $R^1 = Boc$, $R^2 = allyl$) with 16 yielded only one cyclization product, 22. However, at room temperature the reactions proceeded very sluggishly, and 4-5 days was required for complete conversion. Gratifyingly, when the reaction temperature was raised to 50 °C, the cyclization was complete within 8 h and 22 was obtained as a single isomer in 89% yield (from 20). Unfortunately, in the ¹H NMR spectra of the compounds including 22, which possessed carbamate units such as the N-Boc group, a number of proton signals appeared either as broadened peaks or in pairs due to the presence of rotamers and overlapped each other. Therefore, assignment of the stereochemistry of 22 by routine NMR analysis was difficult, and the stereostructure was determined only after completion of the subsequent transformation to the natural products.

The final syntheses of the natural products began with the closure of ring C (Scheme 2). Initially, direct methylation of the secondary amine of **22** followed by removal of the *N*-Boc group gave the resulting amino alcohol, C ring closure of which could not occur via a Swern oxidation/Strecker reaction protocol.^{8c,20} Thus, protection of the secondary amine of **22** with AllocCl followed by selective allylation of the phenol furnished compound **25** in excellent overall yield, which was subjected

Scheme 2. Syntheses of (-)-Jorunnamycin A, (-)-Jorunnamycin C, and (-)-Jorumycin^a

^aConditions: (a) AllocCl, CH_2Cl_2/aq NaHCO₃ (v/v, 1:1), rt, 95%; (b) allyl bromide, CH_3CN , Cs_2CO_3 , 50 °C, 94%; (c) HCl/MeOH (v/v, 1:15), 50 °C, 92%; (d) Swern oxidation; (e) TMSCN, ZnCl₂, CH_2Cl_2 , rt, 87% for 2 steps; (f) Pd(PPh₃)₄, Bu₃SnH, AcOH, CH_2Cl_2 , rt; (g) aq HCHO (37%), NaBH₃CN, AcOH, CH_3CN/THF (v/v, 3:1), rt, 91% for 2 steps; (h) BCl₃, CH_2Cl_2 , -78 °C, 94%; (i) salcomine, O₂ atmosphere, MeCN, 91%; (j) propionic anhydride, pyridine, 25 °C, 76%; (k) acetic anhydride/pyridine (v/v, 1/2), rt; (l) AgNO₃, MeCN/H₂O (v/v, 3/2), 45 °C, 78% for 2 steps.

to aqueous HCl in methanol to yield free secondary amine 26. Swern oxidation of amino alcohol 26 to the hemiaminal followed by a zinc chloride promoted intramolecular Strecker reaction provided aminonitrile 27 with the entire pentacyclic framework as a single diastereoisomer. Simultaneous removal of one *N*-Alloc and two *O*-allyl groups under Guibé's conditions²¹ followed by reductive *N*-methylation afforded phenol 28.

The O-debenzylation of **28** under hydrogenolysis conditions (10% Pd/C, H₂) only resulted in recovered material, whereas the deprotection was achieved smoothly with BCl₃ at -78 °C to furnish the desired alcohol **29** in 94% yield. Oxidation of the A and E rings of **29** to quinone occurred successfully with O₂ atmosphere in the presence of salcomine²² to give (-)-jor-unnamycin A (1). Synthetic 1 exhibited spectral characteristics identical to those reported for the natural product.⁴ It also

confirmed that the stereochemistry of **22** obtained in the key cyclization was just what we needed.

As the simplest member of renieramycin-type alkaloids, 1 could conveniently be converted to other members of this family. Thus, acylation of primary alcohol 1 with propionic anhydride furnished (–)-jorunnamycin C (2). Similarly, 1 was converted to (–)-jorumycin (3) by a two-step sequence following the known protocols.^{8a,c}

The formation of **22** with the desired stereochemistry was proposed as shown in Scheme 3. Condensation of aldehyde **21**

and amine 16 yielded imine species 30. In the subsequent cyclization, its corresponding iminium tends to adopt the stable conformation 31 similar to a chair. Thus, 1,3-*cis*-tetrahydroiso-quinoline was obtained preferably, in which both substituents at C1 and C3 were positioned in pseudoequatorial orientation to minimize the steric repulsions. At the same time, a postulated hydrogen-bonding interaction between the phenolic residue and the Boc group in 31 would direct this cyclization *ortho* to the phenol.

In conclusion, we described a convergent strategy for highly efficient synthesis of renieramycin alkaloids based on a condensation between aldehyde partner **21** and amine partner **16**, in which excellent regioselectivity and stereoselectivity were achieved. Through this approach, (-)-jorunnamycins A (1) and C (2) and (-)-jorumycin (3) have been synthesized in high yields: (-)-jorunnamycine. Furthermore, our approach has several other advantages: (1) expensive reagents and materials are seldom involved; (2) no segment other than **16** need be prepared additionally; (3) the reactions are easy to perform and can be scaled up. Efforts to utilize this economical and robust strategy for the syntheses of other bistetrahydroisoquinoline alkaloids are in progress.

EXPERIMENTAL SECTION

General Experimental Procedures. Flash chromatography was performed using silica gel (200–300 mesh). Reactions were monitored by thin layer chromatography (TLC). Visualization was achieved under a UV lamp (254 nm), with I₂, and by developing the plates with *p*-anisaldehyde or phosphomolybdic acid. IR spectra were recorded on a commercial spectrophotometer. Optical rotations were reported as follows: $[\alpha]_{D}^{T}$ (*c*: g/100 mL, solvent). ¹H and ¹³C NMR were

Journal of Natural Products

recorded in CDCl₃ on a Bruker DRX-400 MHz NMR spectrometer with TMS as the internal standard. Chemical shift values are given in δ (ppm) using the peak signals of the solvent CDCl₃ (H 7.26 and C 77.23) as references, and coupling constants are reported in Hz. HRMS spectra were recorded using an FTMS-7 spectrometer, and MeOH or CH₂Cl₂ was used to dissolve the sample. Solvents for reaction were distilled prior to use: CH₂Cl₂ and CH₃CN from CaH₂, 2,2,2-trifluoroethanol (TFE), and other reagents were obtained from commercial suppliers unless otherwise stated. Powdered, <50 μ m 4 Å molecular sieves were activated at 120 °C for 5 h and stored under nitrogen.

