Carbohydrate Research 354 (2012) 6-20

Contents lists available at SciVerse ScienceDirect

Carbohydrate Research

journal homepage: www.elsevier.com/locate/carres

An efficient and recyclable catalyst for the cleavage of *tert*-butyldiphenylsilyl ethers

Shiqiang Yan^a, Ning Ding^b, Wei Zhang^b, Peng Wang^a, Yingxia Li^{b,*}, Ming Li^{a,*}

^a Key Lab of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China ^b School of Pharmacy, Fudan University, Shanghai 201203, China

ARTICLE INFO

Article history: Received 12 December 2011 Received in revised form 14 February 2012 Accepted 22 February 2012 Available online 1 March 2012

Keywords: Triflic acid tert-Butyldiphenylsilyl ethers Supported catalysis Chemoselectivity

ABSTRACT

An efficient, chemoselective, and environment-friendly method for the deprotection of *tert*-butyldiphenylsilyl ethers mediated by triflic acid supported on silica gel is reported. A wide range of *tert*-butyldiphenylsilyl ethers derived from carbohydrate and saponin residues can be smoothly cleaved in the presence of various types of other protecting groups in good to excellent yields in acetonitrile. This heterogeneous reaction does not require aqueous workup, and the supported catalyst can be readily recycled.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Protection and deprotection strategies are very common tactics in multi-step synthesis of natural or non-natural products. Efficient protection and then deprotection of hydroxyl group have become increasingly crucial due to the abundance of this group in natural products. As far as hydroxyl group protection is concerned, silyl ether is one of the most popular.¹ Since its introduction by Hanessian in 1975, tert-butyldiphenylsilyl (TBDPS) group has become a choice of protecting groups for hydroxyl functionality because of its easy introduction and its tolerance to a variety of chemical conditions.² This trait is extraordinarily suitable in the synthesis of complex oligosaccharides, because less hindered silyl ethers such as TBDMS, TES, and TMS have restricted stability under typical conditions for deacylation, deacetalization, and glycosylation. Furthermore, the use of TBDPS has been extended to the protection of phenols, amines, carboxylic acids, amides, and other functional groups.³

Most typically, silyl ethers are removed by fluoride anion by taking advantage of its hard-hard interaction with silicon,⁴ and the most common source of fluoride ions is tetrabutylammonium fluoride (TBAF). Unfortunately, the strong basicity of fluoride, particularly under anhydrous conditions, can affect base-sensitive groups. To circumvent this problem, a vast array of acidic, neutral, basic, reducing, and oxidizing reagents have been developed for

the deprotection of TBDMS over the past years.⁵ Nevertheless, fewer options have come to serve the removal of TBDPS ethers as a consequence of their great bulkiness and prominent stability.⁶ What is worse, most of the known procedures suffer from the drawback of prolonged reaction time,^{6b,d} drastic reaction conditions,^{6a,f} a large excess of reagents,^{6c,e} use of toxic reagent^{6g} or expensive ones unsuitable for large-scale preparation. In addition, among these methods, the comprehensive discussion of chemoselective cleavage of TBDPS ethers has so far been described in sporadic publications.^{6c,f,h} Therefore, the development of a mild, efficient, and chemoselective method for the cleavage of TBDPS ethers would be of great value for organic synthesis.

Possessing the merits over homogeneous catalysts such as stability, insensitivity toward air and moisture, ease of handling, recovery and regeneration, solid supported acid catalysts,⁷ regarded as green catalyst,⁸ are playing a more and more important role in modern organic synthesis. Acidic or neutral substances such as silica gel, active carbon, and acidic ion-exchange resin are suitable supports, and the most often used is silica gel.⁹

Triflic acid has been used as a catalyst in a vast array of organic reactions. However, as a fuming and highly corrosive liquid, difficulties in storage, transportation, handling, and waste disposal have greatly limited the application of triflic acid. Following the urgent demand of 'green chemistry', triflic acid supported on functionalized silica has been reported,¹⁰ while the study of triflic acid supported on unmodified chromatographic silica gel is still very rare.¹¹

Considering all the situations mentioned above, herein, we described a facile, chemoselective, and environment-benign method

^{*} Corresponding authors. Tel.: +86 21 51980127 (Y.L.); +86 532 82032150 (M.L.). E-mail addresses: liyx417@fudan.edu.cn (Y. Li), lmsnouc@ouc.edu.cn (M. Li).

^{0008-6215/\$ -} see front matter \odot 2012 Elsevier Ltd. All rights reserved. doi:10.1016/j.carres.2012.02.021

for the rapid direct cleavage of TBDPS ethers that involves triflic acid adsorbed on unmodified chromatographic silica gel (TfOH- SiO_2) as a catalyst without any additional reagent.

2. Results and discussion

To find optimized conditions under which desilvlation was realized with TfOH-SiO₂, we took TBDPS ether **1** as a model to investigate the effects of solvents, temperature, and amount of catalyst on the reaction. The results were summarized in Table 1. At first, using DCM as solvent in the presence of 10 mol % TfOH-SiO₂ at 50 °C. we obtained the alcohol **2** in 24% yield after 2 days (Table 1, entry **1**). Substitution of THF for DCM led to a yield increase up to 46% (Table 1, entry 2). Treatment of 1 with TfOH-SiO₂ in MeOH afforded 2 in 85% yield in a shorter reaction time (24 h) (Table 1, entry 3). Importantly, desilvlation of 1 was further accelerated in MeCN, which resulted in 2 in 93% yield in 30 min (Table 1, entry 4). Lower temperature (Table 1, entries 5 and 6) and decreasing amount of TfOH–SiO₂ (Table 1, entries 7 and 8) furnished 2 in prolonged reaction time and in lower yield. Thus, 10 mol % of TfOH-SiO2 at 50 °C in acetonitrile emerged as an optimized protocol for removal of TBDPS group on compound 1.

To test the scopes and limitations of the reaction, a wide range of TBDPS ethers deriving from various carbohydrates were treated with 10 mol % of TfOH-SiO_2 at 50 $^\circ\!C$ in acetonitrile, and the results were listed in Table 2. Under the optimitical conditions, the respective silvl group of propargoyl, p-nitrophenoyl, phenoyl, and pmethoxyphenoyl 2,3,4-tri-O-benzoyl-6-O-tert-butyldiphenylsiyl- β -D-gluco-pyranosides **3**, **5**, **7**, and **9** was removed to furnish the corresponding products 4, 6, 8, and 10 in excellent yields (Table 2. entries **2–5**). This method was further extended to mannopyranosides, galactopyranosides, and 2-amio-2-deoxy-glucopyranosides bearing a TBDPS protecting group at 6 position (Table 2, entries 7-14). To our delight, under the conditions TBDPS groups were readily removed with Ac, Bz, Piv, Ms, and Bn intact. Lactosides 29 and 31 with two TBDPS groups were exposed to the protocol to furnish the corresponding dialcohols 30 and 32 in 70% and 78% yields, respectively in 3 h (Table 2, entries 15 and 16).

It should be noted that the migration of levulinoyl or acetyl group was observed under our conditions. For example, **34** and **36** were obtained in 71% and 79% yield, respectively, when **33** and **35** were exposed to our conditions, which indicated that the migration of Lev or Ac from 4-OH to 6-OH occurred (Table 2, entries **17** and **18**). In addition, we found that the regioselective cleavage of the primary TBDPS ether was possible in the presence of the secondary TBDPS ether according to our procedure. Thus, primary alcohol **38** was obtained from **37** in 88% yield (Table 2,

OTBDPS

Table 1

Optimization of the reaction conditions

entry **19**). However, it should be pointed out that secondary TBDPS ether could also be cleavaged, if the reaction time was prolonged and the amount of the catalyst was increased (Table 2, entry **20**).

In conjunction with saponin derivatives synthesis in our laboratory,¹² we prepared a variety of TBDPS ethers arising from sapogenins (Table 3). With these compounds in hand, their deprotection following our methodology proceeded smoothly, which produced the corresponding parent hydroxyl compounds in 0.5–1.5 h in 78–94% yields. It is worthy to mention that both the carbonyl group (Table 3, entry 1) and the double bonds (Table 3, entries 2, **3**, **5**, and **9**) were compatible to the experimental conditions, which demonstrated that our methodology has advantages over the documented procedures, especially, those based on bromine reagents. The TBDPS ester was also smoothly deprotected under our conditions (Table 3, entry **9**).

The TfOH–SiO₂ could be easily separated from the reaction mixture by simple filtration and was reusable up to three times without any decrease in activity. The deprotection of **1** with TfOH–SiO₂ after drying under vacuum produced **2** in about 90% yield (Table 4).

3. Conclusion

In conclusion, we have developed a new, efficient, and selective protocol for the deprotection of TBDPS ethers mediated by TfOH–SiO₂ in acetonitrile. It was found that a wide variety of other protecting groups survived under the present experimental conditions. TfOH–SiO₂ catalyst was easily handled and was readily reused without any decrease in activity, which demonstrated that TfOH–SiO₂ was a novel green catalyst, should find its own place in the synthesis of oligosaccharides and complex natural products.

4. Experimental procedures

4.1. General methods

Products were characterized by comparison with authentic samples and by spectroscopic data (¹H NMR spectra, ¹³C NMR spectra, HRMS spectra). The NMR spectra were recorded on a Bruker Avance DPX 400 MHz instrument. Chemical shifts are reported in parts per million (ppm). For ¹H NMR spectra (CDCl₃), the residual solvent peak was used as the internal reference (7.26 ppm), whereas the central solvent peak as the reference (77.03 ppm) for ¹³C NMR spectra (CDCl₃). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad singlet), coupling constants (Hz) and integration. Mass spectra were recorded on an Agilent technologies 5973 network mass selective detector (MSD) operating at an ionization potential

Entry	Solvent	Equivalent (mol %)	Temperature (°C)	Time (h)	Yield ^a (%)
1	DCM	10	50	48	24
2	THF	10	50	48	46
3	MeOH	10	50	24	85
4	MeCN	10	50	0.5	93
5	MeCN	10	40	5	82
6	MeCN	10	20	24	49
7	MeCN	5	50	8	78
8	MeCN	2	50	24	41

TfOH-SiO₂ (x mol%)

^a Yield refers to the isolated product.

$TfOH\mathchar`-SiO_2$ catalyzed cleavage of TBDPS ethers derived from sugar derivatives $\mathchar`-$	Table 2	
	$TfOH\mathchar`-SiO_2$ catalyzed cleavage of TBDPS ethers derived from sugar derivative	es ^a

Entry	Substrate	Product	Time (h)	Yield ^b (%)
1	BZO BZO BZO BZO BZO O BZO D D D D D D D D D D D D D D D D D D D	BZO O Z	0.5	93
2	BZO BZO BZO BZO BZO BZO BZO 3	BZO OH BZO A	0.5	91
3	BZO DOPNP 5	BZO OPNP 6	0.5	90
4	BZO OPh BZO DPh	BZO OPh 8 BZO BZO	0.5	92
5	BZO BZO OMP 9	BZO OMp 10	0.5	94
6	MSO BZO BZO MBDPS 0 0 0 0 0 11	MsO BzO BzO BzO Mp 12	0.5	83
7	TBDPSO BZO BZO OMp	BZO BZO OMp	0.5	96
8	TBDPSO HO BZO OMp 15	HO BZO OMp 16	0.5	91
9	TBDPSO OBZ BZO 0 17 BZO SEt	HO OBZ BZO SEt 18	0.5	93
10	TBDPSO OAc Pivo 0 19 Aco 0 0Me	HO OAC PivO 0 20 OMe	0.5	89
11	BZO OBZ OBZ OBZ OBZ	BZO OBZ OH OBZ STOI 22	0.5	95
12	BnO OMp 23	BnO OMp 24	0.5	89
13	BnO OTBDPS BnO SEt 25 BnO	BnO SEt 26	0.5	96
14	BzO OTBDPS BzO OMp 27 Nphth 27	BzO OH BzO OMp 28	0.5	88
15	BZO	BZO BZO BZO BZO OMp 30	3.0	70
16	BZO BZO BZO BZO BZO BZO BZO BZO BZO BZO	BZO BZO BZO BZO BZO SPh 32	3.0	78
17	Levo OTBDPS BZO OMp BZO	HO BZO OMP 34	3.0	71
18	Aco OIBDPS Aco OMp 35 Nphth	HO COAC ACO OMp 36	2.0	79

Table 2 (continued)

Entry	Substrate	Product	Time (h)	Yield ^b (%)
19	TBDPSO TBDPSO ACO OMe	TBDPSO ACO OMe	0.2	88
20	TEDPSO OAc OTEDPS 39	HO OAc 40	2.0	72 ^c

^a Reactions were conducted with the starting material of 1.0 mmol.

^b Yield refers to the pure isolated product.

^c 30 mol % TfOH-SiO₂ was used.

of 70 eV. Thin-layer chromatography (TLC) was performed on silica gel HF with detection by charring with 5% (v/v) H_2SO_4 in MeOH or by UV detection. Column chromatography was conducted by elution of a column of silica gel (200–300 mesh) with EtOAc/petroleum ether (bp 60–90 °C) as the eluent. Solns were concd at a temperature <60 °C under diminished pressure.

4.2. General procedure for the preparation of triflic acid immobilized on silica gel (TfOH–SiO₂)¹¹

To a suspension of silica gel (10 g, mesh no. 300-400) in Et₂O (40 mL) was added TfOH (3.06 g, 20 mmol) and the mixture was stirred magnetically for 30 min at room temperature. Et₂O was removed under reduced pressure (rotary evaporator) and the residue heated at 100 °C for 24 h under vacuum to afford TfOH–SiO₂ (2 mmol/g) as a free-flowing powder.

4.3. Procedure A: Typical experimental protocol for the protection of saponin OH with TBDPS ethers

To a solution of hydroxyl saponin compound (2.0 mmol) in anhydrous DMF (20 mL) was added at 0 °C imidazole (0.34 g, 5.0 mmol), and the mixture was stirred for 15 min. Subsequently was added TBDPSCl (1.02 mL, 4.0 mmol), and the resulting mixture was stirred at 50 °C overnight. The reaction mixture was quenched with saturated aqueous NH₄Cl, and the mixture was stirred for an additional 30 min at room temperature. The solvent was evaporated in vacuo, the residue was diluted with ethyl acetate, and the organic layer was washed with water and brine and was dried over Na₂SO₄. The solvent was removed in vacuo followed by flash column chromatography.

4.4. Procedure B: Typical experimental protocol for the synthesis of 2,3,4-tri-O-benzoyl-6-O-tert-butyldiphenylsiyl anomeric protected sugars

TBDPSCl (0.55 mL, 2.2 mmol) was added to a stirred mixture of anomeric protected sugar (1.5 mmol) and imidazole (306 mg, 4.5 mmol) in dry Py (10 mL) at room temperature under Ar atmosphere, and the mixture was then stirred at the same temperature followed by TLC. After the completion of the reaction, benzoyl chloride (1.05 mL, 9.0 mmol) was added dropwise to the reaction mixture at 0 °C, and then catalytic DMAP added. The reaction was monitored by TLC, after completion, methanol (2 mL) added and the mixture concentrated under vacuum, then the residue diluted with CH₂Cl₂ (50 mL). The organic layer was washed sequentially with 1 M HCl (10 mL \times 2) and then brine (20 mL \times 2) and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum, and the residue was purified by flash column chromatography.

4.5. Procedure C: Typical experimental protocol for the deprotection of TBDPS ethers catalyzed by TfOH–SiO₂

To a solution of TBDPS ether (1.0 mmol) in CH₃CN (5.0 mL) was added TfOH–SiO₂ (50 mg, 0.1 mmol). The heterogeneous mixture was stirred at 50 °C and the reaction was followed by TLC. After completion, the mixture was filtered and washed with CH₃CN. The combined filtrate was concentrated under vacuum and the residue was purified by column chromatography to obtain the pure product.

4.6. Propargyl 2,3,4-tri-O-benzoyl-6-O-*tert*-butyldiphenylsiyl-α-D-glucopyranoside (1)

Product **1** was obtained from propargyl α -D-glucopyranoside (327 mg, 1.5 mmol) following the procedure B. The pure product 1 was obtained by column chromatography on silica gel as a white foam (934 mg, 81%): $[\alpha]_D^{25}$ +75.0 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 8.01 (m, 2H, Ar-*H*), 7.90 (m, 4H, Ar-*H*), 7.74–7.65 (m, 2H, Ar-H), 7.61 (m, 2H, Ar-H), 7.53 (m, 2H, Ar-H), 7.46-7.20 (m, 13H, Ar-H), 6.14 (t, J = 10.1 Hz, 1H, H-3), 5.67 (t, J = 10.0 Hz, 1H, H-4), 5.59 (d, J = 3.6 Hz, 1H, H-1), 5.33 (dd, J = 10.2, 3.7 Hz, 1H, H-2), 4.35 (m, 2H, -CH₂C=CH), 4.24-4.15 (m, 1H, H-5), 3.94-3.77 (m, 2H, H-6), 2.34–2.28 (m, 1H, -CH₂C=CH), 1.05 (s, 9H, -C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ: 165.82 (2) (COPh), 165.06 (COPh), 135.59 (2), 135.51 (2), 133.26, 133.16, 132.98, 132.94, 129.91 (2), 129.78 (2), 129.68 (2), 129.60, 129.57, 129.28, 129.19, 129.12, 128.34 (2), 128.30 (2), 128.22 (2), 127.61 (2), 127.57 (2) (Ar-C), 94.46 (C-1), 78.31, 75.10, 71.80, 71.04, 70.68, 69.10, 62.56, 54.98, 26.64 (3) (-C(CH₃)₃), 19.13; HRMS calcd for C₄₆H₄₄O₉SiNa (M+Na)⁺: 791.2652, found: 791.2667.

