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Abstract: A three-step protocol for the highly diastereoselective
(>98%) synthesis of both (4R,5R)- and (4S,5S)-isocytoxazone from
D- or L-tyrosine is reported. The diastereoselection was confirmed
by X-ray crystallography. This synthesis is currently the highest
yielding approach towards these enantiomerically pure biologically
active oxazolidinones.
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During the course of screening for chemical immunomod-
erators from microbial metabolites, Osada found that an
actinomycete strain (RK95-31) produced cytoxazone 1
(Figure 1), an oxazolidinone that interferes with cytokine
IL-4, IL-10 and IgG production.1 Several groups have
synthesized (–)-cytoxazone 1 and (+)-epi-cytoxazone 2
(Figure 1),2 and Šunjic has described the racemic synthe-
ses of all of the stereoisomers and cogeners of isocytox-
azone 3 (Figure 1); enantiomerically pure samples were
isolated by preparative HPLC.3 A theoretical study on the
absolute configurations of 1 and 3 has been carried out by
Berova, as have extensive X-ray crystallographic studies.4

Rozwadowska and Tomczak have recently reported the
synthesis of (4S,5S)-(–)-isocytoxazone (3; Figure 1),5 but
the synthesis required seven synthetic steps, the last of
which afforded a mixture of regioisomers in an overall
yield of 8.1%. Prompted by these studies after reporting
several routes to 1,3-amino diols6 we herein report our ef-
forts in this area, utilizing a rapid highly diastereoselec-
tive three-step process from Boc-protected D- or L-
tyrosine.

Our original strategy towards (4S,5S)-isocytoxazone was
similar to that of Rozwadowska, using diazotization as a
key reaction step (Scheme 1).

Hydrogenation of the nitro group in the formate-protected
amino diol 4 to give the corresponding amino compound
5 proved highly successful (99% yield). The subsequent
diazotization reaction, however, was extremely poor, giv-
ing at best 15% yield in our hands (the reaction has previ-
ously been reported to give yields of up to 35%7). Further
manipulation of product 6 afforded the 4-hydroxyphenyl-
1,3-dioxane 7. Methylation, after some experimentation,
was achieved with caesium carbonate and dimethyl sul-
fate, producing the 4-methoxyformate 8, but separation
from by-products brought through from the initial diazo-
tization reaction proved difficult (Scheme 2). Before this
approach was abandoned, an interesting reaction reported
by Quin and Macdiarmid was attempted, whereby direct
conversion from an amine group to a methoxy group is
possible using isoamyl nitrite in methanol (Scheme 3).8

Unfortunately, when using our substrate, this led to a
complex mixture of products, including loss of the for-
mate protecting group.

Scheme 1 Retrosynthetic route towards (4S,5S)-isocytoxazone
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Scheme 2 Initial synthesis of the p-methoxyformate 8. Reagents
and conditions: (i) H2/Pd, EtOH, r.t., 24 h, 99%; (ii) (a) NaNO2,
H2SO4; (b) pH 6, D, 15%; (iii) 2,2-DMP, acetone, CSA, r.t., 4 h, 72%;
(iv) Cs2CO3, Me2SO4, CH2Cl2, 48 h, 72%.

Scheme 3 Attempted direct incorporation of the methoxy group
using Quin and Macdiarmid’s method. Reagents and conditions: (i)
(a) H2SO4, MeOH, (CH3)2CHCH2CH2ONO, 0 ºC, 3 h; (b) D, 1 h.

We next reasoned that (4S,5S)-isocytoxazone 3 could be
prepared from commercially available Boc-D-tyrosine
(Scheme 4).

We initially aimed to prepare the enantiomer of 3 (4R,5R)-
isocytoxazone ent-3 from the cheaper Boc-L-tyrosine
(Schemes 5– 7). Methylation of the acid and phenol com-
ponents within Boc-L-tyrosine with potassium hydroxide
and iodomethane afforded 10,9 the required precursor to
11.

Following the work of Ohfune,10 the benzylic position of
10 was oxidized with potassium persulfate (K2S2O8) and
catalytic copper sulfate to form the oxazolidinone 1111 in
a highly diastereoselective manner (diastereomeric ratio

98% R at C3) (Scheme 6).

The authors suggest that this high selectivity in cyclic car-
bamate formation arises because the reaction proceeds via
the more stable conformer of benzyl cation intermediate
10b. The conformer 10a is more strained than 10b due to
steric interaction between the ester group and the ortho
hydrogen atom. Intramolecular trapping of this cation by
a carboxyl oxygen and subsequent release of the tert-butyl

cation, which is believed to be more stable than the ben-
zylic cation of 10, is thought to be a driving force for the
reaction. This was supported by Ohfune’s observation that
only poor yields were obtained from compounds contain-
ing other amino protecting groups, such as the Cbz group.
Confirmation of the stereoselectivity was achieved from
the X-ray crystal structure of compound 11, as shown in
Figure 2.

Figure 2 X-ray crystal structure of 1112

Although this reaction is highly stereoselective, some
problems were encountered during the synthesis. Yields
tended to vary on scale-up of the reaction. Initially, the re-
action on 4 mmol of substrate afforded 50% of the desired
product (a good yield given the reported yield of 55%),
but on increasing the scale to 26 mmol a drop in yield to
40% was observed. Optimum conditions were found
when carrying the reaction out on a 16 mmol scale, a 52%
yield of product was obtained. Attempts to drive the reac-
tion to completion proved fruitless. Generally, increased
reaction times and temperatures decreased the overall
yield due to generation of higher levels of the side product
4-methoxy benzaldehyde (a product of over-oxidation).10

Milder reaction conditions resulted in no product forma-
tion.

In order to afford the desired (4R,5R)-isocytoxazone ent-
313 the carbamate 11 was then reduced; this was initially
achieved with lithium aluminium hydride, but sodium
borohydride provided a superior yield (91% compared to
77%), probably due to the ease of workup associated with
the sodium borohydride reactions (Scheme 7). (4S,5S)-
Isocytoxazone 3 was prepared by repeating this optimised
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Scheme 4 A revised retrosynthetic route towards (4S,5S)-isocytoxazone from Boc-D-tyrosine
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Scheme 5 Formation of Boc-protected, dimethylated L-tyrosine 10.
Reagents and conditions: (i) MeI (2.2 equiv), KOH (2.2 equiv), DMF,
0 ºC to r.t., 3.5 h, 74%.
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sequence using D-tyrosine as the starting material, in an
overall yield of 33%.14

In conclusion we have  reported here the highly diastereo-
selective synthesis of (4R,5R)-isocytoxazone ent-3 and
(4S,5S)-isocytoxazone 3 in just three synthetic steps from
D- or L-Boc-tyrosine, and confirmation of the stereoselec-
tion by X-ray crystallography. This is the shortest and
most high yielding approach (35% overall yield compared
to 8.1% overall yield reported previously) currently
known for this class of biologically active oxazolidinones. 

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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Scheme 6 Ohfune’s cyclic carbamate formation. Reagents and conditions: K2S2O8, CuSO4, H2O–MeCN (1:1), 70 °C, 3 h, 52%.
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