Compounds 18a and 18b. To a mixture of amino alcohol 16 (5.60 g, 26.5 mmol), benzyloxyacetaldehyde (17, 5.17 g, 34.5 mmol), and 4 Å molecular sieves (5.6 g) in CH₂Cl₂ and 2,2,2-trifluoroethanol (CH2Cl2/TFE, v/v, 7:1, 177 mL) was added dropwise acetic acid (AcOH, 0.38 mL, 6.6 mmol) at -10 °C. The mixture was stirred at -10 °C for 5 h, then stirred at 0 °C for 5 h. The reaction mixture was neutralized with moist NaHCO3 and filtered. The filtrate was concentrated under reduced pressure, and the residue was purified by flash column chromatography (CC) on silica gel (gradient, 3% to 5% MeOH in CH₂Cl₂) to afford 18a (8.10 g, 89%) and 18b (0.46 g, 5%) as a yellow oil: 18a $[\alpha]^{27}$ D -86 (c 1.0, MeOH); IR (neat) ν_{max} 3303, 2924, 1583, 1494, 1455, 1310, 1234, 1101, 1021, 740 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.20-7.40 (5H, m), 6.44 (1H, s), 4.73 (3H, br s), 4.50 (3H, m), 4.02 (1H, dd, J = 9.4, 3.8 Hz), 3.82 (1H, dd, J = 9.2, 5.9 Hz, 3.73 (3H, s), 3.65–3.78 (1H, m), 3.52 (1H, dd, J =11.2, 6.7 Hz), 2.92 (1H, m), 2.59 (1H, m), 2.45 (1H, m), 2.23 (3H, s); ^{13}C NMR (100 MHz, CDCl₃) δ 146.3, 144.0, 138.0, 132.3, 129.1, 128.4, 127.8, 127.7, 122.2, 119.6, 73.2, 72.8, 65.2, 60.6, 54.3, 53.4, 32.1, 15.8; HRMS (ESI-TOF) m/z 366.1679 [M + Na]⁺ (calcd for $C_{20}H_{25}NO_4Na$, 366.1681); **18b** $[\alpha]^{27}{}_D$ -12 (c 0.95, MeOH); IR (neat) ν_{max} 3285, 2926, 1668, 1596, 1452, 1337, 1284, 1230, 1098, 1038, 740 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 7.30–7.42 (5H, m), 6.50 (1H, s), 4.59 (2H, s), 4.37 (1H, dd, J = 8.6, 5.2 Hz), 3.76 (1H dd, J = 11.0, 3.3 Hz), 3.68 (3H, s), 3.56 (2H, m), 3.49 (1H, dd, J = 10.8, 7.6 Hz), 3. 63 (1H, m), 2.66 (1H, dd, J = 16.7, 4.5 Hz), 2.55 (1H, dd, J = 16.3, 11.4 Hz), 2.10 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 149.0, 144.7, 137.8, 129.2, 128.4, 128.2, 127.7, 127.6, 121.5, 114.1, 72.8, 67.5, 64.0, 59.3, 59.3, 53.2, 29.4, 10.4; HRMS (ESI-TOF) m/z 366.1685 $[M + Na]^+$ (calcd for $C_{20}H_{25}NO_4Na$, 366.1681).

Compound 19. To a solution of amine 18a (7.66 g, 22.3 mmol) in CH₂Cl₂ (112 mL) were added sequentially triethylamine (Et₃N, 6.23 mL, 44.6 mmol) and di-tert-butyl dicarbonate (Boc₂O, 5.25 mL, 24.5 mmol) at room temperature. The mixture was stirred at room temperature for 6 h, and 100 mL of H₂O was added. The layers were separated, and the aqueous layer was extracted with ethyl acetate $(3 \times$ 100 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash CC on silica gel (25% EtOAc in hexanes) to afford N-Boc derivative 19 (9.40 g, 95%) as a pale yellow oil: $[\alpha]^{27}$ –10 (c 1.2, CH₂Cl₂); IR (neat) $\nu_{\rm max}$ 3385, 2932, 1684, 1590, 1458, 1398, 1341, 1245, 1058, 1168, 1080, 739 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.20-7.35 (5H, m), 6.58 (1H, s), 6.52 (1H, s), 4.80 (1H, m), 4.54 (1H, d, J = 11.73 Hz), 4.24 (1H, m), 4.24 (1H, br s), 3.76 (1H, m),3.73 (3H, s), 3.66 (1H, m), 3.50 (2H, m), 2.68-3.13 (2H, m), 2.24 (3H, s), 1.45 (9H, s); ¹³C NMR (100 MHz, CDCl₃) & 155.9, 145.4, 143.9, 137.8, 130.5, 130.4, 129.8, 128.4, 127.7, 121.4, 119.9, 80.5, 72.6, 71.8, 71.1, 65.8, 64.6, 60.6, 53.4 49.5, 48.1, 29.0, 28.4, 15.7; HRMS (ESI-TOF) m/z 466.2208 $[M + Na]^+$ (calcd for C₂₅H₃₃NO₆Na, 466.2206)

Compound 20. Potassium carbonate (3.94 g, 28.5 mmol), sodium iodide (0.14 mg, 0.93 mmol), and allyl bromide (allylBr, 2.5 mL, 28.5 mmol) were added sequentially to a solution of aminophenol **19** (8.42 g, 19.0 mmol) in 127 mL of CH₃CN, at room temperature. The mixture was stirred at 50 °C for 8 h and concentrated. The residue was dissolved in 100 mL of EtOAc and washed with H₂O (100 mL). The aqueous layer was extracted with EtOAc (3×100 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by CC on silica gel (20% EtOAc in hexanes) to afford **20** (8.63 g, 94%) as a pale yellow