4.7. Propargyl 2,3,4-tri-O-benzoyl-α-D-glucopyranoside (2)¹³

Product 2 was obtained from 1 (769 mg, 1.0 mmol) following the procedure C. The pure product 2 was obtained by column chromatography on silica gel as a white foam (493 mg, 93%): $[\alpha]_{D}^{25}$ +61.3 $(c \ 0.5 \ CHCl_3); {}^{1}H \ NMR (400 \ MHz, CDCl_3) \delta: 8.02-7.95 \ (m, 4H, Ar-H),$ 7.91–7.86 (m, 2H, Ar-H), 7.53 (ddd, J = 10.1, 8.8, 4.4 Hz, 2H, Ar-H), 7.46–7.36 (m, 5H, Ar-H), 7.30 (t, J = 7.7 Hz, 2H, Ar-H), 6.24 (t, J = 10.0 Hz, 1H, H-3), 5.58 (d, J = 3.7 Hz, 1H, H-1), 5.52 (t, J = 9.9 Hz, 1H, H-4), 5.34 (dd, J = 10.3, 3.8 Hz, 1H, H-2), 4.36 (dd, *J* = 2.3, 1.2 Hz, 2H, -CH₂C=CH), 4.16-4.10 (m, 1H, H-5), 3.88-3.80 (m, 1H, H-6a), 3.77-3.69 (m, 1H, H-6b), 2.69 (dd, J = 8.6, 5.7 Hz, 1H, -OH), 2.37 (t, J = 2.4 Hz, 1H, -CH₂C=CH); ¹³C NMR (100 MHz, CDCl₃) *b*: 166.39 (COPh), 165.76 (2) (COPh), 133.74, 133.37, 133.18, 129.99 (2), 129.90 (2), 129.65 (2), 129.10, 128.98, 128.52 (2), 128.40 (2), 128.30 (2) (Ar-C), 95.19 (C-1), 78.36, 75.30, 71.59, 70.49, 69.94, 69.41, 60.86, 55.71; HRMS calcd for C₃₀H₂₆O₉Na (M+Na)*: 553.1475, found: 553.1467.

Table 3	
TfOH-SiO ₂ catalyzed cleavage of TBDPS e	ethers derived from saponin derivatives ^{a,b}

Entry	Substrate	Product	Time (h)	Yield ^c (%)
1	TBDPSO 41	HO 42	0.5	88
2	TBDPSO 43	HO HO	0.5	94
3	TBDPSO 45	HO HO	0.5	93
4	TBDPSO''' OTBDPS	HO'' OH	1.5	81
5	TBDPSO 49	HO 50	0.5	84
6	TBDPSO DAc	HO ÖAc	0.5	87
7	TBDPSO DAII	HO ÖAII	0.5	89
8	TBDPSO ŪTBDPS	HO ÖH	1.5	79
9	TBDPSO	HO 58	0.5	73

^a Reactions were conducted with the starting material of 1.0 mmol.

^b DCM was added when the starting material did not dissolve in MeCN.

^c Yield refers to the isolated product.

4.8. Propargyl 2,3,4-tri-O-benzoyl-6-O-*tert*-butyldiphenylsiyl-β-D-glucopyranoside (3)

Product **3** was obtained from propargyl β-D-glucopyranoside (327 mg, 1.5 mmol) following the procedure B. The pure product **3** was obtained by column chromatography on silica gel (969 mg, 84%): $[\alpha]_D^{25}$ +81.5 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 7.99

(d, J = 8.3 Hz, 2H, Ar-*H*), 7.91–7.82 (m, 4H, Ar-*H*), 7.71 (d, J = 7.6 Hz, 2H, Ar-*H*), 7.61 (d, J = 7.8 Hz, 2H, Ar-*H*), 7.53 (dd, J = 13.8, 7.3 Hz, 2H, Ar-*H*), 7.45–7.24 (m, 13H, Ar-*H*), 5.89 (t, J = 9.6 Hz, 1H, H-3), 5.67 (t, J = 8.6 Hz, 1H), 5.54 (t, J = 8.8 Hz, 1H), 5.12 (d, J = 7.9 Hz, 1H, H-1), 4.43 (d, J = 2.4 Hz, 2H, $-CH_2C \equiv CH$), 3.91 (m, 3H, H-5, H-6), 2.43 (d, J = 2.3 Hz, 1H, $-CH_2C \equiv CH$), 1.06 (s, 9H, $-C(CH_3)_3$); ¹³C NMR (100 MHz, CDCl₃) δ : 165.88 (COPh),

Table 4

Reusability of TfOH-SiO2 catalyzed cleavage of TBDPS ether

165.20 (COPh), 164.95 (COPh), 135.63 (2), 135.45 (2), 133.18, 133.08 (2), 132.96, 130.14, 129.85 (2), 129.75 (2), 129.72 (2), 129.64, 129.58, 129.40, 129.14, 128.91, 128.45, 128.31 (2), 128.22 (3), 127.60 (2), 127.58 (2) (Ar-C), 98.20 (C-1), 78.24, 75.37, 75.25, 73.29, 71.73, 69.17, 62.66, 55.55, 26.60 (3) (-C(CH₃)₃), 19.15; HRMS calcd for $C_{46}H_{44}O_9SiNa$ (M+Na)⁺: 791.2652, found: 791.2598.

4.9. Propargyl 2,3,4-tri-O-benzoyl-β-D-glucopyranoside (4)¹⁴

Product 4 was obtained from 3 (769 mg, 1.0 mmol) following the procedure C. The pure product 4 was obtained by column chromatography on silica gel as a white foam (482 mg, 91%): $[\alpha]_{D}^{25}$ +107.3 (c 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 7.97 (t, J = 8.3 Hz, 4H, Ar-H), 7.85 (d, J = 7.9 Hz, 2H, Ar-H), 7.53 (dd, J = 17.6, 7.5 Hz, 2H, Ar-H), 7.41 (dq, J = 15.3, 7.5 Hz, 5H, Ar-H), 7.29 (t, J = 7.8 Hz, 2H, Ar-H), 5.98 (t, J = 9.7 Hz, 1H, H-3), 5.58-5.47 (m, 2H, H-2, H-4), 5.13 (d, J = 7.9 Hz, 1H, H-1), 4.50 (dd, J = 16.1, 2.3 Hz, 1H, $-CH_2C \equiv CHa$), 4.40 (dd, J = 16.1, 2.3 Hz, 1H, -CH₂C=CHb), 3.92-3.72 (m, 3H, H-5, H-6), 2.64 (br, 1H, -OH), 2.43 (t, J = 2.2 Hz, 1H, $-CH_2C \equiv CH$); ¹³C NMR (100 MHz, CDCl₃) δ : 166.10 (COPh), 165.85 (COPh), 165.14 (COPh), 133.73, 133.29, 133.12, 129.91 (2), 129.85 (2), 129.72 (2), 129.10, 128.98, 128.53 (2), 128.34 (2), 127.85 (2) (Ar-C), 98.72 (C-1), 78.33, 75.51, 74.78, 72.84, 71.66, 69.57, 61.25, 56.27; HRMS calcd for C₃₀H₂₆O₉Na (M+Na)⁺: 553.1475, found: 553.1477.

4.10. *p*-Nitrophenyl 2,3,4-tri-O-benzoyl-6-O-tertbutyldiphenylsiyl-β-D-glucopyranoside (5)

Product **5** was obtained from *p*-nitrophenyl β -D-glucopyranoside (451 mg, 1.5 mmol) following the procedure B. The pure product 5 was obtained by column chromatography on silica gel (997 mg, 78%): [α]_D²⁵ +63.3 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ: 8.10 (m, 2H, Ar-H), 7.95 (d, J = 7.4 Hz, 2H, Ar-H), 7.86 (dd, J = 7.0, 4.7 Hz, 3H, Ar-H), 7.62–7.11 (m, 22H, Ar-H), 5.96 (t, J = 9.5 Hz, 1H, H-3), 5.80 (dd, J = 7.7, 9.5 Hz, 1H, H-2), 5.65 (t, J = 9.7 Hz, 1H, H-4), 5.49 (d, J = 7.7 Hz, 1H, H-1), 4.12 (m, 1H), 3.95-3.83 (m, 2H), 1.04 (s, 9H, -C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ: 165.82 (COPh), 165.03 (COPh), 161.49 (COPh), 143.14, 135.55 (2), 135.42 (2), 133.52, 133.47, 133.37, 132.84, 132.50, 130.20, 129.93, 129.83 (3), 129.80 (3), 128.91, 128.85, 128.70, 128.51, 128.49 (2), 128.45 (2), 128.37 (2), 127.69 (2), 127.68 (2), 125.76 (2), 116.93 (2) (Ar-C), 98.76 (C-1), 76.16, 72.85, 71.65, 68.83, 62.66, 26.65 (3) $(-C(CH_3)_3)$, 19.20; HRMS calcd for $C_{49}H_{45}O_{11}NSiNa$ $(M+Na)^+$: 874.2654, found: 874.2657.

4.11. *p*-Nitrophenyl 2,3,4-tri-O-benzoyl-β-D-glucopyranoside (6)

Product **6** was obtained from **5** (852 mg, 1.0 mmol) following the procedure C. The pure product **6** was obtained by column

chromatography on silica gel as a white foam (551 mg, 90%): $[\alpha]_D^{25}$ +161.3 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 8.20 (d, *J* = 9.2 Hz, 2H, PNP-Ar-*H*), 7.96 (t, *J* = 8.7 Hz, 4H, Ar-*H*), 7.87 (d, *J* = 7.8 Hz, 2H, Ar-*H*), 7.55 (dt, *J* = 14.9, 7.4 Hz, 2H, Ar-*H*), 7.42 (t, *J* = 15.2, 7.7 Hz, 5H, Ar-*H*), 7.32 (t, *J* = 7.7 Hz, 2H, Ar-*H*), 7.10 (d, *J* = 9.2 Hz, 2H, PNP-Ar-*H*), 6.06 (t, *J* = 9.7 Hz, 1H, H-3), 5.83 (t, *J* = 9.1 Hz, 1H, H-2), 5.61 (t, *J* = 9.7 Hz, 1H, H-4), 5.55 (d, *J* = 7.8 Hz, 1H, H-1), 4.02 (d, *J* = 10.0 Hz, 1H), 3.98–3.88 (m, 1H), 3.87–3.78 (m, 1H), 2.59 (br, 1H, -OH); ¹³C NMR (100 MHz, CDCl₃) δ : 165.74 (COPh), 164.95 (COPh), 161.22 (COPh), 143.20, 133.94, 133.57, 133.49, 129.98 (2), 129.77 (3), 128.71, 128.60 (2), 128.49 (2), 128.40 (2), 128.23, 126.21, 125.84 (2), 116.66 (2), 115.61 (Ar-*C*), 98.53 (*C*-1), 75.31, 72.28, 71.38, 69.03, 61.11; HRMS calcd for C₃₃H₂₇O₁₁NNa (M+Na)⁺: 636.1482, found: 636.1487.

4.12. Phenyl 2,3,4-tri-O-benzoyl-6-O-tert-butyldiphenylsiyl-β-D -glucopyranoside (7)

Product **7** was obtained from phenyl β-D-glucopyranoside (384 mg, 1.5 mmol) following the procedure B. The pure product 7 was obtained by column chromatography on silica gel (968 mg, 80%): $[\alpha]_D^{25}$ +41.9 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 8.12 (d, J = 8.1 Hz, 1H, Ar-H), 7.97 (d, J = 7.4 Hz, 2H, Ar-H), 7.86 (d, *J* = 7.6 Hz, 4H, Ar-H), 7.68–7.28 (m, 16H, Ar-H), 7.22 (dd, *J* = 15.5, 7.8 Hz, 5H, Ar-H), 7.07 (dd, J = 17.0, 7.7 Hz, 3H, Ar-H), 5.93 (t, *J* = 9.6 Hz, 1H, H-3), 5.82–5.75 (m, 1H, H-2), 5.67 (t, *J* = 9.6 Hz, 1H, H-4), 5.38 (d, J = 7.8 Hz, 1H, H-1), 4.04 (m, 1H), 3.94-3.84 (m, 2H), 1.05 (s, 11H, -C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ: 165.92 (COPh), 165.18 (COPh), 165.06 (COPh), 157.23, 135.61 (2), 135.50 (2), 133.31, 133.26, 133.23, 132.93, 132.73, 130.19, 129.84 (2), 129.79 (2), 129.66 (2), 129.64 (2), 129.54 (2), 129.28, 129.07, 128.90, 128.50, 128.40 (2), 128.32 (2), 127.66 (2), 127.65 (2), 123.19, 117.38 (2) (Ar-C), 99.79 (C-1), 75.70, 73.23, 71.96, 69.13, 62.69, 26.62 (3) (-C(CH₃)₃), 19.15; HRMS calcd for C₄₉H₄₆O₉SiNa (M+Na)⁺: 829.2803, found: 829.2810.

4.13. Phenyl 2,3,4-tri-O-benzoyl-β-D-glucopyranoside (8)

Product **8** was obtained from **7** (830 mg, 1.0 mmol) following the procedure C. The pure product **7** was obtained by column chromatography on silica gel as a white foam (522 mg, 92%): $[\alpha]_{D}^{25}$ +91.3 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 8.01–7.96 (m, 4H, Ar-*H*), 7.91–7.86 (m, 2H, Ar-*H*), 7.59–7.29 (m, 11H, Ar-*H*), 7.10–7.01 (m, 3H, Ar-*H*), 6.04 (t, *J* = 9.7 Hz, 1H, H-3), 5.81 (dd, *J* = 9.8, 7.9 Hz, 1H, H-2), 5.61 (t, *J* = 9.7 Hz, 1H, H-4), 5.45 (d, *J* = 7.9 Hz, 1H, H-1), 3.99 (ddd, *J* = 9.8, 4.8, 2.3 Hz, 1H, H-5), 3.93 (dd, *J* = 12.8, 2.0 Hz, 1H, H-6a), 3.82 (dd, *J* = 12.8, 4.9 Hz, 1H, H-6b); ¹³C NMR (100 MHz, CDCl₃) δ : 165.97 (COPh), 165.83 (COPh), 165.09 (COPh), 156.91, 133.77, 133.36, 133.34, 129.98 (2), 129.82 (2), 129.80 (2), 129.66 (2), 129.10, 128.77, 128.56 (2), 128.52, 128.42 (2), 128.37 (2), 123.36, 117.08 (2) (Ar-C), 99.55 (C-1), 74.99, 72.70, 71.69, 69.37, 61.44; HRMS calcd for $C_{33}H_{28}O_9Na$ (M+Na)⁺: 591.1626, found: 591.1632.

4.14. *p*-Methoxyphenyl 2,3,4-tri-*O*-benzoyl-6-*O*-*tert*butyldiphenylsiyl-β-D-gluco pyranoside (9)

Product **9** was obtained from *p*-methoxyphenyl β-D-glucopyranoside (429 mg, 1.5 mmol) following the procedure B. The pure product 9 was obtained by column chromatography on silica gel (1.07 g, 85%): $[\alpha]_{D}^{25}$ +68.8 (c 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 7.3 Hz, 2H, Ar-H), 7.85 (d, J = 7.9 Hz, 4H, Ar-H), 7.67 (d, J = 6.9 Hz, 2H, Ar-H), 7.59 (d, J = 7.0 Hz, 2H, Ar-H), 7.55-7.49 (m, 2H, Ar-H), 7.46–7.19 (m, 13H, Ar-H), 7.02 (d, J = 9.0 Hz, 2H, Ar-H), 6.74 (d, J = 9.1 Hz, 2H, Ar-H), 5.90 (t, J = 9.6 Hz, 1H, H-3), 5.77-5.70 (dd, / = 7.9, 9.6 Hz, 1H, H-2), 5.65 (t, / = 9.6 Hz, 1H, H-4), 5.24 (d, J = 7.9 Hz, 1H, H-1), 4.00-3.94 (m, 1H), 3.92-3.82 (m, 2H), 3.74 (s, 3H, -OCH₃), 1.04 (s, 9H, -C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ: 165.91 (COPh), 165.17 (COPh), 165.05 (COPh), 155.66, 151.34, 135.63 (2), 135.50 (2), 133.29, 133.25, 133.20, 132.98, 132.79, 129.83 (3), 129.78 (2), 129.68, 129.63, 129.34, 129.09, 128.93, 128.41 (2), 128.38 (2), 128.31 (2), 127.67 (2), 127.65 (2), 119.03 (2), 114.51 (2) (Ar-C), 100.97 (C-1), 75.61, 73.25, 72.02, 69.14, 62.70, 55.64, 26.64 (3) (-C(CH₃)₃), 19.18; HRMS calcd for $C_{50}H_{48}O_{10}SiNa$ (M+Na)⁺: 859.2909, found: 859.2917.

4.15. *p*-Methoxyphenyl 2,3,4-tri-O-benzoyl-β-D-glucopyranoside (10)

Product **10** was obtained from **9** (837 mg, 1.0 mmol) following the procedure C. The pure product **10** was obtained by column chromatography on silica gel as a white foam (562 mg, 94%): $[\alpha]_D^{25}$ +70.1 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ: 7.96 (m, 4H, Ar-H), 7.86 (m, 2H, Ar-H), 7.53 (m, 2H, Ar-H), 7.41 (m, 5H, Ar-H), 7.30 (m, 2H, Ar-H), 6.95 (d, *J* = 7.3 Hz, 2H, Mp-Ar-H), 6.79 (d, *J* = 6.9 Hz, 2H, Mp-Ar-H), 5.99 (t, *J* = 9.1 Hz, 1H, H-3), 5.74 (t, *J* = 9.4 Hz, 1H, H-2), 5.57 (t, *J* = 9.7 Hz, 1H, H-4), 5.29 (d, *J* = 7.9 Hz, 1H, H-1), 3.90 (m, 2H), 3.77 (m, 4H, $-OCH_3$), 2.54 (br, 1H, -OH); ¹³C NMR (100 MHz, CDCl₃) δ: 165.93 (COPh), 165.73 (COPh), 165.00 (COPh), 155.68, 150.87, 133.68, 133.26 (2), 129.88 (2), 129.73 (2), 129.71 (2), 129.05, 128.67, 128.46 (2), 128.34 (2), 128.28 (2), 118.77 (2), 114.50 (2) (Ar-C), 100.73 (C-1), 74.81, 72.58, 71.66, 69.29, 61.31, 55.55; HRMS calcd for C₃₄H₃₀O₁₀Na (M+Na)⁺: 621.1731, found: 621.1741.

4.16. *p*-Methoxyphenyl 2,3-di-O-benzoyl-4-O-mesyl-6-O-tertbutyldiphenylsiyl-β-D-glucopyranoside (11)

p-Methoxyphenyl 2,3-di-O-benzoyl-β-D-glucopyranoside (742 mg, 1.5 mmol) was dissolved in dry Py (10 mL) and cooled to 0 °C. Under Ar atmosphere TBDPSCl (0.55 mL, 2.2 mmol) and imidazole (306 mg, 4.5 mmol) were added to this solution, after which the mixture was stirred at room temperature overnight and concentrated, then diluted with CH₂Cl_{2.} The organic layer was washed with 1 M HCl and brine, then dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography to afford *p*-methoxyphenyl 2,3-di-O-benzoyl-6-*O-tert*-butyldiphenylsiyl-β-D-glucopyranoside **11a** as a white solid (967 mg, 88%). To the solution of compound 11a (879 mg, 1.2 mmol) in dry Py (10 mL) was added methyl sulfonylchloride (0.28 mL, 3.6 mmol) dropwise and catalytic DMAP. The reaction was monitored by TLC, after completion, methanol (2 mL) added and the mixture concentrated under vacuum, then the residue diluted with CH₂Cl₂. The organic layer was washed with 1 M HCl and brine, then dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography to afford 11

(905 mg, 93%): $[\alpha]_D^{25}$ +87.2 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 8.05–7.93 (m, 4H, Ar-*H*), 7.78–7.71 (m, 4H, Ar-*H*), 7.53 (t, *J* = 7.4 Hz, 2H, Ar-*H*), 7.44–7.34 (m, 8H, Ar-*H*), 7.29 (t, *J* = 7.3 Hz, 2H, Ar-*H*), 6.99–6.92 (m, 2H, Mp-Ar-*H*), 6.75–6.71 (m, 2H, Mp-Ar-*H*), 5.82 (t, *J* = 9.6 Hz, 1H, H-3), 5.65 (dd, *J* = 9.8, 7.9 Hz, 1H, H-2), 5.24–5.14 (m, 2H, H-1, H-4), 4.08–3.97 (m, 2H), 3.86–3.79 (m, 1H), 3.75 (s, 3H, $-OCH_3$), 2.77 (s, 3H, $-CH_3$), 1.13 (s, 9H, $-C(CH_3)_3$); ¹³C NMR (100 MHz, CDCl₃) δ : 165.75 (COPh), 165.05 (COPh), 155.69, 151.13, 135.86 (2), 135.65 (2), 133.53, 133.32, 133.07, 132.65, 129.94 (2), 129.79 (2), 129.73 (2), 129.06, 128.76, 128.50 (2), 128.40 (2), 127.71 (2), 127.67 (2), 118.94 (2), 114.48 (2) (Ar-C), 100.66 (C-1), 74.89, 74.23, 72.63, 71.81, 61.97, 55.61, 38.75, 26.74 (3) ($-C(CH_3)_3$), 19.27; HRMS calcd for C₄₄H₄₆O₁₁SSiNa (M+Na)⁺: 833.2428, found: 833.2417.

4.17. *p*-Methoxyphenyl 2,3-di-O-benzoyl-4-O-mesyl-β-Dglucopyranoside (12)

Product **12** was obtained from **11** (811 mg, 1.0 mmol) following the procedure C. The pure product **12** was obtained by column chromatography on silica gel as a white foam (475 mg, 83%): $[\alpha]_D^{25}$ +81.8 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ: 8.02–7.97 (m, 2H, Ar-*H*), 7.96–7.91 (m, 2H, Ar-*H*), 7.52 (m, 2H, Ar-*H*), 7.38 (m, 4H, Ar-*H*), 6.95–6.88 (m, 2H, Mp-Ar-*H*), 6.80–6.74 (m, 2H, Mp-Ar-*H*), 5.86 (t, *J* = 9.6 Hz, 1H, H-3), 5.67 (dd, *J* = 9.8, 8.0 Hz, 1H, H-2), 5.22 (d, *J* = 7.9 Hz, 1H, H-1), 5.11 (t, *J* = 9.6 Hz, 1H, H-4), 4.05 (m, 1H), 3.96 (m, 1H), 3.83 (ddd, *J* = 9.7, 3.7, 2.4 Hz, 1H), 3.74 (s, 3H, –OCH₃), 2.90 (s, 3H, CH₃SO₂-), 2.48 (br, 1H, –OH); ¹³C NMR (100 MHz, CDCl₃) δ: 165.56 (COPh), 164.96 (COPh), 155.76, 150.74, 133.66, 133.39, 129.84 (2), 129.75 (2), 128.81, 128.56 (2), 128.51, 128.40 (2), 118.79 (2), 114.52 (2) (Ar-C), 100.59 (C-1), 74.45, 74.34, 72.30, 71.56, 60.74, 55.55, 38.55, 29.66; HRMS calcd for C₂₈H₂₈O₁₁SNa (M+Na)⁺: 595.1250, found: 595.1247.

4.18. *p*-Methoxyphenyl 2,3,4-tri-O-benzoyl-6-O-*tert*butyldiphenylsiyl- α -D-mannopyranoside (13)

Product **13** was obtained from compound **15** (879 mg. 1.2 mmol) through benzoylation. The pure product 13 was obtained by column chromatography on silica gel (824 mg, 82%): $[\alpha]_{D}^{25}$ +30.5 (c 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 8.15 (d, *J* = 7.6 Hz, 2H, Ar-*H*), 7.91 (dd, *J* = 11.9, 8.0 Hz, 4H, Ar-*H*), 7.68 (d, *J* = 6.8 Hz, 2H, Ar-H), 7.63–7.50 (m, 4H, Ar-H), 7.46 (t, *J* = 7.7 Hz, 3H, Ar-H), 7.41–7.27 (m, 8H, Ar-H), 7.15 (dd, J = 11.7, 8.3 Hz, 4H, Ar-H), 6.83 (d, J = 9.0 Hz, 2H, Mp-Ar-H), 6.23 (t, J = 10.2 Hz, 1H, H-4), 6.04 (dd, J = 10.3, 3.2 Hz, 1H, H-3), 5.88 (s, 1H, H-2), 5.70 (s, 1H, H-1), 4.30 (d, J = 9.7 Hz, 1H), 3.89 (dd, J = 11.6, 4.0 Hz, 1H, H-6a), 3.80 (m, 1H), 3.78 (s, 3H, -OCH₃), 1.03 (s, 9H, -C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ: 165.69 (COPh), 165.61 (COPh), 165.27 (COPh), 155.27, 150.23, 135.74 (2), 135.51 (2), 133.52, 133.23, 133.16, 133.03, 132.89, 130.04 (2), 129.83 (2), 129.76 (2), 129.60, 129.55, 129.39, 129.28, 129.20, 128.60 (2), 128.40 (2), 128.33 (2), 127.57 (3), 117.95 (2), 114.68 (2) (Ar-C), 96.89 (C-1), 71.94, 70.66, 70.47, 66.45, 62.38, 55.67, 26.60 (3) (-C(CH₃)₃), 19.21; HRMS calcd for $C_{50}H_{48}O_{10}SiNa$ (M+Na)⁺: 859.2909, found: 859.2917.

4.19. *p*-Methoxyphenyl 2,3,4-tri-O-benzoyl-α*p*-mannopyranoside (14)¹⁵

Product **14** was obtained from **13** (837 mg, 1.0 mmol) following the procedure C. The pure product **14** was obtained by column chromatography on silica gel as a white foam (574 mg, 96%): $[\alpha]_{25}^{25}$ +31.6 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 8.13 (d, *J* = 7.5 Hz, 2H, Ar-*H*), 8.00 (d, *J* = 7.5 Hz, 2H, Ar-*H*), 7.86 (d, *J* = 7.5 Hz, 2H, Ar-*H*), 7.64 (t, *J* = 7.4 Hz, 1H, Ar-*H*), 7.57–7.37 (m, 6H, Ar-*H*), 7.32–7.25

(m, 2H, Ar-*H*), 7.15–7.09 (m, 2H, Mp-Ar-*H*), 6.88 (m, 2H, Mp-Ar-*H*), 6.21 (dd, *J* = 10.1, 3.4 Hz, 1H, H-3), 5.94 (t, *J* = 10.1 Hz, 1H, H-4), 5.87 (dd, *J* = 3.1, 1.9 Hz, 1H, H-2), 5.73 (d, *J* = 1.3 Hz, 1H, H-1), 4.21 (d, *J* = 10.0 Hz, 1H), 3.86–3.70 (m, 5H, $-OCH_3$), 2.69 (dd, *J* = 8.3, 6.1 Hz, 1H, -OH); ¹³C NMR (100 MHz, CDCl₃) δ : 166.58 (COPh), 165.51 (COPh), 165.47 (COPh), 155.38, 149.84, 133.72, 133.63, 133.25, 129.94 (2), 129.91 (2), 129.70 (2), 129.12, 129.03, 128.65 (2), 128.60, 128.51 (2), 128.32 (2), 117.72 (2), 114.74 (2) (Ar-*C*), 96.75 (*C*-1), 71.52, 70.46, 69.43, 67.09, 61.12, 55.64; HRMS calcd for C₃₄H₃₀O₁₁Na (M+Na)⁺: 621.1737, found: 621.1732.

4.20. *p*-Methoxyphenyl 2,3-di-*O*-benzoyl-6-*O*-tertbutyldiphenylsiyl-α-*D*-mannopyranoside (15)

p-Methoxyphenyl 2.3-di-O-benzovl-B-D-mannopyranoside (742 mg, 1.5 mmol) was dissolved in dry Pv (10 mL) and cooled to 0 °C. Under Ar atmosphere TBDPSCl (0.55 mL, 2.2 mmol) and imidazole (306 mg, 4.5 mmol) were added to this solution, after which the mixture was stirred at room temperature overnight and concentrated, then diluted with CH₂Cl₂. The organic layer was washed with 1 M HCl and brine, then dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography to afford **15** as a white solid (967 mg, 88%): $[\alpha]_D^{25}$ +101.3 (c 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ: 8.10 (dd, J = 8.2, 1.2 Hz, 2H, Ar-H), 7.97 (dd, J = 8.2, 1.2 Hz, 2H, Ar-H), 7.72 (td, J = 8.0, 1.4 Hz, 4H, Ar-H), 7.61 (t, J = 7.5 Hz, 1H, Ar-H), 7.53 (t, J = 7.5 Hz, 1H, Ar-H), 7.48–7.33 (m, 10H, Ar-H), 7.08–7.01 (m, 2H, Mp-Ar-H), 6.83-6.76 (m, 2H, Mp-Ar-H), 5.85-5.74 (m, 2H, H-2, H-3), 5.58 (d, J = 1.2 Hz, 1H, H-1), 4.50 (t, J = 9.3 Hz, 1H, H-4), 4.07 (dd, J = 10.5, 3.5 Hz, 1H, H-6a), 4.03-3.93 (m, 2H, H-5, H-6b), 3.77 (s, 3H, -OCH₃), 1.08 (s, 9H, -C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ: 166.61 (COPh), 165.47 (COPh), 155.07, 150.02, 135.69 (2), 135.51 (2), 133.41, 133.25, 133.05, 132.87, 129.84 (2), 129.81 (2), 129.71 (2), 129.35, 128.47 (2), 128.30 (2), 127.68 (2), 127.61 (2), 117.85 (2), 114.52 (2) (Ar-C), 96.77 (C-1), 72.75, 72.73, 70.44, 67.08, 63.53, 55.56, 26.76 (3) (-C(CH₃)₃), 19.23; HRMS calcd for C₄₃H₄₄O₉SiNa (M+Na)⁺: 755.2652, found: 755.2663.

4.21. *p*-Methoxyphenyl 2,3-di-*O*-benzoyl-α-D-mannopyranoside (16)

Product **16** was obtained from **15** (732 mg, 1.0 mmol) following the procedure C. The pure product **16** was obtained by column chromatography on silica gel as a white foam (450 mg, 91%): $[\alpha]_{0}^{25}$ +66.0 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 8.08 (d, *J* = 8.1 Hz, 2H, Ar-*H*), 7.94 (d, *J* = 8.2 Hz, 2H, Ar-*H*), 7.61 (dd, *J* = 10.8, 4.1 Hz, 1H, Ar-*H*), 7.54–7.45 (m, 3H, Ar-*H*), 7.35 (t, *J* = 7.6 Hz, 2H, Ar-*H*), 7.07– 7.01 (m, 2H, Mp-Ar-*H*), 6.85 (m, 2H, Mp-Ar-*H*), 5.83–5.74 (m, 2H), 5.60 (s, 1H, H-1), 4.45 (t, *J* = 9.4 Hz, 1H), 4.04–3.91 (m, 3H, H-5, H-6), 3.77 (s, 3H, $-OCH_3$), 3.03 (br, 1H, -OH), 2.21 (br, 1H, -OH); ¹³C NMR (100 MHz, CDCl₃) δ : 166.77 (COPh), 165.42 (COPh), 155.25, 149.76, 133.61, 133.44, 129.80 (3), 129.19, 129.12, 128.61 (2), 128.39 (2), 117.81 (2), 114.64 (2) (Ar-C), 96.75 (C-1), 72.92, 72.71, 70.42, 66.43, 61.92, 55.59; HRMS calcd for C₂₇H₂₆O₉Na (M+Na)⁺: 517.1475, found: 517.1463.

4.22. Ethyl 2,3,4-tri-O-benzoyl-6-O-tert-butyldiphenylsiyl-1-thio- α -D-mannopyranoside (17)

Product **17** was obtained from ethyl 1-thio-α-D-mannopyranoside (336 mg, 1.5 mmol) following the procedure B. The pure product **17** was obtained by column chromatography on silica gel as a white foam (965 mg, 83%): $[\alpha]_D^{25}$ +61.8 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ: 8.16 (d, *J* = 8.1 Hz, 2H, Ar-*H*), 7.95 (d, *J* = 8.1 Hz, 2H, Ar-*H*), 7.88 (d, *J* = 8.1 Hz, 2H, Ar-*H*), 7.72 (dd, *J* = 6.7, 1.1 Hz, 2H, Ar-*H*), 7.65–7.53 (m, 4H, Ar-*H*), 7.52–7.34 (m, 7H, Ar-*H*), 7.29 (dd, *J* = 10.6, 5.0 Hz, 4H, Ar-*H*), 7.19 (t, *J* = 7.5 Hz, 2H, Ar-*H*), 6.19 (t, *J* = 9.8 Hz, 1H, H-4), 5.89–5.74 (m, 2H), 5.62 (s, 1H), 4.56 (dd, *J* = 8.0, 1.9 Hz, 1H, H-3), 4.00–3.92 (m, 1H), 3.89–3.79 (m, 1H), 2.85–2.65 (m, 2H, $-CH_2CH_3$), 1.38 (t, *J* = 7.4 Hz, 3H, $-CH_2CH_3$), 1.08 (s, 9H, $-C(CH_3)_3$); ¹³C NMR (100 MHz, CDCl₃) δ : 165.59 (COPh), 165.56 (COPh), 165.30 (COPh), 135.72 (2), 135.53 (2), 133.74, 133.44, 133.23, 133.14, 133.05, 132.89, 130.21, 130.01 (2), 129.80 (2), 129.78 (2), 129.60, 129.58, 129.44, 129.41, 129.13, 128.58 (2), 128.51, 128.41 (2), 128.31 (2), 127.59 (3) (Ar-*C*), 82.03 (*C*-1), 72.43, 71.96, 71.10, 66.82, 62.56, 26.61 (3) ($-C(CH_3)_3$), 25.38, 19.21, 14.78; HRMS calcd for C₄₅H₄₆O₈SSiNa (M+Na)⁺: 797.2575, found: 797.2583.