oil: $[\alpha]^{27}_{D} -24$ (c 1.2, CHCl₃); IR (neat) ν_{max} 3464, 3064, 2973, 2932, 1688, 1717, 1454, 1393, 1248, 1169, 1095, 997, 857, 739 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.22–7.40 (5H, m), 6.76 (1H, s), 6.10 (1.4H, m), 5.88 (0.6H, m), 5.41 (1H, m), 5.22 (1H, d, *J* = 8.6 Hz), 5.07 (1H, d, *J* = 12.3 Hz), 4.77 (1H, m), 4.54 (3H, m), 4.16 (1H, br s), 4.10 (1H, d, *J* = 9.9 Hz), 3.79 (3H, s), 3.69 (1H, m), 3.60 (1H, m), 3.57 (1H, m), 3.46 (1H, br s), 3.10 (1H, m), 2.77 (1H, m), 2.24 (3H, s), 1.46 (9H, s); ¹³C NMR (100 MHz, CDCl₃) δ 156.2, 155.8, 149.4, 147.6, 137.9, 134.2, 131.5, 130.8, 128.4, 127.9, 127.7, 127.4, 125.4, 117.3, 116.8, 80.4, 74.0, 73.6, 72.3, 70.9, 65.5, 64.5, 60.1, 54.5, 54.0, 49.6, 48.1, 28.8, 28.4, 15.8; HRMS (ESI-TOF) *m*/*z* 484.2696 [M + H]⁺ (calcd for C₂₈H₃₈NO₆, 484.2699).

Compound 22. To a stirred solution of oxalyl chloride (1.9 mL, 21.6 mmol) in CH₂Cl₂ (95 mL) was added a solution of dimethyl sulfoxide (DMSO, 3.1 mL, 43.2 mmol) in CH₂Cl₂ (3 mL) at -78 °C. The mixture was stirred at -78 °C for 20 min, and alcohol **20** (5.22 g, 10.8 mmol) in a solution of CH₂Cl₂ (10 mL) was added. The mixture was stirred at -78 °C for 1.5 h, and N,N-diisopropylethylamine (14.3 mL, 86.4 mmol) was added dropwise at -78 °C. The mixture was stirred at -78 °C for 30 min, then warmed to 0 °C. The reaction was quenched with 80 mL of water. The aqueous layer was extracted with CH_2Cl_2 (3 × 100 mL). The combined organic layers were washed with brine, dried over anhydrous Na2SO4, filtered, concentrated, and dried under vacuum. The residue was dissolved in CH₂Cl₂/TFE (7:1, 100 mL), and a solution of amino alcohol 16 (2.97 g, 14.1 mmol) in CH₂Cl₂/TFE (7:1, v/v, 8 mL), AcOH (0.3 mL, 5.4 mmol), and 4 Å molecular sieves (6.0 g) were added sequentially at room temperature. After being refluxed for 10 h, the reaction mixture was quenched with $\rm NaHCO_3$ (0.45 g, 5.4 mmol) and filtered. The filtrate was concentrated under reduced pressure, and the residue was purified by flash CC on silica gel (gradient, 10% to 20% EtOAc in hexanes) to afford **22** (6.48 g, 89% for two steps) as a yellow oil: $[\alpha]^{27}{}_{\rm D}$ –29 (c 1.0, CHCl₃); IR (neat) $\nu_{\rm max}$ 3347, 2930, 1684, 1647, 1581, 1454, 1400, 1370, 1235, 1167, 1071, 999, 738 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.88 (0.7H, br s), 7.43 (0.3H, br s), 7.27–7.42 (5H, m), 6.63 (0.7H, s), 6.60 (0.3H, s), 6.44 (1H, s), 6.11 (1H, m), 5.94 (1H, m), 5.44 (1H, m), 5.25 (1H, m), 5.16 (1H, br s), 5.08 (0.3H, m), 4.88 (0.7, m), 4.45-4.70 (4H, m), 4.05 (1H, m), 3.80 (2.1H, s), 3.79 (0.9H, s), 3.78 (3H, s), 3.60 (1H, m), 3.44 (2H, m), 3.17 (0.3H, br s), 3.06 (0.7H, br s), 2.96 (0.7H, m), 2.68 (0.3H, m), 2.33-2.59 (3H, m), 2.26 (3H, s), 2.22 (3H, s), 1.55 (2.7H, s), 1.51 (6.3H, s); ¹³C NMR (100 MHz, $CDCl_3$ δ 156.8, 149.1, 147.2, 147.1, 144.3, 138.3, 134.2, 132.0, 131.5, 131.1, 129.3, 129.0, 128.4, 128.1, 127.7, 127.4, 126.7, 125.6, 122.2, 121.3, 117.8, 116.8, 81.0, 74.1, 73.6, 72.3, 71.6, 71.5, 67.6, 60.3, 60.1, 57.6, 53.4, 52.7, 49.3, 32.9, 28.6, 28.4, 25.5, 15.7; HRMS (ESI-TOF) m/z 675.3631 [M + H]⁺ (calcd for C₃₉H₅₁N₂O₈, 675.3645).

Compound 24. To a solution of amine 22 (5.62 g, 8.34 mmol) in CH₂Cl₂ and saturated aqueous NaHCO₃ (84 mL, 1:1, v/v) was added dropwise allyl chloroformate (AllocCl, 0.97 mL, 9.17 mmol). After being stirred at room temperature overnight, the reaction mixture was diluted with CH2Cl2 (200 mL) and separated. The organic layer was washed with brine, dried with Na2SO4, and evaporated to dryness under reduced pressure. The residue was purified by flash CC on silica gel (33% EtOAc in hexanes) to afford 24 (6.01 g, 95%) as a pale yellow oil: $[\alpha]_{D}^{27}$ +4.0 (c 1.0, CHCl₃); IR (neat) ν_{max} 3353, 2929, 2854, 1689, 1647, 1456, 1399, 1306, 1244, 1163, 1072, 996, 737 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (1H, br s), 7.26–7.52 (5H, m), 6.77 (1H, s), 6.55 (1H, s), 6.05 (1H, m), 5.89 (1H, m), 5.75 (1H, m), 5.35 (1H, d, J = 21.0 Hz), 5.30 (1H, d, J = 17.3 Hz), 5.19 (1H, s), 5.17 (1H, s),4.80 (2H, m), 4.55 (5H, m), 4.07 (1H, br s), 3.96 (4H, m), 3.76 (3H, s), 3.74 (3H, s), 3.61 (1H, m), 3.17 (1H, br s), 3.00 (3H, m), 2.23 (3H, s), 2.21 (3H, s), 1.19 (9H, m); ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 156.4, 149.5, 147.4, 146.6, 145.7, 137.2, 134.3, 132.5, 131.5, 130.4, 128.4, 128.2, 127.9, 125.5, 122.2, 120.8, 118.2, 80.6, 73.8, 72.4, 68.1, 66.9, 60.1, 59.9, 56.3, 53.9, 50.6, 30.8, 29.2, 27.7, 15.8; HRMS (ESI-TOF) m/z 781.3680 [M + Na]⁺ (calcd for C43H54N2O10Na: 781.3676).