4.23. Ethyl 2,3,4-tri-O-benzoyl-1-thio-α-D-mannopyranoside (18)

Product **18** was obtained from **17** (775 mg, 1.0 mmol) following the procedure C. The pure product **18** was obtained by column chromatography on silica gel as a white foam (498 mg, 93%): $[\alpha]_D^{25}$ +21.9 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 8.09 (d, *J* = 7.2 Hz, 2H, Ar-*H*), 7.97 (d, *J* = 7.3 Hz, 2H, Ar-*H*), 7.83–7.76 (m, 2H, Ar-*H*), 7.60 (t, *J* = 7.4 Hz, 1H, Ar-*H*), 7.55–7.35 (m, 6H, Ar-*H*), 7.24 (m, 2H, Ar-*H*), 5.93–5.81 (m,2H), 5.76 (s, 1H), 5.57 (s, 1H), 4.43 (d, *J* = 8.8 Hz, 1H), 3.80 (m, 2H), 2.79–2.65 (m, 2H, $-CH_2CH_3$), 1.35 (t, *J* = 7.4 Hz, 3H, $-CH_2CH_3$); ¹³C NMR (100 MHz, CDCl₃) δ : 166.52 (COPh), 165.41 (COPh), 165.32 (COPh), 133.68, 133.52, 133.20, 129.87 (2), 129.84 (2), 129.61 (2), 129.18, 128.86, 128.57 (2), 128.51, 128.47 (2), 128.25 (2) (Ar-C), 82.27 (*C*-1), 72.22, 71.31, 69.95, 67.35, 61.23, 25.55, 14.75; HRMS calcd for C₂₉H₂₈O₈S-Na (M+Na)⁺: 559.1403, found: 559.1415.

4.24. Methyl 2,3-di-O-acetyl-4-O-pivaloyl-6-O-tertbutyldiphenylsiyl-α-D-mannopyranoside (19)

TBDPSCI (0.55 mL, 2.2 mmol) was added to a stirred mixture of Methyl 2,3-di-O-acetyl- α -D-mannopyranoside (417 mg, 1.5 mmol) and imidazole (306 mg, 4.5 mmol) in dry Py (20 mL) at room temperature under Ar atmosphere, and the mixture was then stirred at the same temperature followed by TLC. After the completion of the reaction, a solution of pivaloyl chloride (0.56 mL, 4.5 mmol) in CH₂Cl₂ (5 mL) was added dropwise at 0 °C, and then catalytic DMAP added. The reaction was stirred at the same temperature for 6 h. The reaction was monitored by TLC, after completion, methanol (2 mL) added and the mixture concentrated under vacuum, then the residue diluted with CH_2Cl_2 (50 mL). The organic layer was washed sequentially with 1 M HCl (10 mL \times 2) and then brine (20 mL \times 2) and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum, and the residue was purified by flash column chromatography to afford **19** (549 mg, 61%): $[\alpha]_D^{25}$ +59.3 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 7.68 (ddd, J = 12.5, 7.9, 1.5 Hz, 4H, Ar-H), 7.45-7.32 (m, 6H, Ar-H), 5.44-5.36 (m, 2H, H-3, H-4), 5.23 (dd, J = 2.8, 1.7 Hz, 1H, H-2), 4.75 (d, J = 1.5 Hz, 1H, H-1), 3.87 (t, J = 6.7 Hz, 1H, H-5), 3.75 (dd, J = 11.3, 5.6 Hz, 1H, H-6a), 3.65 (dd, J = 11.3, 1.7 Hz, 1H, H-6b), 3.43 (s, 3H, -OCH₃), 2.13 (s, 3H, -CH₃), 1.96 (s, 3H, -CH₃), 1.04 (s, 9H, -C(CH₃)₃), 1.06 (s, 9H, $-C(CH_3)_3$; ¹³C NMR (100 MHz, CDCl₃) δ : 176.92 (COC(CH₃)₃), 170.22 (COCH₃), 169.92 (COCH₃), 135.64 (2), 135.54 (2), 133.22, 133.01, 129.62 (2), 129.60 (2), 127.59 (2) (Ar-C), 98.26 (C-1), 71.34, 69.90, 69.30, 65.50, 62.36, 54.97, 38.66, 26.81 (3) (-C(CH₃)₃), 26.55 (3) (-C(CH₃)₃), 20.87, 20.66, 19.20; HRMS calcd for C₃₂H₄₄O₉SiNa (M+Na)⁺: 623.2647, found: 623.2649.

4.25. Methyl 2,3-di-O-acetyl-4-O-pivaloyl-α-D-mannopyranoside (20)

Product **20** was obtained from **19** (600 mg, 1.0 mmol) following the procedure C. The pure product **20** was obtained by column

chromatography on silica gel as a white foam (322 mg, 89%): $[\alpha]_D^{25}$ +61.3 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 5.46 (dd, *J* = 10.3, 3.5 Hz, 1H, H-3), 5.24 (dd, *J* = 3.4, 1.7 Hz, 1H, H-2), 5.20 (t, *J* = 10.1 Hz, 1H, H-4), 4.73 (d, *J* = 1.4 Hz, 1H, H-1), 3.76–3.64 (m, 2H), 3.57 (m, 1H), 3.40 (s, 3H, $-OCH_3$), 2.59 (dd, *J* = 9.3, 5.1 Hz, 1H, -OH), 2.14 (s, 3H, $-COCH_3$), 1.98 (s, 3H, $-COCH_3$), 1.17 (s, 9H, $-C(CH_3)_3$); ¹³C NMR (100 MHz, CDCl₃) δ : 178.67 (COC(CH₃)₃), 170.11 (COCH₃), 169.68 (COCH₃), 98.65 (*C*-1), 70.54, 69.66, 68.56, 66.06, 61.12, 55.26, 38.90, 26.87 (3) ($-C(CH_3)_3$), 20.88 (COCH₃), 20.60 (COCH₃); HRMS calcd for C₁₆H₂₆O₉Na (M+Na)⁺: 385.1469, found: 385.1479.

4.26. *p*-Tolyl 2,3,4-tri-O-benzoyl-6-O-tert-butyldiphenylsiyl-1-thio- β -D-galactopyranoside (21)

Product **21** was obtained from p-tolvl 1-thio-B-p-galactopyranoside (429 mg, 1.5 mmol) following the procedure B. The pure product 21 was obtained by column chromatography on silica gel as a white foam (1.02 g, 81%): $[\alpha]_D^{25}$ +60.5 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ: 8.19-8.12 (m, 1H, Ar-H), 8.04-7.97 (m,2H, Ar-H), 7.92-7.85 (m, 2H, Ar-H), 7.84-7.77 (m,2H, Ar-H), 7.74–7.68 (m, 2H, Ar-H), 7.65 (t, J = 7.4 Hz, 1H, Ar-H), 7.59–7.39 (m, 12H, Ar-H), 7.34-7.24 (m, 3H, Ar-H), 7.14-7.18 (m, 4H, Ar-H), 6.12-6.05 (m, 1H), 5.72-5.59 (m, 2H), 4.95 (dd, J=9.0, 6.4 Hz, 1H), 4.15 (dd, J = 12.9, 6.4 Hz, 1H, H-6a), 3.92 (dt, J = 11.9, 6.0 Hz, 1H, H-6b), 3.81 (td, J = 10.1, 7.3 Hz, 1H, H-5), 2.42 (s, 3H, -CH₃), 1.04 (s, 9H, -C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ: 165.61 (COPh), 165.25 (COPh), 165.10 (COPh), 138.57, 135.65 (2), 135.50 (2), 134.50 (2), 133.75, 133.26, 133.12, 132.87, 132.64, 130.22, 129.99 (2), 129.84 (2), 129.82 (2), 129.69, 129.60 (2), 129.51, 129.44, 129.02, 128.51, 128.44 (2), 128.42 (2), 128.24 (2), 127.84 (2), 127.64 (2), 127.31 (Ar-C), 85.94 (C-1), 77.70, 73.41, 68.15, 68.04, 61.46, 26.69 (3) (-C(CH₃)₃), 21.39, 19.03; HRMS calcd for C₅₀H₄₈O₈SSiNa (M+Na)⁺: 859.2731, found: 859.2729.

4.27. *p*-Tolyl 2,3,4-tri-O-benzoyl-1-thio-β-D-galactopyranoside (22)

Product 22 was obtained from 21 (837 mg, 1.0 mmol) following the procedure C. The pure product 22 was obtained by column chromatography on silica gel as a white foam (568 mg, 95%): $[\alpha]_{D}^{25}$ +19.9 (c 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 8.03–7.97 (m, 2H, Ar-H), 7.94-7.86 (m, 2H, Ar-H), 7.83-7.74 (m, 2H, Ar-H), 7.62 (t, J = 7.5 Hz, 1H, Ar-H), 7.54 (t, J = 7.4 Hz, 1H, Ar-H), 7.49-7.38 (m, 7H, Ar-H), 7.24 (dd, J = 12.8, 4.8 Hz, 2H, Ar-H), 7.16 (d, J = 7.9 Hz, 2H, Ar-H), 5.83 (d, J = 3.1 Hz, 1H, H-4), 5.78 (t, J = 9.9 Hz, 1H, H-2), 5.58 (dd, J = 9.9, 3.2 Hz, 1H, H-3), 4.97 (d, J = 9.9 Hz, 1H, H-1), 4.09 (m, 1H, H-5), 3.86 (dd, J = 11.9, 6.7 Hz, 1H, H-6a), 3.62 (dd, J = 11.9, 6.7 Hz, 1H, H-6b), 2.60 (br, 1H, -OH), 2.39 (s, 3H, -CH₃); ¹³C NMR (100 MHz, CDCl₃) δ: 166.52 (COPh), 165.49 (COPh), 165.17 (COPh), 138.77, 134.49 (2), 133.76, 133.36, 133.32, 130.09 (2), 129.81 (2), 129.75 (2), 129.68 (2), 129.30, 128.69, 128.60, 128.55 (2), 128.45 (2), 128.31 (2), 126.98 (Ar-C), 85.78 (C-1), 76.72, 73.15, 68.97, 68.00, 60.73, 21.37 (CH₃); HRMS calcd for C₃₄H₃₀O₈SNa (M+Na)⁺: 621.1554, found: 621.1562.

4.28. *p*-Methoxyphenyl 2,3,4-tri-O-benzyl-6-O-tertbutyldiphenylsiyl-α-p-galactopyranoside (23)

TBDPSCl (0.55 mL, 2.2 mmol) was added to a stirred mixture of *p*-Methoxyphenyl α -D-galactopyranoside (429 mg, 1.5 mmol) and imidazole (306 mg, 4.5 mmol) in dry DMF (20 mL) at room temperature under Ar atmosphere, and the mixture was then stirred at the same temperature followed by TLC. After the completion of the reaction, 60% NaH (0.78 g, 18.0 mmol) and BnBr (1.07 mL, 9.0 mmol) were added at 0 °C. After the complication of the

addition, the reaction was stirred at room temperature for 6 h. The reaction mixture was then diluted with EtOAc (50 mL) and sequentially washed with an aqueous solution of 1 N HCl $(10 \text{ mL} \times 4)$, and then brine $(5 \text{ mL} \times 2)$. The organic layer was dried over anhydrous Na₂SO₄, the solvent was removed under vacuum, and the residue was subject to flash column chromatography to give the pure compound **23** as a white solid (847 mg, 71%): $[\alpha]_{\rm D}^{25}$ +29.3 (c 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 7.58 (d, J = 7.7 Hz, 4H, Ar-H), 7.48–7.23 (m, 21H, Ar-H), 6.98 (d, J = 9.0 Hz, 2H, Mp-Ar-H), 6.76 (d, J = 9.0 Hz, 2H, Mp-Ar-H), 5.34 (d, J = 2.7 Hz, 1H, H-4), 5.03-4.94 (m, 2H), 4.84 (t, J=11.1 Hz, 2H), 4.74 (d, J = 11.9 Hz, 1H), 4.64 (d, J = 11.3 Hz, 1H), 4.20–4.10 (m, 2H), 4.06 (s, 1H), 4.00 (t, J = 6.3 Hz, 1H), 3.76 (s, 3H, $-OCH_3$), 3.72 (d, J = 6.6 Hz, 2H), 1.03 (s, 9H, $-C(CH_3)_3$); ¹³C NMR (100 MHz, CDCl₃) δ: 155.00, 151.13, 138.84, 138.53, 138.40, 135.48 (3), 133.17, 129.66 (2), 128.40 (2), 128.35 (2), 128.18 (2), 128.13 (2), 127.92 (2), 127.67 (3), 127.55 (2), 127.50 (2), 119.05 (2), 114.38 (2) (Ar-C), 97.81 (C-1), 78.97, 76.40, 75.04, 74.89, 73.31 (2), 71.46, 62.60, 55.56, 26.81 (3) (-C(CH₃)₃), 19.12; HRMS calcd for C₅₀H₅₄O₇SiNa (M+Na)*: 817.3531, found: 817.3542.

4.29. *p*-Methoxyphenyl 2,3,4-tri-O-benzyl-α-Dgalactopyranoside (24)

Product **24** was obtained from **23** (795 mg, 1.0 mmol) following the procedure C. The pure product **24** was obtained by column chromatography on silica gel as a white foam (495 mg, 89%): $[\alpha]_D^{25}$ +100.6 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ: 7.48–7.24 (m, 15H, Ar-H), 6.99 (d, *J* = 8.9 Hz, 2H, Mp-Ar-H), 6.81 (d, *J* = 8.9 Hz, 2H, Mp-Ar-H), 5.42 (s, 1H, H-1), 4.99 (dd, *J* = 20.9, 11.6 Hz, 2H, $-CH_2$ Ph), 4.85 (dd, *J* = 16.9, 12.0 Hz, 2H, $-CH_2$ Ph), 4.71 (dd, *J* = 23.0, 11.8 Hz, 2H, $-CH_2$ Ph), 4.18 (m, 2H), 3.97 (m, 2H), 3.77 (s, 3H, $-OCH_3$), 3.69 (d, *J* = 10.9 Hz, 1H), 3.49 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ: 155.02, 150.83, 138.60, 138.25, 138.01, 128.59 (2), 128.50 (2), 128.45 (2), 128.38 (2), 128.04, 127.95 (2), 127.74, 127.64, 127.53 (2), 118.49 (2), 114.47 (2) (Ar-*C*), 97.38 (*C*-1), 78.94, 76.26, 74.77, 74.51, 73.56, 73.44, 71.02, 62.20, 55.56; HRMS calcd for C₃₄H₃₆O₇Na (M+Na)⁺: 579.2353, found: 579.2359.

4.30. Ethyl 2,3,4-tri-O-benzyl-1-thio-β-D-galactopyranoside (26)

Product 26 was obtained from 25 (733 mg, 1.0 mmol) following the procedure C. The pure product 26 was obtained by column chromatography on silica gel as a white foam (475 mg, 96%): $[\alpha]_{D}^{25}$ +69.0 (c 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 7.46–7.24 (m, 15H, Ar-H), 5.52 (d, J = 5.5 Hz, 1H, H-1), 4.98 (d, J = 11.5 Hz, 1H, -*CH*₂Ph), 4.89 (d, *J* = 11.8 Hz, 1H, -*CH*₂Ph), 4.79–4.68 (m, 3H, $-CH_2Ph$), 4.65 (d, J = 11.6 Hz, 1H, $-CH_2Ph$), 4.32 (dd, J = 9.9, 5.5 Hz, 1H), 4.13 (t, J = 5.4 Hz, 1H), 3.89 (s, 1H), 3.81 (dd, J = 9.9, 2.7 Hz, 1H), 3.74 (dd, J = 13.3, 3.8 Hz, 1H), 3.53 (dd, J = 14.8, 9.9 Hz, 1H), 2.54 (ddd, J = 30.3, 12.8, 7.3 Hz, 2H, -CH₂CH₃), 1.74 (d, J = 5.5 Hz, 1H, -OH), 1.27 (t, J = 7.4 Hz, 3H, $-CH_2CH_3$); ¹³C NMR (100 MHz, CDCl₃) *b*: 138.56, 138.08, 138.03, 128.53 (2), 128.43 (2), 128.35 (2), 128.26 (2), 127.95, 127.88 (2), 127.63, 127.54, 127.52 (2) (Ar-C), 83.28 (C-1), 79.42, 76.09, 74.98, 74.45, 73.64, 72.42, 70.52, 62.30, 23.47 (-CH₂CH₃), 14.58 (-CH₂CH₃); HRMS calcd for C₂₉H₃₄O₅SNa (M+Na)⁺: 517.2025, found: 517.2031.