Compound 25. A suspension of 24 (4.62 g, 6.09 mmol), cesium carbonate (2.98 g, 9.14 mmol), sodium iodide (91 mg, 0.61 mmol), and allyl bromide (0.80 mL, 9.14 mmol) in CH_3CN (60 mL) was

stirred at 60 °C for 8 h. The solvent was removed in vacuo, and H₂O (80 mL) was added. The mixture was extracted with EtOAc (3×100 mL). The combined organic layer was dried with Na₂SO₄, filtered, and evaporated to dryness under reduced pressure. The residue was purified by flash CC on silica gel (33% EtOAc in hexanes) to afford 25 (4.57 g, 94%) as a pale yellow oil: $[\alpha]_{D}^{27}$ +30.5 (c 2.0, CHCl₃); IR (neat) ν_{max} 3423, 3088, 2927, 2859, 1688, 1587, 1456, 1395, 1307, 1237, 1164, 1101, 1069, 996, 771 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.16-7.25 (5H, m), 6.81 (1H, s), 6.72 (1H, s), 6.09 (2H, m), 5.81 (1H, m), 5.62 (1H, br s), 5.38 (1H, m), 5.30 (1H, m), 5.25 (1H, m), 5.19 (1H, s), 5.17 (1H, s), 5.09 (1H, m), 4.68 (1H, m), 4.34-4.60 (8H, m), 4.30 (1H, m), 4.22 (1H, m), 4.13 (1H, m), 3.93 (3H, m), 3.79 (6H, s), 2.80-3.34 (4H, m), 2.25 (3H, s), 2.20 (3H, s), 1.14 (4.5H, br s), 0.98 (4.5H, br s); ¹³C NMR (100 MHz, CDCl₃) δ 157.0, 154.8, 148.5, 147.1, 137.9, 133.7, 133.6, 131.4, 129.9, 129.0, 127.0, 126.2, 124.2, 123.9, 123.3, 118.0, 116.9, 116.1, 114.8, 79.1, 78.4, 73.5, 72.9, 72.2, 71.4, 69.6, 66.1, 59.3, 59.0, 56.5, 56.1, 55.1, 50.8, 50.5, 49.9, 49.2, 29.4, 27.1, 26.4, 14.7, 14.5; HRMS (ESI-TOF) *m/z* 799.4172 [M + H]⁺ (calcd for $C_{46}H_{59}N_2O_{10}$, 799.4170).

Compound 26. A solution of 25 (3.89 g, 4.86 mmol) in MeOH (48 mL) was treated with concentrated HCl (3.2 mL, v/v, 1/15). After stirring at 60 °C for 4 h, the volatiles were evaporated under reduced pressure. The residue was taken up with CH₂Cl₂ and H₂O, and the resulting mixture was basified with solid NaHCO₃. The aqueous layer was extracted with CH_2Cl_2 (3 × 80 mL), and the combined extracts were dried with anhydrous NaSO4, filtered, and evaporated to dryness under reduced pressure. The residue was purified by flash CC on silica gel (40% EtOAc in hexanes) to afford 26 (3.12 g, 92%) as a yellow oil: $[\alpha]_{D}^{27}$ –61 (c 1.0, CHCl₃); IR (neat) ν_{max} 3447, 3084, 2931, 2859, 1694, 1483, 1453, 1404, 1310, 1234, 1069, 996, 926, 772 $\rm cm^{-1};\ ^1H$ NMR (400 MHz, CDCl₃) δ 7.03-7.30 (5H, m), 6.78 (1H, s), 6.70 (1H, br s), 6.08 (1H, m), 5.88-6.02 (2H, m), 5.68-5.87 (1H, m), 5.41 (1H, d, I = 17.2), 5.12–5.36 (5H, m), 4.70 (1H, m), 4.62 (2H, m), 4.51 (1H, dd, J = 12.6, 5.5 Hz), 4.28–4.47 (5H, m), 4.14 (2H, m), 3.99 (1H, m), 3.80-3.92 (1H, m), 3.74 (6H, s), 3.65 (1H, m), 3.39 (1H, m), 3.13 (1H, m), 2.83 (2H, m), 2.54 (1H, m), 2.26 (3H, s), 2.20 (3H, s); ¹³C NMR (100 MHz, CDCl₃) δ 156.8, 149.6, 149.5, 149.0, 148.4, 138.5, 134.33, 134.27, 132.7, 131.7, 130.3, 128.1, 127.4, 127.3, 126.3, 125.4, 117.8, 117.2, 116.8, 73.6, 73.4, 73.1, 72.9, 66.6, 66.1, 60.1, 57.5, 55.1, 54.1, 34.5, 30.1, 23.5, 20.2, 15.8, 15.6; HRMS (ESI-TOF) m/z 699.3643 [M + H]⁺ (calcd for C₄₁H₅₁N₂O₈, 699.3645).

Compound 27. To a stirred solution of oxalyl chloride (0.42 mL, 4.86 mmol) in CH₂Cl₂ (20 mL) was added a solution of DMSO (0.70 mL, 9.72 mmol) in CH₂Cl₂ (1 mL) at -78 °C. The mixture was stirred for 20 min, and alcohol 26 (1.70 g, 2.43 mmol) in a solution of CH_2Cl_2 (4 mL) was added. The mixture was stirred at -78 °C for 1.5 h, and triethylamine (2.70 mL, 19.44 mmol) was added dropwise at -78 °C. The mixture was stirred at -78 °C for 30 min and allowed to warm to 0 °C. The reaction was quenched with 40 mL of water. The aqueous layer was extracted with CH_2Cl_2 (3 × 60 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, concentrated, and dried under vacuum. The residue was dissolved in CH2Cl2 (25 mL), and trimethylsilyl cyanide (TMSCN, 0.92 mL, 7.29 mmol) and zinc chloride (ZnCl₂, 0.5 N in THF, 15 mL, 7.29 mmol) were added sequentially at room temperature. The mixture was stirred for 3 h, and water (30 mL) was added. The resulting mixture was extracted with CH_2Cl_2 (3 × 60 mL). The combined organic extracts were dried over anhydrous Na2SO4, filtered, and concentrated. The residue was purified by flash CC on silica gel (10% EtOAc in hexanes) to provide aminonitrile 27 (1.49 g, 87% for two steps) as a yellow oil: $[\alpha]^{27}_{D}$ -45 (c 1.0, CHCl₃); IR (neat) ν_{max} 2962, 2931, 2861, 1707, 1486, 1416, 1317, 1263, 1234, 1110, 1018, 929, 738 cm $^{-1};~^{1}\text{H}$ NMR (400 MHz, CDCl₃) δ 7.20–7.37 (5H, m), 6.68 (1H, s), 6.62 (1H, d, J = 4.4 Hz), 6.05-6.28 (2H, m), 5.88 (1H, m), 5.45 (3H, m), 5.27 (3H, m), 5.17 (1H, m), 4.75 (1H, m), 4.47-4.70 (6H, m), 4.40 (2H, m), 4.32 (1H, dd, J = 4.6, 12.2 Hz), 4.23 (1H, br d, J = 7.8 Hz), 3.79 (3H, d, J = 5.7 Hz), 3.73 (3H, s), 3.48 (1H, m), 3.21 (1H, br d, J = 11.8 Hz), 3.10 (1H, td, J = 18.0, 8.4 Hz), 2.78–2.92 (3H, m), 2.24 (3H, s), 2.19 (3H, s), 2.07 (1H, m); 13 C NMR (100 MHz, CDCl₃) δ 148.11, 148.06, 147.8, 138.45, 138.42, 134.57, 134.51,

134.20, 134.16, 132.6, 132.5, 131.65, 131.60, 131.49, 131.15, 131.13, 131.11, 130.9, 130.8, 128.4, 127.6, 127.3, 125.5, 125.1, 124.9, 124.8, 124.5, 124.3, 118.1, 117.7, 117.6, 117.44, 117.39, 117.3, 117.2, 77.4, 77.1, 76.8, 74.1, 73.9, 73.7, 66.6, 66.3, 61.1, 60.3, 60.2, 60.0, 58.0, 57.97, 57.04, 57.01, 50.5, 50.0, 49.7, 48.9, 31.9, 31.8, 30.0, 15.91, 15.89, 15.7; HRMS (ESI-TOF) m/z 706.3490 [M + H]⁺ (calcd for C₄₂H₄₈N₃O₇, 706.3492).

Compound 28. To a solution of 27 (1.47 g, 2.08 mmol) in dry CH₂Cl₂ (21 mL) were sequentially added AcOH (1.9 mL, 33.28 mmol), Pd(PPh₃)₄ (0.96 g, 0.83 mmol), and Bu₃SnH (3.4 mL, 12.5 mmol) at room temperature under an argon atmosphere. After stirring for 1 h, the reaction was quenched with 50 mL of 10% aqueous NaHCO₃ and then diluted with 60 mL of CH₂Cl₂. The resulting layers were separated, and the aqueous phase was extracted with CH_2Cl_2 (2 \times 50 mL). The combined organic layer was dried with Na₂SO₄ and filtered, and the solvent was evaporated in vacuo. The crude product was separated by CC on silica gel to give the crude triol product as a yellow oil. The impure triol was dissolved in CH₃CN/THF (3:1, 18 mL), and formalin solution (37% aqueous HCHO, 1.34 mL, 17.9 mmol) was added at room temperature. After stirring for 15 min, solid sodium cyanoborohydride (NaBH₃CN, 0.17 g, 2.69 mmol) was added, and the solution was stirred at room temperature for another 15 min. Acetic acid (0.20 mL, 3.58 mmol) was added dropwise, and the resulting mixture stirred at room temperature for another 1 h. The solution was partitioned between CH2Cl2 (100 mL) and saturated aqueous NaHCO₃ (30 mL), and the aqueous layer was further extracted with EtOAc (2×50 mL). The combined organic layer was dried over Na2SO4 and concentrated, and the residue was purified by flash CC on silica gel (20% EtOAc in hexanes) to afford 28 (1.05 g, 91% for two steps) as a colorless oil: $[\alpha]_{D}^{25}$ -10 (c 1.5, CHCl₃); IR (neat) $\nu_{\rm max}$ 3408, 2927, 2855, 1621, 1586, 1499, 1457, 1419, 1317, 1236, 1101, 1071, 997, 737 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.20-7.33 (5H, m), 6.42 (1H, s), 6.41 (1H, s), 6.04 (1H, s), 5.80 (1H, s), 4.43 (1H, d, J = 12.1 Hz), 4.37 (1H, d, J = 2.2 Hz), 4.33 (1H, d, J = 12.1 Hz), 4.27 (1H, dd, J = 8.3, 2.9 Hz), 4.08 (1H, d, J = 1.9 Hz), 3.75 (3H, s), 3.72 (3H, s), 3.51 (1H, dd, J = 8.9, 3.1 Hz), 3.29 (1H, dt, J = 11.9, 2.5 Hz), 3.23 (1H, br d, J = 7.8 Hz), 2.99 (1H, t, J = 8.7 Hz), 2.91 (1H, dd, J = 17.8, 8.0 Hz), 2.79 (1H, dd, J = 15.1, 1.7 Hz), 2.59 (1H, d, J = 17.7 Hz), 2.27 (6H, s), 2.21 (3H, s), 2.12 (1H, dd, J = 14.5, 12.2 Hz); 13 C NMR (100 MHz, CDCl₃) δ 146.4, 145.1, 143.6, 142.4, 138.3, 132.4, 131.6, 128.8, 128.2, 128.1, 127.4, 127.3, 120.8, 120.6, 118.9, 118.0, 117.1, 76.8, 73.2, 61.9, 60.7, 60.6, 57.5, 56.9, 56.8, 55.5, 41.6, 32.0, 25.4, 15.7, 15.6; HRMS (ESI-TOF) m/z 556.2813 [M + H]⁺ (calcd for C33H38N3O5, 556.2811).