4.31. *p*-Methoxyphenyl 3,4-di-O-benzoyl-6-O-*tert*butyldiphenylsiyl-2-deoxy-2-phthalimdo-β-D-glucopyranoside (27)

TBDPSCI (0.55 mL, 2.2 mmol) was added to a stirred mixture of *p*-Methoxyphenyl 2-deoxy-2-phthalimdo-β-D-glucopyranoside (622 mg, 1.5 mmol) and imidazole (306 mg, 4.5 mmol) in dry Py (20 mL) at room temperature under Ar atmosphere, and the mixture was then stirred at the same temperature followed by TLC. After the completion of the reaction, BzCl (0.70 mL, 6.0 mmol) was added dropwise to the reaction mixture, and then catalytic DMAP added. The reaction was monitored by TLC, after completion, methanol (2 mL) added and the mixture concentrated under vacuum, then the residue diluted with CH₂Cl₂ (50 mL). The organic layer was washed sequentially with 1 M HCl (10 mL \times 2) and then brine $(20 \text{ mL} \times 2)$ and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum, and the residue was purified by flash column chromatography to afford **27** (1.06 g, 82%): $[\alpha]_{D}^{25}$ +18.8 (*c* 0.5 CHCl₃);¹H NMR (400 MHz, CDCl₃) δ: 7.91-7.79 (m, 6H, Ar-H), 7.70 (dd, J = 12.4, 5.7 Hz, 4H, Ar-H), 7.63–7.59 (m, 2H, Ar-H), 7.54 (t, J = 7.5 Hz, 1H, Ar-H), 7.46 (t, J = 7.4 Hz, 1H, Ar-H), 7.42-7.19 (m, 10H, Ar-H), 7.01-6.96 (m, 2H, Mp-Ar-H), 6.78-6.72 (m, 2H, Mp-Ar-H), 6.32 (dd, J = 10.7, 9.3 Hz, 1H, H-3), 6.05 (d, J = 8.4 Hz. 1H, H-1), 5.72 (t, J = 9.7 Hz, 1H, H-4), 4.84 (dd, J = 10.7, 8.5 Hz, 1H, H-2), 4.10 (ddd, J = 10.0, 5.1, 2.1 Hz, 1H, H-5), 3.94–3.85 (m,2H, H-6), 3.74 (s, 3H, -OCH₃), 1.07 (s, 9H, -C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) *δ*: 165.83 (COPh), 165.04 (COPh), 155.59, 150.84, 135.64 (2), 135.50 (2), 134.24 (2), 133.25 (2), 133.01, 132.77, 131.44, 129.86 (2), 129.79 (2), 129.64, 129.60, 129.13, 128.68, 128.37 (2), 128.32 (2), 127.80, 127.66 (2), 127.63 (2), 123.68 (2), 118.95 (2), 114.47 (2) (Ar-C), 97.65 (C-1), 75.37, 71.47, 69.60, 62.66, 55.63, 55.01, 26.62 (3) (-C(CH₃)₃), 19.17; HRMS calcd for $C_{51}H_{47}O_{10}NSiNa$ (M+Na)⁺: 884.2861, found: 884.2850.

4.32. *p*-Methoxyphenyl 3,4-Di-O-benzoyl-2-deoxy-2phthalimdo-β-D-glucopyranoside (28)

Product 28 was obtained from 27 (862 mg, 1.0 mmol) following the procedure C. The pure product 28 was obtained by column chromatography on silica gel as a white foam (548 mg, 88%): $[\alpha]_{D}^{25}$ +11.7 (c 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 7.95 (d, J = 7.8 Hz, 2H, Ar-H), 7.79 (m, 4H, Ar-H), 7.67 (m, 2H, Ar-H), 7.51 (t, J = 7.4 Hz, 1H, Ar-H), 7.44–7.33 (m, 3H, Ar-H), 7.27 (m, 2H, Ar-H), 6.91 (d, J = 9.0 Hz, 2H, Mp-Ar-H), 6.76 (d, J = 9.0 Hz, 2H, Mp-Ar-H), 6.40 (t, J = 10.0 Hz, 1H, H-3), 6.08 (d, J = 8.5 Hz, 1H, H-1), 5.60 (t, J = 9.6 Hz, 1H,H-4), 4.81 (dd, J = 10.6, 8.6 Hz, 1H, H-2), 4.03-3.95 (m, 1H), 3.92-3.83 (m, 1H), 3.76 (d, / = 12.7 Hz, 1H), 3.72 (s, 3H, -OCH₃), 2.68 (br, 1H, -OH); ¹³C NMR (100 MHz, CDCl₃) δ: 165.96 (COPh), 165.65 (COPh), 155.67, 150.45, 134.28 (2), 133.66, 133.34, 131.29, 129.91 (2), 129.74 (2), 128.51, 128.47 (2), 128.33 (2), 123.65 (2), 118.77 (2), 114.53 (2) (Ar-C), 97.52 (C-1), 74.64, 70.84, 69.88, 61.31, 55.56, 54.76; HRMS calcd for C₃₅H₂₉O₁₀NNa (M+Na)⁺: 646.1684, found: 646.1690.

4.33. *p*-Methoxyphenyl 2,3,4-tri-O-benzoyl-6-O-tertbutyldiphenylsiyl- β -D-galactopyranosyl (1 \rightarrow 4)-2,3-di-Obenzoyl-6-O-tert-butyldiphenylsiyl- β -D-gluco pyranoside (29)

TBDPSCl (0.55 mL, 2.2 mmol) was added to a stirred mixture of *p*-Methoxyphenyl β -D-galactopyranosyl (1 \rightarrow 4)- β -D-glucopyranoside (448 mg, 1.0 mmol) and imidazole (306 mg, 4.5 mmol) in dry Py (20 mL) at room temperature under Ar atmosphere, and the mixture was then stirred at the same temperature followed by TLC. After the completion of the reaction, BzCl (1.41 mL, 12.0 mmol) was added dropwise to the reaction mixture, and then catalytic DMAP added. The reaction was monitored by TLC, after completion, methanol (2 mL) added and the mixture concentrated under vacuum, then the residue diluted with CH₂Cl₂ (50 mL). The organic layer was washed sequentially with 1 M HCl (10 mL × 2) and then brine (20 mL × 2) and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum, and the residue was purified by flash column chromatography to afford **29** (910 mg, 63%):

15

 $[\alpha]_{\rm D}^{25}$ +91.3 (c 0.5 CHCl_3); $^1{\rm H}$ NMR (400 MHz, CDCl_3) δ : 7.97–7.70 (m, 12H, Ar-H), 7.68-7.28 (m, 24H, Ar-H), 7.25-7.13 (m, 5H, Ar-H), 6.96 (t, J = 7.6 Hz, 2H, Ar-H), 6.87–6.79 (m, 3H, Ar-H), 6.72– 6.65 (m, 4H, Ar-H), 6.00 (d, J = 2.6 Hz, 1H, H-4'), 5.68 (t, J = 9.6 Hz, 1H, H-3), 5.61–5.51 (m, 3H), 5.18 (d, J = 7.6 Hz, 1H, H-1), 5.01 (d, J = 7.8 Hz, 1H, H-1'), 4.52 (t, J = 9.6 Hz, 1H), 3.97–3.90 (m, 3H), 3.73 (s, 3H, $-OCH_3$), 3.52 (dd, J = 9.7, 5.3 Hz, 1H), 3.41 (d, J = 9.5 Hz, 1H), 3.10 (t, J = 9.7 Hz, 1H), 1.19 (s, 9H, $-C(CH_3)_3$), 0.94 (s, 9H, -C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ: 165.50 (COPh), 165.45 (COPh), 165.28 (COPh), 165.18 (COPh), 164.57 (COPh), 155.60, 151.22, 136.00, 135.95, 135.65, 135.55, 135.50, 135.46, 133.52, 133.15, 133.07, 132.75, 132.57, 132.34, 132.05, 130.40, 130.06, 129.99, 129.94, 129.87, 129.84, 129.65, 129.59, 129.51, 129.45, 129.43, 129.10, 128.98, 128.48, 128.43, 128.37, 128.26, 128.22, 128.14, 127.99, 127.83, 127.79, 127.58, 119.17, 114.41 (Ar-C), 100.87 (C-1), 100.20 (C-1'), 75.33, 73.39, 73.16, 72.75, 72.06, 71.94, 70.23, 67.18, 60.96, 59.70, 55.64, 27.02 (3) (-C(CH₃)₃), 26.57 (3) (-C(CH₃)₃), 19.55, 18.87; HRMS calcd for C₈₆H₈₄O₁₇Si₂Na (M+Na)⁺: 1467.5139, found: 1467.5128.

4.34. *p*-Methoxyphenyl 2,3,4-tri-O-benzoyl- β -D -galactopyranosyl (1 \rightarrow 4)-2,3-di-O-benzoyl- β -D-glucopyranoside (30)

Product 30 was obtained from 29 (722 mg, 0.5 mmol) following the procedure C. The pure product 30 was obtained by column chromatography on silica gel as a white foam (339 mg, 70%): $[\alpha]_{D}^{25}$ +61.3 (c 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 8.04 (t, J = 8.0 Hz, 4H, Ar-H), 7.96 (d, J = 7.9 Hz, 2H, Ar-H), 7.85 (d, J = 7.0 Hz, 2H, Ar-H), 7.79 (d, J = 7.4 Hz, 2H, Ar-H), 7.69 (t, *J* = 7.4 Hz, 1H, Ar-*H*), 7.60–7.50 (m, 4H, Ar-*H*), 7.45–7.36 (m, 6H, Ar-H), 7.25 (t, J = 7.8 Hz, 2H, Ar-H), 7.10 (t, J = 7.8 Hz, 2H, Ar-H), 6.87 (d, J = 8.9 Hz, 2H, Mp-Ar-H), 6.75 (d, J = 9.1 Hz, 2H, Mp-Ar-H), 5.83-5.71 (m, 2H), 5.70-5.59 (m, 2H), 5.54-5.43 (m, 1H), 5.16 (d, J = 7.7 Hz, 1H, H-1), 5.01 (t, J = 8.7 Hz, 1H), 4.35 (t, J = 9.4 Hz, 1H), 3.91–3.78 (m, 3H), 3.73 (s, 3H, –OCH₃), 3.61 (d, J = 9.7 Hz, 1H), 2.99–2.88 (m, 1H), 2.74 (dd, J = 12.0, 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ: 166.41 (COPh), 165.46 (COPh), 165.28 (COPh), 165.27 (COPh), 164.92 (COPh), 155.68, 150.97, 133.84, 133.48, 133.33, 133.31, 133.04, 130.16, 129.89, 129.80, 129.76, 129.73, 129.49, 129.16, 129.02, 128.69, 128.58, 128.42, 128.33, 128.25, 118.56, 114.57 (Ar-C), 100.85 (C-1), 100.63 (C-1'), 75.27, 74.70, 73.89, 73.21, 71.90, 71.53, 70.35, 68.53, 60.35, 59.83, 55.61; HRMS calcd for C₅₄H₄₈O₁₇Na (M+Na)⁺: 991.2784, found: 991.2768.

4.35. Phenyl 2,3,4-tri-O-benzoyl- β -D-galactopyranosyl (1 \rightarrow 4)-2,3-di-O-benzoyl-1-thio- β -D-glucopyranoside (32)

Product 32 was obtained from 31 (715 mg, 0.5 mmol) following the procedure C. The pure product 32 was obtained by column chromatography on silica gel as a white foam (372 mg, 78%): $[\alpha]_{D}^{25}$ +68.9 (c 0.5 CHCl₃);¹H NMR (400 MHz, CDCl₃) δ : 7.98 (t, J = 8.1 Hz, 4H, Ar-H), 7.84 (t, J = 8.8 Hz, 4H, Ar-H), 7.65 (t, *J* = 7.5 Hz, 1H, Ar-H), 7.55–7.45 (m, 7H, Ar-H), 7.42–7.24 (m, 12H, Ar-H), 7.15 (t, J = 7.8 Hz, 2H, Ar-H), 5.74 (t, J = 9.5 Hz, 1H, H-3), 5.47 (d, J = 3.2 Hz, 1H, H-4'), 5.43 (t, J = 9.8 Hz, 1H, H-2), 5.24 (dd, J = 10.1, 3.3 Hz, 1H, H-3'), 4.99 (d, J = 10.0 Hz, 1H, H-1'), 4.67 (d, J = 7.6 Hz, 1H, H-1), 4.27 (t, J = 9.6 Hz, 1H, H-2'), 4.10-4.01 (m, 3H), 3.74 (d, J = 9.8 Hz, 1H), 3.52 (t, J = 6.8 Hz, 1H), 3.30 (br, 1H, -OH), 2.89 (s, 1H), 2.84 (s, 1H), 2.50 (br, 1H, -OH); ¹³C NMR (100 MHz, CDCl₃) δ: 166.31 (COPh), 166.00 (COPh), 165.53 (COPh), 165.16 (COPh), 133.74, 133.35, 133.31, 133.21, 132.88 (2), 131.88, 129.96 (2), 129.83 (2), 129.73 (2), 129.47 (2), 129.44 (2), 129.10, 129.03 (2), 128.99, 128.79, 128.54 (2), 128.37 (3), 128.31 (3) (Ar-C), 103.46 (C-1'), 86.28 (C-1), 79.29, 75.55, 74.99, 73.83, 73.28,

70.66, 70.36, 68.52, 61.32, 59.84; HRMS calcd for $C_{53}H_{46}O_{15}SNa$ (M+Na)⁺: 977.2455, found: 977.2468.

4.36. *p*-Methoxyphenyl 2,3-di-*O*-benzoyl-4-*O*-levulinoyl-6-*O*-*tert*-butyl diphenylsiyl-β-D-glucopyranoside (33)

To a solution of 11a (879 mg, 1.2 mmol) in dry DCM (20 mL) under Ar atmosphere was added Levulinic acid (209 mg, 1.8 mmol), EDCI (460 mg, 2.4 mmol) and catalytic DMAP. The mixture was stirred at room temperature followed by TLC, after completion, the organic layer was washed with 1 M HCl and brine, then dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography to afford **33** (907 mg, 91%): $[\alpha]_{D}^{25}$ +91.3 (c 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 7.96 (dd, J = 15.1, 7.5 Hz, 4H, Ar-H), 7.76–7.67 (m, 4H, Ar-H), 7.52 (dd, I = 12.0, 7.3 Hz, 2H, Ar-H), 7.46–7.30 (m, 10H, Ar-H), 7.00 (d, *I* = 9.0 Hz, 2H, Mp-Ar-*H*), 6.73 (d, *I* = 9.0 Hz, 2H, Mp-Ar-*H*), 5.70 (dt, J = 17.4, 9.7 Hz, 2H), 5.43 (t, J = 9.4 Hz, 1H), 5.19 (d, J = 7.6 Hz, 1H, H-1), 3.88 (m, 3H, H-5, H-6), 3.74 (s, 3H, -OCH₃), 2.51 (dd, J = 12.6, 6.4 Hz, 2H, CH₃COCH₂CH₂COO-), 2.44-2.28 (m, 2H, CH₃COCH₂CH₂COO-), 2.01 (s, 3H, CH₃COCH₂CH₂COO-), 1.10 (s, 9H, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ: 205.54 (CH₃COCH₂CH₂-CO), 171.20 (CH₃COCH₂CH₂CO), 165.87 (COPh), 165.12 (COPh), 155.57, 151.28, 135.73 (2), 135.61 (2), 133.30, 133.22, 133.15, 132.95, 129.89 (2), 129.78 (2), 129.67 (2), 129.26, 128.94, 128.37 (3), 127.68 (3), 118.90 (2), 114.45 (2) (Ar-C), 100.77 (C-1), 75.21, 73.34, 71.82, 68.64, 62.48, 55.60, 37.77, 29.49, 27.77, 26.69 (3) (-C(CH₃)₃), 19.25; HRMS calcd for C₄₈H₅₀O₁₁SiNa (M+Na)⁺: 853.3020, found: 853.3009.

4.37. *p*-Methoxyphenyl 2,3-di-*O*-benzoyl-6-*O*-levulinoyl-β-D-glucopyranoside (34)

Product 34 was obtained from 33 (831 mg, 1.0 mmol) following the procedure C. The pure product 34 was obtained by column chromatography on silica gel as a white foam (420 mg, 71%): $\left[\alpha\right]_{D}^{25}$ +100.7 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ: 8.03–7.92 (m, 4H, Ar-H), 7.52 (m, 2H, Ar-H), 7.38 (m, 4H, Ar-H), 6.93 (d, J = 9.1 Hz, 2H, Mp-Ar-*H*), 6.77 (d, *J* = 9.1 Hz, 2H, Mp-Ar-*H*), 5.65 (t, *J* = 9.1 Hz, 1H, H-3), 5.50 (t, J = 9.4 Hz, 1H, H-2), 5.14 (d, J = 7.9 Hz, 1H, H-1), 4.59 (dd, J = 12.2, 4.7 Hz, 1H, H-6a), 4.43 (d, J = 12.1 Hz, 1H, H-6b), 4.00-3.90 (m, 1H), 3.83-3.78 (m, 1H), 3.75 (s, 3H, -OCH₃), 3.50 (d, J = 4.3 Hz, 1H, -OH), 2.79 (t, J = 6.4 Hz, 2H, CH₃COCH₂CH₂COO-), 2.65 (t, J = 6.6 Hz, 2H, CH₃COCH₂CH₂COO-), 2.19 (s, 3H, CH₃COCH₂CH₂COO-); ¹³C NMR $(100 \text{ MHz}, \text{ CDCl}_3) \delta$: 206.18 $(\text{CH}_3\text{COCH}_2\text{CH}_2\text{CO}), 173.10$ (CH₃COCH₂CH₂COO), 167.09 (COPh), 165.17 (COPh), 155.60, 151.03, 133.45, 133.21, 129.93 (2), 129.68 (2), 129.12, 128.83, 128.35 (2), 128.32 (2), 118.80 (2), 114.39 (2) (Ar-C), 100.71 (C-1), 76.16, 74.37, 71.26, 69.09, 62.93, 55.53, 37.93, 29.76, 27.84; HRMS calcd for C₃₂H₃₂O₁₁Na (M+Na)⁺: 615.1842, found: 615.1849.