Compound 29. To a cooled (-78 °C) solution of aminonitrile 28 (0.44 g, 0.79 mmol) in 30 mL of CH₂Cl₂ was added BCl₃ (1 N in CH_2Cl_2 , 4.0 mL, 3.96 mmol) at -78 °C. The mixture was stirred -78°C for 1 h, and CH₂Cl₂ (20 mL) and saturated aqueous NaHCO₃ (20 mL) were added slowly in sequence. The layers were separated, and the aqueous layer was extracted with CH_2Cl_2 (50 mL \times 3). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash CC on silica gel (EtOAc) to provide alcohol 29 (0.35 g, 94%) as a pale yellow oil: $[\alpha]_{D}^{25}$ +15 (c 0.5, CHCl₃); IR (neat) ν_{max} 3417, 3220, 2927, 2850, 1717, 1579, 1499, 1454, 1413, 1236, 1145, 1101, 1064, 804 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.49 (1H, s), 6.43 (1H, s), 5.91 (1H, s), 5.83 (1H, s), 4.15 (1H, d, J = 1.9 Hz), 4.11 (1H, t, J = 3.4 Hz), 4.06 (1H, d, J = 2.2 Hz), 3.74 (3H, s), 3.73 (3H, s), 3.62 (1H, dt, J = 10.9, 3.2 Hz), 3.44 (1H, dd, J = 10.3, 3.2 Hz), 3.39 (1H, m), 3.35 (1H, br d, J = 7.8 Hz), 3.10 (1H, dd, J = 18.1, 7.8 Hz), 2.79 (1H, dd, J = 15.4, 2.5 Hz), 2.50 (1H, d, J = 18.1 Hz), 2.35 (3H, s), 2.24 (3H, s), 2.22 (3H, s), 2.14 (1H, dd, *J* = 15.1, 12.3 Hz), 1.91 (1H, dd, *J* = 9.6, 3.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 146.8, 145.0, 143.7, 143.2, 132.0, 130.5, 129.2, 128.9, 121.1, 121.0, 118.4, 118.1, 116.9, 64.2, 60.9, 60.8, 60.5, 58.3, 57.1, 56.8, 55.6, 41.9, 32.0, 25.9, 15.9, 15.8; HRMS (ESI-TOF) m/z 488.2161 [M + Na]⁺ (calcd for C₂₆H₃₁N₃O₅Na, 488.2161).

(–)-Jorunnamycin A (1). To a solution of 29 (0.23 g, 0.49 mmol) in CH₃CN (4.9 mL) was added salcomine (0.16 g, 0.49 mmol) at room temperature, and the dark suspension was stirred under an O_2 atmosphere for 4 h. The mixture was filtered through cellulose

Journal of Natural Products

powder, and the filter cake was carefully washed with EtOAc. After concentration in vacuo, the residue was chromatographed on silica gel (50% EtOAc in hexanes) to give (–)-jorunnamycin A (1) (0.22 g, 91%) as a yellow oil: $[\alpha]^{25}_{D}$ –260 (*c* 1.0, CHCl₃); IR (neat) ν_{max} 3631, 3447, 3015, 2945, 2853, 1653, 1557, 1449, 1376, 1310, 1189, 1077 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.17 (1H, d, *J* = 2.0 Hz), 4.07 (1H, d, *J* = 2.5 Hz), 4.03 (3H, s), 3.98 (3H, s), 3.89 (1H, d, *J* = 2.4 Hz), 3.71 (1H, dd, *J* = 11.2, 2.7 Hz), 3.48 (1H, d, *J* = 11.2 Hz), 3.41 (1H, d, *J* = 7.4 Hz), 3.16 (1H, dt, *J* = 11.2, 2.6 Hz), 2.92 (1H, dd, *J* = 17.4, 2.1 Hz), 2.82 (1H, dd, *J* = 21.0, 7.5 Hz), 2.31 (3H, s), 2.27 (1H, d, *J* = 21.0 Hz), 1.93 (6H, s), 1.42 (1H, ddd, *J* = 17.3, 11.6, 2.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 186.4, 185.5, 182.3, 181.4, 155.5, 155.4, 141.7, 141.4, 136.1, 135.6, 128.9, 128.6, 117.0, 64.2, 61.1, 61.1, 59.1, 58.0, 54.5, 54.3, 54.3, 41.6, 25.4, 21.5, 8.8, 8.7; HRMS (ESI-TOF) *m*/*z* 494.1938 [M + H]⁺ (calcd for C₂₆H₂₈N₃O₇, 494.1927).

(-)-Jorunnamycin C (2). To a solution of (-)-jorunnamycin A (1) (12 mg, 0.024 mmol) in pyridine (0.5 mL) was added propionic anhydride (64.4 μ L, 0.5 mmol) at 0 °C, and the reaction mixture was stirred at 25 °C for 3 h. The reaction mixture was diluted with water (20 mL) and extracted with CH_2Cl_2 (3 × 20 mL). The combined organic extract was washed with brine, dried, and concentrated, and the residue was purified by flash CC on silica gel (25% EtOAc in hexanes) to afford (-)-jorunnamycin C (2) (10 mg, 76%) as a yellow film: $[\alpha]^{25}{}_{\rm D}$ -89 (c 0.2, CHCl₃); IR (neat) $\nu_{\rm max}$ 3387, 2926, 2853, 1738, 1654, 1616, 1457, 1306, 1234, 956, 734 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.41 (1H, d, J = 11.2 Hz), 4.07 (1H, br s), 4.01 (1H, s), 4.01 (6H, s), 3.99 (1H, d, J = 2.4 Hz), 3.89 (1H, dd, J = 11.2, 2.4 Hz), 3.38 (1H, d, J = 7.4 Hz), 3.10 (1H, d, J = 10.6 Hz), 2.93 (1H, d, J = 17.5 Hz), 2.76 (1H, dd, J = 20.7, 7.4 Hz), 2.31 (1H, d, J = 21.0 Hz), 2.29 (3H, s), 2.11 (1H, m), 2.02 (1H, m), 1.95 (6H, s), 1.31 (1H, m), 0.95 (3H, t, J = 7.7 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 186.2, 185.4, 182.4, 180.9, 173.4, 155.6, 155.2, 142.1, 141.7, 135.4, 134.9, 128.7, 128.6, 117.0, 63.5, 61.1, 61.1, 59.0, 55.9, 54.5, 54.4, 54.2, 41.5, 27.4, 25.3, 21.2, 8.9, 8.8, 8.7; HRMS (ESI-TOF) m/z 550.2185 [M + H]⁺ (calcd for $C_{29}H_{32}N_3O_8$, 550.2189).

(-)-Jorumycin (3). (-)-Jorunnamycin A (1) (20 mg, 0.036 mmol) was dissolved in pyridine/Ac $_2O$ (2:1, 6 mL) at room temperature, and the resulting mixture was stirred for 3 h. The reaction was then concentrated under vacuum, and the crude product was chromatographed on silica gel (25% EtOAc in hexanes) to give the intermediate acetate as a yellow oil. To a mixture of the acetate intermediate in CH₃CN/H₂O (3:2, 2.5 mL) was added in one portion AgNO₃ (0.15 g, 0.90 mmol) at room temperature. The resulting mixture was stirred at 45 °C for 4 h, after which the reaction was filtered through a short Celite plug using CH₂Cl₂ as necessary to transfer the product. The filtrate was concentrated to give a residue that was subsequently dissolved in 20 mL of CH₂Cl₂ and diluted with 5 mL of H₂O. The resulting layers were separated, and the aqueous phase was extracted with CH_2Cl_2 (3 × 5 mL). The combined organic phases were dried (Na₂SO₄), filtered, and concentrated, and the crude product was purified by flash CC on silica gel (50% EtOAc in hexanes) to afford (-)-jorumycin (3) (14.3 mg, 78% for two steps) as a yellow film: $[\alpha]^{25}_{D}$ -69 (c 0.5, CHCl₃); IR (neat) ν_{max} 3452, 2929, 2853, 1740, 1653, 1617, 1558, 1454, 1309, 1232, 1084, 735 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.44 (1H, dd, J = 11.0, 2.9 Hz), 4.42 (1H, br s), 4.36 (1H, br s), 4.01 (3H, s), 3.99 (3H, s), 3.90 (1H, br s), 3.81 (1H, dd, J = 11.3, 2.8 Hz), 3.18 (1H, m), 3.16 (1H, m), 2.84 (1H, d, J = 16.3 Hz), 2.65 (1H, dd, J = 21.0, 7.7 Hz), 2.26 (3H, s), 2.24 (1H, br d, J = 20.0 Hz), 1.96 (3H, s), 1.94 (3H, s), 1.76 (3H, s), 1.30 (1H, m); ¹³C NMR (100 MHz, CDCl₃) δ 186.5, 185.9, 182.6, 181.3, 170.0, 155.6, 155.2, 141.9, 141.8, 137.2, 134.4, 128.7, 128.4, 83.0, 64.2, 61.0 (2), 57.4, 54.1, 52.7, 51.0, 41.4, 25.6, 20.6, 20.5, 8.8, 8.7; HRMS (ESI-TOF) m/z 511.2078 [M + H]⁺ (calcd for C₂₇H₃₁N₂O₈, 511.2080).

ASSOCIATED CONTENT

Supporting Information

¹H and ¹³C NMR spectra of compounds **18a**, **18b**, **19**, **20**, **22**, **24**, **25–29**, and **1–3**. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: chenxc@scu.edu.cn. Fax: (+86) 28-8541-2095.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Sichuan University Analytical and Testing Center for NMR determination. We also thank Prof. X. Feng's group for optical rotation tests. This work was supported by grants from the National Natural Science Foundation of China (Nos. 20802045 and 21172153), the National Basic Research Program of China (973 Program, No. 2012CB833200), and the Foundation of the Education Ministry of China for Returnees.

REFERENCES

(1) (a) Aune, G. J.; Furuta, T.; Pommier, Y. Anticancer Drug 2002, 13, 545–555. (b) Xing, C.; LaPorte, J. R.; Barbay, J. K.; Myers, A. G. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5862–5866. (c) Scott, J. D.; Williams, R. M. Chem. Rev. 2002, 102, 1669–1730.

(2) (a) Rinehart, K. L.; Holt, T. G.; Fregeau, N. L.; Stroh, J. G.; Keifer, P. A.; Sun, F.; Li, L. H.; Martin, D. G. *J. Org. Chem.* **1990**, *55*, 4512–4515. (b) Sakai, R.; Rinehart, K. L.; Guan, Y.; Wang, A. H.-J. *Proc. Natl. Acad. Sci. U.S.A.* **1992**, *89*, 11456–11460.

(3) (a) Cuevas, C.; Francesch, A. Nat. Prod. Rep. 2009, 26, 322–337.
(b) Molinski, T. F.; Dalisay, D. S.; Lievens, S. L.; Saludes, J. P. Nat. Rev. Drug Discovery 2009, 8, 69–85.

(4) Fontana, A.; Cavaliere, P.; Wahidulla, S.; Naik, C. G.; Cimino, G. *Tetrahedron* **2000**, *56*, 7305–7308.

(5) Charupant, K.; Suwanborirux, K.; Amnuoypol, S.; Saito, E.; Kubo, A.; Saito, N. *Chem. Pharm. Bull.* **2007**, *55*, 81–86.