4.38. *p*-Methoxyphenyl 3,4-di-O-acetyl-6-O-*tert*butyldiphenylsiyl-2-deoxy-2-phthalimdo-β-D-glucopyranoside (35)

TBDPSCl (0.55 mL, 2.2 mmol) was added to a stirred mixture of *p*-Methoxyphenyl 2-deoxy-2-phthalimdo- β -D-glucopyranoside (622 mg, 1.5 mmol) and imidazole (306 mg, 4.5 mmol) in dry Py (20 mL) at room temperature under Ar atmosphere, and the mixture was then stirred at the same temperature followed by TLC. After the completion of the reaction, Ac₂O (0.60 mL, 6.0 mmol) was added dropwise to the reaction mixture, and then catalytic DMAP added. The reaction was monitored by TLC, after completion, methanol (2 mL) added and the mixture concentrated under vacuum, then the residue diluted with CH₂Cl₂ (50 mL). The organic layer was washed sequentially with 1 M HCl (10 mL \times 2) and then brine $(20 \text{ mL} \times 2)$ and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum, and the residue was purified by flash column chromatography to afford **35** (875 mg, 79%): $[\alpha]_D^{25}$ +51.3 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 7.89–7.87 (m, 2H, Ar-*H*), 7.75–7.73 (m, 2H, Ar-*H*), 7.69–7.65 (m, 4H, Ar-*H*), 7.40–7.30 (m, 6H, Ar-*H*), 6.91 (d, *J* = 8.5 Hz, 2H, Mp-Ar-*H*), 6.69 (d, *J* = 8.6 Hz, 2H, Mp-Ar-*H*), 5.87–5.83 (m, 2H, H-3, H-1), 5.23 (t, *J* = 9.6 Hz, 1H, H-4), 4.56 (t, *J* = 9.6 Hz, 1H, H-2), 3.84 (d, *J* = 10.2 Hz, 1H), 3.80–3.69 (m, 2H), 3.71 (s, 3H, –OCH₃), 1.90 (s, 3H, –CH₃), 1.88 (s, 3H, –CH₃), 1.06 (s, 9H, –C(*CH*₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ : 170.35 (COCH₃), 169.35 (COCH₃), 155.55, 150.77, 135.71 (2), 135.59 (2), 134.35, 133.11, 132.91, 131.43, 129.73 (2), 127.73 (2), 127.71 (2), 123.70 (2), 118.81 (2), 114.45 (2) (Ar-*C*), 97.37 (*C*-1), 75.07, 71.08, 69.11, 62.62, 55.61, 54.75, 26.68 (3) (–C(CH₃)₃), 20.58, 20.54, 19.21; HRMS calcd for C₄₁H₄₃O₁₀NSiNa (M+Na)⁺: 760.2548, found: 760.2554.

4.39. *p*-Methoxyphenyl 3,6-di-O-acetyl-2-deoxy-2-phthalimdo- β -p-glucopyrano side (36)¹⁶

Product **36** was obtained from **35** (737 mg, 1.0 mmol) following the procedure C. The pure product **36** was obtained by column chromatography on silica gel as a white foam (394 mg, 79%): $[\alpha]_D^{25}$ +16.3 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ: 7.86–7.73 (m, 4H, Phth-Ar-H), 6.87–6.72 (m, 4H, Ar-H), 5.88 (d, *J* = 8.4 Hz, 1H, H-1), 5.74 (dd, *J* = 8.8, 10.6 Hz, 1H, H-3), 4.54 (dd, *J* = 4.1, 11.8 Hz, 1H, H-6a), 4.49 (dd, *J* = 8.5, 10.6 Hz, 1H, H-2), 4.40 (dd, *J* = 1.9, 12.1 Hz, 1H, H-6b), 3.85 (ddd, *J* = 2.6, 4.8, 9.9 Hz, 1H, H-5), 3.75 (t, *J* = 9.5 Hz, 4H), 3.72 (s, 3H, –OCH₃), 3.28 (br s, 1H, OH), 2.14 (s, 3H, –CH₃), 1.95 (s, 3H, –CH₃); ¹³C NMR (100 MHz, CDCl₃) δ: 171.67 (COCH₃), 171.30 (COCH₃), 155.62, 150.58, 134.40 (2), 131.37, 123.68 (3), 118.75 (3), 114.43 (3) (Ar-C), 97.42 (C-1), 74.15, 73.20, 69.58, 62.99, 55.60, 54.50, 21.07, 20.91, 20.70.

4.40. Methyl 2,3-di-O-acetyl-4,6-di-O-*tert*-butyldiphenylsiyl-αp-mannopyranoside (37)

TBDPSCI (1.13 mL. 4.5 mmol) and catalytic DMAP were added to a stirred mixture of Methyl 2.3-di-O-acetyl- α -p-mannopyranoside (417 mg, 1.5 mmol) and imidazole (612 mg, 9.0 mmol) in dry Py (20 mL) at room temperature, and the mixture was then stirred at the same temperature. The reaction was monitored by TLC, after completion, methanol (2 mL) added and the mixture concentrated under vacuum, then the residue diluted with CH₂Cl₂ (50 mL). The organic layer was washed sequentially with 1 M HCl ($10 \text{ mL} \times 2$) and then brine $(20 \text{ mL} \times 2)$ and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum, and the residue was purified by flash column chromatography to afford **37** (657 mg, 58%): $[\alpha]_{D}^{25}$ +69.3 (c 0.5 CHCl₃);¹H NMR (400 MHz, CDCl₃) δ : 7.76–7.68 (m, 6H, Ar-H), 7.53-7.49 (m, 2H, Ar-H), 7.46-7.29 (m, 12H, Ar-H), 5.20 (d, J = 1.7 Hz, 1H, H-2), 5.07 (dd, J = 9.7, 3.1 Hz, 1H, H-3), 4.56 (s, 1H, H-1), 4.09–4.00 (m, 2H), 3.95 (dd, J = 11.0, 5.1 Hz, 1H, H-6a), 3.86 (dd, J = 8.6, 4.1 Hz, 1H), 3.37 (s, 3H, $-OCH_3$), 1.77 (s, 3H, -COCH₃), 1.07 (s, 3H, -COCH₃), 1.04 (s, 9H, -C(CH₃)₃), 0.89 (s, 9H, -C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ: 170.10 (COCH₃), 169.87 (COCH₃), 136.14 (2), 135.96 (2), 135.66 (2), 135.24 (2), 134.41, 133.84, 133.29, 131.81, 129.70, 129.52, 129.46, 129.25, 128.16, 127.50 (2), 127.47 (2), 127.41 (2), 126.61 (Ar-C), 98.08 (C-1), 73.68, 72.83, 69.32, 66.73, 63.02, 54.67, 26.77 (3) (-C(CH₃)₃), 26.74 (3) (-C(CH₃)₃), 20.38, 19.89, 19.45, 19.29; HRMS calcd for C₄₃H₅₄O₈Si₂Na (M+Na)⁺: 777.3249, found: 777.3239.

4.41. Methyl 2,3-di-O-acetyl-4-O-*tert*-butyldiphenylsiyl-α-Dmannopyranoside (38)

Product **38** was obtained from **37** (755 mg, 1.0 mmol) following the procedure C. The pure product **38** was obtained by column

chromatography on silica gel as a white foam (454 mg, 88%): $[\alpha]_D^{25}$ +63.1 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 7.84–7.79 (m, 2H, Ar-*H*), 7.60–7.54 (m, 2H, Ar-*H*), 7.47–7.32 (m, 6H, Ar-*H*), 5.19 (dd, *J* = 2.9, 1.8 Hz, 1H, H-2), 5.08 (dd, *J* = 9.7, 3.1 Hz, 1H, H-3), 4.54 (d, *J* = 1.4 Hz, 1H, H-1), 3.98 (m, 2H), 3.89 (m, 2H), 3.40 (s, 3H, -OCH₃), 2.91 (d, *J* = 29.1 Hz, 1H, -OH), 1.73 (s, 3H, -COCH₃), 1.06 (s, 3H, -COCH₃), 1.00 (s, 9H, -C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ : 170.04 (COCH₃), 169.63 (COCH₃), 136.27 (2), 135.26 (2), 134.15, 131.58, 129.83, 129.30, 127.47 (2) (Ar-C), 98.56 (C-1), 72.89, 72.37, 69.17, 66.51, 61.85, 55.03, 26.83 (3) (-C(CH₃)₃), 20.24 (-C(CH₃)₃), 19.81 (COCH₃), 19.54 (COCH₃); HRMS calcd for C₂₇H₃₆O₈SiNa (M+Na)⁺: 539.2072, found: 539.2069.

4.42. *p*-Tolyl 2,4-di-O-acetyl-3,6-di-O-*tert*-butyldiphenylsiyl-1thio-β-D-galacto pyranoside (39)

TBDPSCI (1.13 mL, 4.5 mmol) and catalytic DMAP was added to a stirred mixture of p-Tolyl 1-thio- β -D-galactopyranoside (429 mg, 1.5 mmol) and imidazole (612 mg, 9.0 mmol) in dry Py (20 mL) at room temperature, and the mixture was then stirred at the same temperature followed by TLC. After the completion of the reaction, Ac₂O (0.60 mL, 6.0 mmol) was added to the reaction mixture, and then catalytic DMAP added. The reaction was monitored by TLC, after completion, methanol (2 mL) added and the mixture concentrated under vacuum, then the residue diluted with CH₂Cl₂ (50 mL). The organic layer was washed sequentially with 1 M HCl $(10 \text{ mL} \times 2)$ and then brine $(20 \text{ mL} \times 2)$ and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum, and the residue was purified by flash column chromatography to afford 39 (902 mg, 71%): [α]_D²⁵ +65.5 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ: 7.73 (d, J = 6.7 Hz, 2H, STol-Ar-H), 7.64 (d, J = 6.8 Hz, 6H, Ar-H), 7.49-7.32 (m, 14H, Ar-H), 7.02 (d, J = 8.0 Hz, 2H, STol-Ar-H), 5.32 (m, 2H, H-2, H-4), 4.43 (d, J = 10.0 Hz, 1H, H-1), 3.97 (dd, J = 9.4, 3.1 Hz, 1H, H-3), 3.69 (dd, J = 10.5, 6.5 Hz, 1H, H-6a), 3.60 (dd, J = 10.5, 6.1 Hz, 1H, H-6b), 3.51-3.46 (m, 1H, H-5), 2.31 (s, 3H, -CH₃), 2.10 (s, 3H, -COCH₃), 1.60 (s, 3H, -COCH₃), 1.05 (2s, 18H, $2 \times -C(CH_3)_3$; ¹³C NMR (100 MHz, CDCl₃) δ : 169.94 (COCH₃), 169.93 (COCH₃), 137.44, 136.23 (2), 135.95 (2), 135.68 (2), 135.62 (2), 133.58, 133.13, 132.97, 132.53, 131.62 (2), 130.64, 130.10, 129.79, 129.76, 129.70, 129.56 (2), 127.77 (2), 127.73 (2), 127.70 (2), 127.61 (2) (Ar-C), 87.78 (C-1), 77.94, 73.38, 70.46, 70.34, 62.19, 26.80 (3) (-C(CH₃)₃), 26.56 (3) (-C(CH₃)₃), 21.11, 20.87, 20.82, 19.21, 19.11; HRMS calcd for C₄₉H₅₈O₇SSi₂Na (M+Na)⁺: 869.3334, found: 869.3329.

4.43. p-Tolyl 2,6-di-O-acetyl-1-thio-β-D-galactopyranoside (40)

Product **40** was obtained from **39** (847 mg, 0.5 mmol) following the procedure C. The pure product **40** was obtained by column chromatography on silica gel as a white foam (266 mg, 72%): $[\alpha]_D^{25}$ +81.0 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 7.39–7.35 (d, *J* = 8.0 Hz, 2H, STol-Ar-*H*), 7.09 (d, *J* = 8.0 Hz, 2H, STol-Ar-*H*), 4.94 (t, *J* = 9.7 Hz, 1H, H-2), 4.53 (d, *J* = 10.0 Hz, 1H, H-1), 4.35 (dd, *J* = 11.6, 5.9 Hz, 1H, H-6a), 4.28 (dd, *J* = 11.6, 6.9 Hz, 1H, H-6b), 3.90 (d, *J* = 3.1 Hz, 1H, H-4), 3.70–3.60 (m, 2H, H-3, H-5), 2.31 (s, 3H, -*CH*₃), 2.15 (s, 3H, -*COCH*₃), 2.06 (s, 3H, -*COCH*₃); ¹³C NMR (100 MHz, CDCl₃) δ : 171.25 (COCH₃), 171.12 (COCH₃), 138.30, 133.03 (2), 129.67 (2), 128.78 (Ar-C), 86.29 (*C*-1), 75.91, 73.51, 71.21, 68.85, 62.83, 21.16, 21.09, 20.84; HRMS calcd for C₁₇H₂₂O₇SNa (M+Na)⁺: 393.0978, found: 393.0969.

4.44. 3β-(*tert*-Butyldiphenylsilyloxy)-androstan-17-one (41)¹⁷

Product **41** was obtained from **42** (290 mg, 1.0 mmol) following the procedure A. The pure product **41** was obtained by column chromatography on silica gel as a white foam (501 mg, 95%):

 $\begin{bmatrix} \alpha \end{bmatrix}_{2}^{25} +60.0 \ (c \ 0.5 \ CHCl_3); \ ^{1}H \ NMR \ (400 \ MHz, \ CDCl_3) \ \delta: \ 7.67 \ (d, J = 6.4 \ Hz, \ 4H, \ Ar-H), \ 7.39 \ (dd, J = 14.2, \ 6.1 \ Hz, \ 6H, \ Ar-H), \ 3.57 \ (s, 1H), \ 2.41 \ (dd, J = 19.2, \ 8.5 \ Hz, \ 1H), \ 2.09-1.95 \ (m, \ 1H), \ 1.89 \ (s, 1H), \ 1.74 \ (d, J = 9.1 \ Hz, \ 2H), \ 1.65-1.38 \ (m, \ 10H), \ 1.29-1.12 \ (m, 6H), \ 1.05 \ (d, J = 11.1 \ Hz, \ 2H), \ 1.04 \ (s, \ 9H, \ -C(CH_3)_3), \ 0.83 \ (s, \ 3H, \ -CH_3), \ 0.97-0.69 \ (m, \ 4H), \ 0.81 \ (s, \ 3H, \ -CH_3), \ 0.59-0.53 \ (m, \ 1H); \ ^{13}C \ NMR \ (100 \ MHz, \ CDCl_3) \ \delta: \ 221.09 \ (C=0), \ 135.71, \ 134.73, \ 129.36, \ 127.38 \ (Ar-C), \ 72.58, \ 54.31, \ 51.34, \ 47.76, \ 44.68, \ 38.22, \ 36.90, \ 35.81, \ 35.52, \ 34.93, \ 31.59, \ 31.47, \ 30.82, \ 28.32, \ 26.94 \ (3) \ (-C(CH_3)_3), \ 21.71, \ 20.38, \ 19.10, \ 13.75, \ 12.28. \ \$

4.45. Androstan-17-one (42)¹⁸

Product **42** was obtained from **41** (529 mg, 1.0 mmol) following the procedure C. The pure product **42** was obtained by column chromatography on silica gel as a white foam (255 mg, 88%): $[\alpha]_2^{25}$ +31.9 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 3.59 (m, 1H), 2.43 (dd, *J* = 19.0, 8.6 Hz, 1H), 2.12–1.99 (m, 1H), 1.91 (dd, *J* = 15.5, 10.6 Hz, 1H), 1.78 (d, *J* = 10.8 Hz, 3H), 1.74–1.62 (m, 2H), 1.48 (ddd, *J* = 31.0, 24.9, 14.3 Hz, 5H), 1.26 (dd, *J* = 25.2, 12.8 Hz, 6H), 1.20–1.03 (m, 1H), 0.96 (dd, *J* = 26.9, 15.1 Hz, 2H), 0.85 (s, 3H, *-CH*₃), 0.82 (s, 3H, *-CH*₃), 0.67 (dd, *J* = 15.3, 7.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 221.32 (*C*=O), 71.11, 54.42, 51.41, 47.77, 44.82, 38.05, 36.92, 35.82, 35.62, 35.03, 31.54, 31.42, 30.87, 28.37, 21.75, 20.48, 13.79 (*-CH*₃), 12.28 (*-CH*₃).

4.46. 3β-(*tert*-Butyldiphenylsilyloxy)-17β-hydroxy-5-androstene (43)¹⁹

Product 3β-(*tert*-butyldiphenylsilyloxy)-5-androsten-17-one 41a was obtained from dehydroepiandrosterone (DHEA) (5.00 g, 17.3 mmol) following the procedure A. The pure product 41a was obtained by column chromatography on silica gel as a white solid (7.20 g, 79%). To a suspension of LiAlH₄ (0.36 g, 9.5 mmol) in anhydrous THF (20 mL) was added dropwise at 0 °C a solution of ketone 41a (2.50 g, 4.7 mmol) in anhydrous THF (50 mL), and the resulting mixture was stirred at room temperature for 3 h. Subsequently, the reaction was quenched at 0 °C by a mixture of H₂O/THF (1:1) (30 mL) followed by addition of ethyl acetate (300 mL). The resulting mixture was dried over Na₂SO₄, the solid was filtered, and the filtrate was evaporated in vacuo. The residue was purified by flash column chromatography to afford alcohol 43 as a white solid (2.30 g, 92%): $[\alpha]_D^{25}$ +37.3 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ: 7.74-7.61 (m, 4H, Ar-H), 7.46-7.30 (m, 6H, Ar-H), 5.12 (d, *J* = 5.2 Hz, 1H, C=CH), 3.61 (t, *J* = 8.1 Hz, 1H), 3.52 (dt, *J* = 15.4, 5.3 Hz, 1H), 2.34 (dd, J = 16.3, 8.1 Hz, 1H), 2.14 (ddd, J = 13.3, 4.8, 2.0 Hz, 1H), 2.09-1.99 (m, 1H), 1.95-1.87 (m, 1H), 1.79 (dt, *J* = 12.3, 3.4 Hz, 1H), 1.74–1.48 (m, 6H), 1.47–1.38 (m, 5H), 1.29– 1.19 (m, 1H), 1.06 (s, 9H, -C(CH₃)₃), 1.00 (s, 3H, -CH₃), 0.92-0.78 (m, 4H), 0.73 (s, 3H, -CH₃).

4.47. 17β-Hydroxy-5-androstene (44)

Product **44** was obtained from **43** (529 mg, 1.0 mmol) following the procedure C. The pure product **44** was obtained by column chromatography on silica gel as a white foam (272 mg, 94%): $[\alpha]_D^{25}$ +50.6 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 5.35 (d, *J* = 4.5 Hz, 1H, C=CH), 3.64 (t, *J* = 8.4 Hz, 1H), 3.56–3.46 (m, 1H), 2.26 (dt, *J* = 25.2, 10.8 Hz, 2H), 2.12–1.93 (m, 2H), 1.84 (m, 3H), 1.65–1.55 (m, 10H), 1.45 (m, 6H), 1.33–1.22 (m, 6H), 1.13–1.03 (m, 2H), 1.02 (s, 3H, –CH₃), 0.98–0.85 (m, 2H), 0.75 (s, 3H, –CH₃); ¹³C NMR (100 MHz, CDCl₃) δ : 140.65(*C*=CH), 121.35 (*C*=CH), 106.96, 81.84, 71.67, 51.22, 50.13, 42.65, 42.18, 37.19, 36.48, 31.86, 31.55, 31.42, 30.43, 29.66, 23.38, 20.60, 19.40, 10.93; HRMS calcd for C₁₉H₃₀O₂Na (M+Na)⁺: 313.2143, found: 313.2138.

4.48. Benzyl 3β-(tert-butyldiphenylsilyloxy) oleanolate (45)

A solution of oleanolic acid (1.07 g, 2.3 mmol), BnBr (0.39 mL, 3.3 mmol), Et₃N (0.45 mL, 3.3 mmol) and Bu₄NI (86.0 mg, 0.24 mmol) in dry THF (20 mL) was stirred at room temperature overnight. The solvent was evaporated in vacuum and the residue was purified through a silica gel column chromatography to give benzyl oleanolate 46 as a white amorphous solid (1.24 g, 97%). Product 45 was obtained from compound 46 (1.09 g, 2.0 mmol) following the procedure A. The pure product 45 was obtained by column chromatography on silica gel as a white solid (1.38 g, 88%): $[\alpha]_{D}^{25}$ +51.3 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ: 7.73-7.65 (m, 4H, Ar-H), 7.44–7.30 (m, 11H, Ar-H), 5.22 (s, 1H), 5.05 (q, J = 12.6 Hz, 2H), 3.25 (dd, J = 11.6, 4.2 Hz, 1H), 2.86 (d, J = 9.6 Hz, 1H), 1.94 (dd, J = 13.3, 9.6 Hz, 1H), 1.80-1.42 (m, 11H), 1.40-1.23 (m, 6H), 1.20 (d, I = 10.8 Hz, 2H), 1.05 (s, 9H, $-C(CH_3)_3$), 1.04 (s, 3H, $-CH_3$), 0.96 (s, 3H, -CH₃), 0.91 (s, 3H, -CH₃), 0.89 (s, 3H, -CH₃), 0.87 (s, 3H, -CH₃), 0.84 (s, 3H, -CH₃), 0.56 (s, 3H, -CH₃), 0.62-0.52 (m, 2H).

4.49. Benzyl oleanolate (46)²⁰

Product 46 was obtained from 45 (785 mg, 1.0 mmol) following the procedure C. The pure product 46 was obtained by column chromatography on silica gel as a white foam (508 mg, 93%): $[\alpha]_{D}^{25}$ +50.7 (c 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 7.30–7.12 (m, 5H, Ar-H), 5.19 (s, 1H), 4.97 (q, J = 12.6 Hz, 2H, $-CH_2$ Ph), 3.16-3.03 (m, 1H), 2.80 (d, J = 9.9 Hz, 1H), 1.88 (m, 1H), 1.75 (dd, J = 8.6, 3.2 Hz, 2H), 1.66–1.37 (m, 12H), 1.37–1.18 (m, 4H), 1.17– 1.05 (m, 3H), 1.02 (s, 3H, $-CH_3$), 0.94 (d, J = 14.7 Hz, 1H), 0.88 (s, 3H, -CH₃), 0.82 (s, 3H, -CH₃), 0.79 (s, 3H, -CH₃), 0.77 (s, 3H, $-CH_3$), 0.67 (s, 3H, $-CH_3$), 0.61 (d, J = 11.0 Hz, 1H), 0.50 (s, 3H, -CH₃); ¹³C NMR (100 MHz, CDCl₃) δ: 177.38 (COOBn), 143.59 (C=CH), 136.33 (Ar-C), 128.33 (2) (Ar-C), 127.89 (2) (Ar-C), 127.83 (Ar-C), 122.41 (C=CH), 78.88, 65.85, 55.11, 47.51, 46.65, 45.77, 41.59, 41.28, 39.18, 38.66, 38.35, 36.91, 33.77, 33.05, 32.61, 32.28, 30.63, 28.04, 27.54, 27.10, 25.82, 23.59, 23.31, 22.96, 18.24, 16.79, 15.53, 15.24,

4.50. Methyl 3α-(*tert*-butyldiphenylsiyloxy)-7α-(*tert*-butyldiphenylsiyloxy)-cholanoate (47)

Product 47 was obtained from compound 48 (0.81 g, 2.0 mmol) following the procedure A. The pure product **47** was obtained by column chromatography on silica gel as a white solid (1.40 g, 79%): $[\alpha]_{D}^{25}$ +91.0 (c 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 7.75 (ddd, J = 9.3, 6.0, 1.9 Hz, 4H, Ar-H), 7.58 (ddd, J = 12.7, 8.0, 1.4 Hz, 4H, Ar-H), 7.42–7.31 (m, 12H, Ar-H), 3.77 (td, J = 11.5, 4.5 Hz, 1H), 3.68 (s, 3H, -OCH₃), 3.37-3.27 (m, 1H), 2.38 (ddd, J = 15.1, 10.2, 4.9 Hz, 1H), 2.29–2.20 (m, 1H), 2.07 (dd, J = 13.0, 6.8 Hz, 1H), 1.98-1.79 (m, 3H), 1.63-1.51 (m, 5H), 1.46-1.07 (m, 14H), 1.02 (s, 9H, $-C(CH_3)_3$), 0.98 (s, 9H, $-C(CH_3)_3$), 0.94 (d, J = 6.3 Hz, 3H), 0.89 (d, J = 13.7 Hz, 2H), 0.72 (s, 3H, -CH₃), 0.71 (s, 3H, $-CH_3$), 0.62 (dd, J = 14.2, 11.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ: 174.83 (C=0), 136.22, 135.88 (2), 135.72 (2), 135.69 (2), 135.59 (2), 134.87, 134.67, 134.59, 129.41 (2), 129.37, 129.02, 127.43 (2), 127.38 (2), 127.37 (2), 127.11 (2) (Ar-C), 77.33, 77.01, 76.70, 74.64, 73.04, 55.67, 54.98, 51.51, 43.86, 43.79, 42.36, 40.03, 39.44, 37.04, 36.39, 35.32, 34.80, 33.67, 31.15, 31.06, 30.53, 28.57, 28.38, 27.11 (3) $(-C(CH_3)_3)$, 27.01 (3) $(-C(CH_3)_3)$, 23.37, 21.41, 19.34, 19.10, 18.49, 12.28; HRMS calcd for C₅₇H₇₈O₄Si₂Na (M+Na)⁺: 905.5331, found: 905.5327.

4.51. Methyl cholanoate (48)

Product **48** was obtained from **47** (883 mg, 1.0 mmol) following the procedure C. The pure product **48** was obtained by column

chromatography on silica gel as a white foam (329 mg, 81%): $[\alpha]_D^{25}$ +61.3 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 3.67 (s, 3H, –OCH₃), 3.64–3.54 (m, 2H), 2.36 (m, 1H), 2.27–2.18 (m, 1H), 2.02–1.97 (m, 1H), 1.94–1.86 (m, 1H), 1.84–1.75 (m, 4H), 1.62 (m, 5H), 1.55–1.40 (m, 7H), 1.38–1.21 (m, 5H), 1.18–0.98 (m, 3H), 0.96–0.89 (m, 6H), 0.68 (s, 3H, –CH₃); ¹³C NMR (100 MHz, CDCl₃) δ : 174.76 (COOMe), 71.39, 71.33, 55.70, 54.87, 51.52, 43.73, 43.70, 42.40, 40.10, 39.17, 37.24, 36.81, 35.25, 34.90, 34.04, 31.05, 30.99, 30.26, 28.59, 26.87, 23.38, 21.15, 18.36, 12.11.

4.52. 3β-(*tert*-Butyldiphenylsiyloxy) diosgenin (49)²¹

Product **49** was obtained from diosgenin **50** (10.00 g, 24.1 mmol) following the procedure A. The pure product **49** was obtained by column chromatography on silica gel as a white solid (90%, 14.1 g): $[\alpha]_D^{25}$ -86.8 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 7.71–7.64 (m, 4H, Ar-H), 7.39 (ddd, *J* = 15.6, 10.5, 5.5 Hz, 6H, Ar-H), 5.12 (d, *J* = 4.5 Hz, 1H, C=CH), 4.39 (q, *J* = 7.3 Hz, 1H), 3.57–3.43 (m, 2H), 3.37 (t, *J* = 10.9 Hz, 1H), 2.34 (t, *J* = 11.9 Hz, 1H), 2.14 (dd, *J* = 12.8, 4.0 Hz, 1H), 1.99–1.80 (m, 3H), 1.78–1.54 (m, 11H), 1.43 (t, *J* = 10.6 Hz, 4H), 1.31–1.21 (m, 1H), 1.06 (s, 9H, -C(CH₃)₃), 1.00 (s, 3H, -CH₃), 0.96 (d, *J* = 6.9 Hz, 3H, -CH₃), 0.79 (d, *J* = 6.3 Hz, 3H, -CH₃), 0.77 (s, 3H, -CH₃).

4.53. Diosgenin (50)22

Product **50** was obtained from **49** (653 mg, 1.0 mmol) following the procedure C. The pure product **50** was obtained by column chromatography on silica gel as a white foam (348 mg, 84%): $[\alpha]_D^{25}$ +11.3 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 5.36 (d, J = 5.1 Hz, 1H), 4.42 (dd, J = 15.0, 7.5 Hz, 1H), 3.61–3.47 (m, 2H), 3.39 (t, J = 10.9 Hz, 1H), 2.37–2.20 (m, 2H), 2.06–1.97 (m, 2H), 1.88 (dt, J = 16.7, 8.4 Hz, 3H), 1.75 (dd, J = 19.9, 6.9 Hz, 2H), 1.71–1.41 (m, 12H), 1.35–1.26 (m, 1H), 1.22–1.09 (m, 3H), 1.04 (s, 3H, -*CH*₃), 0.98 (d, J = 6.9 Hz, 3H), 0.80 (2s, 6H, $2 \times -CH_3$); ¹³C NMR (100 MHz, CDCl₃) δ : 140.75 (*C*=CH), 121.40 (C=CH), 109.26, 80.79, 71.70, 66.82, 62.04, 56.48, 50.01, 42.24, 41.57, 40.23, 39.75, 37.19, 36.61, 32.02, 31.82, 31.59, 31.40, 31.35, 30.27, 28.77, 20.84, 19.40, 17.12, 16.27, 14.51.

4.54. 3β-(*tert*-Butyldiphenylsiyloxy)-6α-acetyloxy diosgenin (51)

To a solution of 3-β-TBDPS diosgenin **49** (7.84 g, 12.0 mmol) in dry THF (150 mL) under an argon atmosphere at 0 °C, 1 M BH₃ in THF (36 mL, 36.0 mmol) was added slowly. The mixture was allowed to stir overnight at room temperature. NaOH (10 N, 7.50 mL, 75.0 mmol) was added over 30 min at 0 °C. Subsequently, 30% hydrogen peroxide (7.50 mL, 65.0 mmol) was added and vigorous stirring was continued at room temperature for 2 h. Extraction with CH_2Cl_2 (100 mL \times 3) and the combined extracts were washed successively with 1 N HCl, saturated NaHCO₃, and brine, dried (anhydrous Na₂SO₄), and concentrated in vacuo. Purification by column chromatography gave $3-\beta$ -OTBDPS- $6-\alpha$ -OH diosgenin **51a** as a white solid (7.33 g, 91%). To a stirred solution of compound 51a (1.34 g, 2.0 mmol) in pyridine (10 mL) was added Ac₂O (0.61 mL, 6.0 mmol). The reaction was stirred at the same temperature for 6 h. The reaction mixture was then diluted with ethyl acetate (25 mL) and sequentially washed with an aqueous solution of 1 N HCl (10 mL \times 4), a saturated NaHCO₃ solution (5 mL \times 3), and then water $(5 \text{ mL} \times 2)$. The organic layer was dried over anhydrous Na₂SO₄, the solvent was removed under vacuum, and the residue was subject to flash column chromatography to give the pure compound **51** as a white solid (97%, 1.42 g): $[\alpha]_D^{25}$ +21.3 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ: 7.67–7.65 (m, 4H, Ar-H), 7.44–7.33 (m, 6H, Ar-H), 4.62 (d, J = 10.9 Hz, 1H), 4.34 (d, J = 7.4 Hz, 1H), 3.54 (s,

1H), 3.44 (d, J = 10.4 Hz, 1H), 3.35 (t, J = 10.9 Hz, 1H), 1.91 (s, 3H, $-COCH_3$), 1.95–1.77 (m, 3H), 1.75–1.53 (m, 12H), 1.43 (d, J = 12.0 Hz, 2H), 1.31–1.17 (m, 3H), 1.10–0.98 (m, 3H), 1.03 (s, 9H, $-C(CH_3)_3$), 0.93 (d, J = 6.9 Hz, 3H, $-CH_3$), 0.86 (s, 3H, $-CH_3$), 0.82 (s, 1H), 0.78 (d, J = 6.2 Hz, 3H, $-CH_3$), 0.72 (s, 3H, $-CH_3$), 0.57 (t, J = 11.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 170.70 (COCH₃), 135.71, 134.72, 134.61, 129.39, 127.37 (Ar-*C*), 109.21, 80.58, 77.53, 72.27, 72.09, 66.79, 61.93, 55.89, 53.56, 48.51, 41.50, 40.47, 39.73, 37.66, 37.09, 36.47, 33.58, 32.21, 31.56, 31.25, 30.24, 28.68, 26.89 (3) ($-C(CH_3)_3$), 21.17, 20.79, 19.05, 17.09, 16.36, 14.44, 13.32; HRMS calcd for C₄₅H₆₄O₅SiNa (M+Na)⁺: 735.4415, found: 735.4429.

4.55. 6α-Acetyloxy diosgenin (52)

Product **52** was obtained from **51** (713 mg, 1.0 mmol) following the procedure C. The pure product **52** was obtained by column chromatography on silica gel as a white foam (412 mg, 87%): $[\alpha]_D^{25}$ +65.3 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 4.75–4.66 (m, 1H), 4.37 (dd, *J* = 14.9, 7.3 Hz, 1H), 3.54 (s, 1H), 3.46 (d, *J* = 8.1 Hz, 1H), 3.36 (t, *J* = 10.8 Hz, 1H), 2.04 (s, 3H), 1.95 (ddd, *J* = 24.4, 12.1, 5.2 Hz, 2H), 1.88–1.77 (m, 4H), 1.76–1.56 (m, 9H), 1.45 (dd, *J* = 29.1, 18.7 Hz, 4H), 1.16 (ddt, *J* = 54.4, 26.9, 14.9 Hz, 9H), 0.95 (d, *J* = 6.9 Hz, 4H), 0.88 (s, 3H), 0.78 (d, *J* = 6.2 Hz, 3H), 0.75 (s, 3H), 0.69 (d, *J* = 10.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 170.72 (COCH₃), 109.22, 80.60, 72.13, 70.90, 66.83, 62.06, 55.94, 53.68, 48.68, 41.57, 40.53, 39.78, 37.76, 37.10, 36.60, 33.70, 32.24, 31.63, 31.30, 31.12, 30.26, 28.72, 21.23, 20.90, 17.08, 16.38, 14.44, 13.36; HRMS calcd for C₂₉H₄₆O₅Na (M+Na)⁺: 497.3237, found: 497.3246.