(6) (a) Saito, N.; Tanaka, C.; Koizumi, Y.; Suwanborirux, K.; Amnuoypol, S.; Pummangura, S.; Kubo, A. *Tetrahedron* **2004**, 60, 3873–3881. (b) Lane, J. W.; Estevez, A.; Mortara, K.; Callan, O.; Spencer, J. R.; Williams, R. M. *Bioorg. Med. Chem. Lett.* **2006**, 16, 3180–3183. (c) Charupant, K.; Daikuhara, N.; Saito, E.; Amnuoypol, S.; Suwanborirux, K.; Owa, T.; Saito, N. *Bioorg. Med. Chem.* **2009**, 17, 4548–4558. (d) Liu, W.; Dong, W.; Liao, X.; Yan, Z.; Guan, B.; Wang, N.; Liu, Z. *Bioorg. Med. Chem. Lett.* **2011**, 21, 1419–1421. (e) Liu, W.; Liao, X.; Dong, W.; Yan, Z.; Wang, N.; Liu, Z. *Tetrahedron* **2012**, 68, 2759–2764.

(7) Yokoya, M.; Shinada-Fujino, K.; Yoshida, S.; Mimura, M.; Takada, H.; Saito, N. *Tetrahedron* **2012**, *68*, 4166–4181.

(8) For the asymmetric syntheses of (-)-jorumycin and (-)-renieramycins G and M, see: (a) Lane, J. W.; Chen, Y.; Williams, R. M. J. Am. Chem. Soc. **2005**, 127, 12684–12690. (b) Liao, X. W.; Liu, W.; Dong, W. F.; Guan, B. H.; Chen, S. Z.; Liu, Z. Z. Tetrahedron **2009**, 65, 5709–5715. (c) Wu, Y.-C.; Zhu, J. Org. Lett. **2009**, 11, 5558–5561.

(9) For the syntheses of renieramycin H, see: (a) Chan, C.; Heid, R.; Zheng, S.; Guo, J.; Zhou, B.; Furuuchi, T.; Danishefsky, S. J. J. Am. Chem. Soc. 2005, 127, 4596–4598. (b) Vincent, G.; Williams, R. M. Angew. Chem., Int. Ed. 2007, 46, 1517–1520. (c) Chen, X.; Zhu, J. Angew. Chem., Int. Ed. 2007, 46, 3962–3965. (d) Yokoya, M.; Ito, H.; Saito, N. Tetrahedron 2011, 67, 9185–9192.

(10) For the syntheses of racemic renieramycins A and G, see: (a) Fukuyama, T.; Linton, S. D.; Tun, M. M. *Tetrahedron Lett.* **1990**, *31*, 5989–5992. (b) Magnus, P.; Matthews, K. S. J. Am. Chem. Soc. **2005**, 127, 12476–12477. (c) Yokoya, M.; Shinada-Fujino, K.; Saito, N. *Tetrahedron Lett.* **2011**, *52*, 2446–2449.

(11) (a) Chen, X.; Chen, J.; Paolis, M. D.; Zhu, J. J. Org. Chem. 2005, 70, 4397–4408. (b) Vincent, G.; Lane, J. W.; Williams, R. M. Tetrahedron Lett. 2007, 48, 3719–3722. (c) Fishlock, D.; Williams, R. M. J. Org. Chem. 2008, 73, 9594–9600. (d) Liao, X. W.; Dong, W. F.; Liu, W.; Guan, B. H.; Liu, Z. Z. J. Heterocycl. Chem. 2011, 48, 414– 418. (12) (a) Fukuyama, T.; Sachleben, R. A. J. Am. Chem. Soc. **1982**, 104, 4597–4598. (b) Myers, A. G.; Schnider, P.; Kwon, S.; Kung, D. W. J. Org. Chem. **1999**, 64, 3322–3327. (c) Jin, W.; Williams, R. M. Tetrahedron Lett. **2003**, 44, 4635–4639. (d) Obika, S.; Yasui, Y.; Yanada, R.; Takemoto, Y. J. Org. Chem. **2008**, 73, 5206–5209.

(13) Chen, R.; Zhu, D.; Hu, Z.; Zheng, Z.; Chen, X. Tetrahedron: Asymmetry **2010**, 21, 39–42.

(14) (a) Kase, H.; Fujita, H.; Nakamura, J.; Hashizumi, K.; Goto, J.; Kubo, K.; Shito, K. J. Antibiot. **1986**, 39, 354–363. (b) Kaufman, T. S. J. Chem. Soc., Perkin Trans. 1 **1996**, 2497–2505.

(15) (a) Aubry, S.; Pellet-Rostaing, S.; Fenet, B.; Lemaire, M. *Tetrahedron Lett.* **2006**, 47, 1319–1323. (b) Razafindrabe, C. R.; Aubry, S.; Bourdon, B.; Andriantsiferana, M.; Pellet-Rostaing, S.; Lemaire, M. *Tetrahedron* **2010**, *66*, 9061–9066.

(16) Chen, R.; Liu, H.; Liu, X.; Chen, X. Tetrahedron 2013, 69, 3565-3570.

(17) Corey, E. J.; Gin, D. Y.; Kania, R. S. J. Am. Chem. Soc. 1996, 118, 9202–9203.

(18) (a) Martinez, E. J.; Owa, T.; Schreiber, S. L.; Corey, E. J. *Proc. Natl. Acad. Sci. U.S.A.* **1999**, *96*, 3496–3501. (b) Martinez, E. J.; Corey, E. J. Org. *Lett.* **2000**, *2*, 993–996.

(19) Martinez, E. J.; Corey, E. J. Org. Lett. 1999, 1, 75-77.

(20) Fukuyama, T.; Yang, L.; Ajeck, K. L.; Sachleben, R. A. J. Am. Chem. Soc. 1990, 112, 3712-3713.

(21) (a) Guibé, F.; M'Leux, Y. S. Tetrahedron Lett. **1981**, 22, 3591–3594. (b) Four, P.; Guibé, F. Tetrahedron Lett. **1982**, 23, 1825–1828.

(c) For a review, see: Guibé, F. Tetrahedron 1998, 54, 2967-3042.

(22) (a) Vogt, L. H., Jr.; Wirth, J. G.; Finkbeiner, H. L. J. Org. Chem. 1969, 34, 273–277. (b) Mabic, S.; Vaysse, L.; Benezra, C.; Lepoittevin, J.-P. Synthesis 1999, 1127–1134.