4.56. 3β-(*tert*-Butyldiphenylsiyloxy)-6α-allyloxy diosgenin (53)

To a stirred solution of compound 51a (1.34 g, 2.0 mmol) in dry DMF (10 mL) was added 60% NaH (0.26 g, 6.0 mmol) and AllBr (0.26 mL, 3.0 mmol) at 0 °C. After the complication of the addition, the reaction was stirred at room temperature for 6 h. The reaction mixture was then diluted with EtOAc (50 mL) and sequentially washed with an aqueous solution of 1 N HCl (10 mL \times 4), and then brine (5 mL \times 2). The organic layer was dried over anhydrous Na₂SO₄, the solvent was removed under vacuum, and the residue was subject to flash column chromatography to give the pure compound **53** as a white solid (90%, 1.28 g): $[\alpha]_D^{25}$ +41.6 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 7.67 (d, I = 6.6 Hz, 4H, Ar-H), 7.42–7.30 (m, 6H, Ar-H), 5.84 (ddt, J = 16.1, 10.7, 5.4 Hz, 1H, $-CH = CH_2$), 5.21 (d, J = 17.1 Hz, 1H, $-CH = CH_2a$), 5.12 (d, J = 10.3 Hz, 1H, $-CH=CH_2b$, 4.37 (dd, J = 14.0, 6.1 Hz, 1H), 4.00 (dd, J = 12.7, 5.5 Hz, 1H), 3.80 (dd, J = 11.3, 6.7 Hz, 1H), 3.60-3.49 (m, 1H), 3.45 (d, J = 7.1 Hz, 1H), 3.40–3.30 (m, 1H), 3.01 (td, J = 10.7, 4.3 Hz, 1H), 2.20 (d, J = 12.6 Hz, 1H), 1.98 (td, J = 12.2, 7.5 Hz, 2H), 1.82 (dd, J = 13.6, 6.8 Hz, 1H), 1.75–1.69 (m, 1H), 1.68–1.37 (m, 15H), 1.26 (dt, J = 24.5, 12.3 Hz, 3H), 1.12-1.00 (m, 3H), 1.05 (s, 9H, $-C(CH_3)_3$, 0.94 (d, J = 6.9 Hz, 3H, $-CH_3$), 0.80 (s, 3H, $-CH_3$), 0.78 (d, J = 6.3 Hz, 3H, -CH₃), 0.73 (s, 3H, -CH₃), 0.55 (t, J = 9.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ: 135.75, 135.50, 134.70, 129.35, 127.40, 127.37, 116.06 (-CH₂CH=CH₂), 109.18 (-CH₂CH=CH₂), 80.67, 72.71, 70.03, 66.80, 62.06, 56.05, 53.60, 50.00, 41.57, 40.52, 39.79, 37.86, 37.20, 36.25, 33.74, 32.43, 31.69, 31.43, 31.32, 30.27, 28.78, 27.01 (3) (-C(CH₃)₃), 20.86, 19.14, 17.11, 16.39, 14.46, 13.47; HRMS calcd for C₄₆H₆₆O₄SiNa (M+Na)⁺: 4733.4623, found: 733.4632.

4.57. 6α-Allyloxy diosgenin (54)

Product **54** was obtained from **53** (711 mg, 1.0 mmol) following the procedure C. The pure product **54** was obtained by column

chromatography on silica gel as a white foam (420 mg, 89%): $[\alpha]_D^{25}$ +61.3 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 5.89 (qd, *J* = 11.1, 5.6 Hz, 1H), 5.24 (dd, *J* = 17.2, 1.4 Hz, 1H), 5.13 (d, *J* = 10.3 Hz, 1H), 4.38 (dd, *J* = 14.8, 7.5 Hz, 1H), 4.09–4.02 (m, 1H), 3.86 (m, 1H), 3.59–3.51 (m, 1H), 3.48–3.42 (m, 1H), 3.38–3.31 (m, 1H), 3.06 (td, *J* = 10.2, 4.2 Hz, 1H), 2.25 (m, 1H), 2.10–1.95 (m, 3H), 1.81 (m, 4H), 1.68 (m, 3H), 1.63–1.34 (m, 8H), 1.24 (dt, *J* = 15.2, 11.2 Hz, 3H), 1.18–0.98 (m, 6H), 0.94 (d, *J* = 6.9 Hz, 3H), 0.81 (s, 3H), 0.78 (d, *J* = 6.2 Hz, 3H), 0.74 (s, 3H), 0.66 (td, *J* = 11.7, 3.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 135.35, 116.53, 109.18, 80.64, 76.68, 76.57, 71.09, 70.16, 66.79, 62.04, 56.00, 53.64, 50.03, 41.57, 40.51, 39.76, 37.75, 37.19, 36.33, 33.71, 32.26, 31.68, 31.30, 30.87, 30.23, 28.74, 20.91, 17.10, 16.39, 14.45, 13.45; HRMS calcd for C₃₀H₄₈O₄Na (M+Na)⁺: 495.3445, found: 495.3432.

4.58. 3β-(*tert*-Butyldiphenylsiyloxy)-6α-(*tert*butyldiphenylsiyloxy) diosgenin (55)

Product 55 was obtained from 51a (1.34 g, 2.0 mmol) following the procedure A. The pure product 55 was obtained by column chromatography on silica gel as a white solid (1.62 g, 89%): $[\alpha]_{D}^{22}$ +88.9 (c 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 7.74–7.60 (m, 8H, Ar-H), 7.46-7.29 (m, 12H, Ar-H), 4.33-4.22 (m, 1H), 3.62-3.49 (m, 2H), 3.45 (d, J = 7.5 Hz, 1H), 3.34 (t, J = 10.9 Hz, 1H), 2.43 (d, J = 12.7 Hz, 1H), 1.77 (dd, J = 13.9, 7.0 Hz, 1H), 1.69–1.47 (m, 12H), 1.47-1.08 (m, 11H), 1.06 (s, 9H, -C(CH₃)₃), 1.03 (s, 9H, $-C(CH_3)_3$, 0.99–0.82 (m, 10H), 0.78 (d, J = 6.4 Hz, 3H, $-CH_3$), 0.65 (s, 3H, $-CH_3$), 0.61 (s, 3H, $-CH_3$), 0.49 (t, J = 9.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ: 135.97, 135.91, 135.73, 135.24, 135.12, 134.58, 134.18, 129.49, 129.38, 127.46, 127.38, 127.23 (Ar-C), 109.13, 80.63, 73.00, 71.43, 66.79, 61.97, 55.82, 53.66, 51.85, 41.89, 41.51, 40.37, 39.80, 37.33, 36.31, 33.73, 33.10, 31.35, 30.26, 28.76, 27.15 (3) (-C(CH₃)₃), 27.00 (3) (-C(CH₃)₃), 20.81, 19.38, 19.18, 17.11, 16.33, 14.42, 13.48; HRMS calcd for C₅₉H₈₀O₄Si₂Na (M+Na)⁺: 931.5487, found: 931.5472.

4.59. Chlorogenin (56)23

Product **56** was obtained from **55** (909 mg, 1.0 mmol) following the procedure C. The pure product **56** was obtained by column chromatography on silica gel as a white foam (341 mg, 79%): $[\alpha]_D^{25}$ +106.1 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, pyridine) δ : 6.05 (br, 1H), 5.81 (br, 1H), 4.56 (dd, *J* = 14.6, 7.6 Hz, 1H), 3.97–3.91 (m, 1H), 3.70–3.64 (m, 1H), 3.59 (d, *J* = 11.3 Hz, 1H), 3.50 (t, *J* = 10.5 Hz, 1H), 3.03 (d, *J* = 12.1 Hz, 1H), 2.26 (d, *J* = 11.6 Hz, 1H), 2.15–2.04 (m, 2H), 2.00–1.95 (m, 1H), 1.87–1.81 (m, 1H), 1.80– 1.63 (m, 7H), 1.62–1.42 (m, 6H), 1.39–0.99 (m, 9H), 1.16 (d, *J* = 6.9 Hz, 3H, *-CH*₃), 0.90 (s, 3H, *-CH*₃), 0.87 (s, 3H, *-CH*₃), 0.74– 0.69 (m, 1H), 0.70 (d, *J* = 5.5 Hz, 3H, *-CH*₃).

4.60. *tert*-butyldiphenylsiyl 3β-(*tert*-butyldiphenylsiyloxy) ursolate (57)

TBDPSCI (1.58 mL, 6.0 mmol) was added to a stirred mixture of ursolic acid (0.91 g, 2.0 mmol) and imidazole (0.81 g, 12.0 mmol) in dried DMF (30 mL) at room temperature, and the mixture was then stirred at the same temperature for 12 h. The reaction was worked up with saturated NH₄Cl solution (10 mL), the mixture was extracted with EtOAc (50 mL \times 3), and the combined organic layer was washed sequentially with a saturated NaHCO₃ aqueous solution (10 mL \times 2) and then saturated Na4Cl solution (20 mL \times 2) and there saturated Na2Cl solution (20 mL \times 2) and the residue was purified by flash column chromatography to afford compound **57** as a white solid (1.47 g, 79%): $[\alpha]_{D}^{25}$ +101.3 (*c* 0.5 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ :

7.76–7.65 (m, 8H, Ar-*H*), 7.46–7.32 (m, 12H, Ar-*H*), 5.18 (s, 1H, –C=*CH*), 3.27 (dd, *J* = 11.5, 4.2 Hz, 1H), 2.23 (d, *J* = 11.3 Hz, 1H), 1.99 (dd, *J* = 14.5, 10.9 Hz, 1H), 1.83–1.66 (m, 6H), 1.56 (q, *J* = 13.4 Hz, 3H), 1.48–1.15 (m, 10H), 1.13 (s, 9H, –C(*CH*₃)₃), 1.06 (s, 9H, –C(*CH*₃)₃), 1.01 (s, 3H, –*CH*₃), 0.98 (s, 3H, –*CH*₃), 0.95 (s, 3H, –*CH*₃), 0.94 (s, 3H, –*CH*₃), 0.84 (s, 3H, –*CH*₃), 0.81 (d, *J* = 6.3 Hz, 3H, –*CH*₃), 0.58 (dd, *J* = 28.7, 11.6 Hz, 2H), 0.40 (s, 3H, –*CH*₃); ¹³C NMR (100 MHz, CDCl₃) δ : 176.20 (*C*=O), 137.71, 135.93, 135.82, 135.77, 135.48, 134.18, 133.49, 131.99, 129.84, 129.57, 129.39, 129.19, 127.65, 127.43, 127.17, 125.65 (Ar-C), 81.05, 55.16, 53.26, 52.18, 49.35, 47.34, 42.24, 39.58, 39.39, 39.34, 38.95, 38.45, 36.64, 33.22, 30.84, 28.59, 27.87, 27.53, 27.10 (3) (–C(*CH*₃)₃), 26.74 (3) (–C(*CH*₃)₃), 24.71, 23.18, 21.19, 19.60, 19.32, 19.09, 18.39, 17.28, 16.99, 16.58, 15.48; HRMS calcd for C₆₂H₈₄O₃Si₂Na (M+Na)⁺: 955.5851, found: 955.5862.

Acknowledgments

This work is supported by National Nature Science Foundation of China (NSFC 21002014).

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.carres.2012.02.021.

References

- (a) Green, T. W.; Wuts, P. G. M. Protecting Groups in Organic Synthesis, 4th ed.; John Wiley & Sons: New York, 2007. pp 306–315; (b) Jarowicki, K.; Kocienski, P. J. Chem. Soc., Perkin Trans. 1 1999, 1589–1616; (c) Nelson, T. D.; Crouch, R. D. Synthesis 1996, 1031–1069.
- 2. Hanessian, S.; Lavallee, P. Can. J. Chem. 1975, 53, 2975–2977.
- (a) Stern, A.; Swenton, J. S. J. Org. Chem. 1987, 52, 2763–2768; (b) Overman, L. E.; Okazaki, M. E.; Mishra, P. Tetrahedron Lett. 1986, 27, 4391–4394.
- (a) Rucker, C. Chem. Rev. 1995, 95, 1009–1064; (b) Lalonde, M.; Chan, T. H. Synthesis 1985, 817–845; (c) Schelhaas, M.; Waldmann, H. Angew. Chem., Int. Ed. 1996, 35, 2056–2083; (d) Jarowicki, K.; Kocienski, P. J. Chem. Soc., Perkin Trans. 1 2001, 2109–2135.
- (a) Bothwell, J. M.; Angeles, V. V.; Carolan, J. P.; Olson, M. E.; Mohan, R. S. *Tetrahedron Lett.* **2010**, *51*, 1056–1058. and references cited therein; (b) Kumar, G. D. K.; Baskaran, S. J. Org. Chem. **2005**, *70*, 4520–4523. and references cited therein; (c) Wang, B.; Sun, H. X.; Chen, B.; Sun, Z. H. Green Chem. **2009**, *11*, 1112–1114.

- (a) Shah, S. T. A.; Singh, S.; Guiry, P. J. J. Org. Chem. 2009, 74, 2179–2182; (b) Shah, S. T. A.; Guiry, P. J. Org. Biomol. Chem. 2008, 6, 2168–2172; (c) Barros, M. T.; Maycock, C. D.; Thomassigny, C. Synlett 2001, 1146–1148; (d) Kim, S.; Jacobo, S. M.; Chang, C. T.; Bellone, S.; Powell, W. S.; Rokach, J. Tetrahedron Lett. 2004, 45, 1973–1976; (e) Crouch, R. D.; Romany, C. A.; Kreshock, A. C.; Menconi, K. A.; Zile, J. L. Tetrahedron Lett. 2004, 45, 1279–1281; (f) Matsuo, I.; Wada, M.; Ito, Y. Tetrahedron Lett. 2002, 43, 3273–3275; (g) Lee, A. S. Y.; Yeh, H. C.; Shie, J. J. Tetrahedron Lett. 1998, 39, 5249–5252; (h) Shekhani, M. S.; Khan, K. M.; Mahmood, K.; Shah, P. M.; Lenera, S. T. Tetrahedron Lett. 1990, 31, 1669–1670.
- (a) Du, Y. G.; Wei, G. H.; Cheng, S. H.; Hua, Y. X.; Linhardt, R. J. Tetrahedron Lett. 2006, 47, 307–310;
 (b) Clark, J. H. Green Chem. 1999, 1, 1–8;
 (c) Hegner, J.; Pereira, K. C.; DeBoef, B.; Lucht, B. L. Tetrahedron Lett. 2010, 51, 2356–2358;
 (d) Kassrin, T.; Supannee, S.; Somsak, R.; Poonsakdi, P. Tetrahedron 2009, 65, 4316– 4325;
 (e) Reddy, C. R.; Srikanth, B.; Narsimha Rao, N.; Shin, D. S. Tetrahedron 2008, 64, 11666–11672.
- (a) Misono, M.; Ono, I.; Koyano, G.; Aoshima, A. Pure Appl. Chem. 2000, 72, 1305–1311; (b) Wilson, K.; Clark, J. H. Pure Appl. Chem. 2000, 72, 1313–1319.
- Pizzio, L. R.; Vázquez, P. G.; Cáceres, C. V.; Blanco, M. N. Appl. Catal., A 2003, 256, 125–139.
- (a) Pârvulescu, A. N.; Gagea, B. C.; Pârvulescu, V. I.; Vos, D. D.; Jacobs, P. A. Appl. Catal., A 2006, 306, 159–164; (b) Pârvulescu, A. N.; Gagea, B. C.; Poncelet, G.; Pârvulescu, V. I. Appl. Catal., A 2006, 301, 133–137; (c) Gagea, B. C.; Pârvulescu, A. N.; Poncelet, G.; Pârvulescu, V. I. Catal. Lett. 2005, 105, 219–222; (d) Gagea, B. C.; Pârvulescu, A. N.; Pârvulescu, V. I.; Auroux, A.; Grange, P.; Poncelet, G. Catal. Lett. 2003, 91, 141–144.
- (a) Liu, P. N.; Xia, F.; Wang, Q. W.; Ren, Y. J.; Chen, J. Q. Green Chem. 2010, 12, 1049–1055; (b) de Angelis, A.; Flego, C.; Ingallina, P.; Montanari, L.; Clerici, M. G.; Carati, C.; Perego, C. Catal. Today 2001, 65, 363–371.
- (a) Song, G. P.; Yang, S.; Zhang, W.; Cao, Y. L.; Wang, P.; Ding, N.; Zhang, Z. H.; Guo, Y.; Li, Y. X. J. Med. Chem. 2009, 52, 7368–7371; (b) Liu, Q. C.; Zhang, L.; Li, X. P.; Guo, T. T.; Wang, P.; Li, Y. X. J. Carbohydr. Chem. 2009, 28, 506–519; (c) Guo, T. T.; Liu, Q. C.; Wang, P.; Zhang, L.; Zhang, W.; Li, Y. X. Carbohydr. Res. 2009, 344, 1167–1174; (d) Liu, Q. C.; Wang, P.; Zhang, L.; Guo, T. T.; Lv, G. K.; Li, Y. X. Carbohydr. Res. 2009, 344, 1276–1281; (e) Zhu, S. L.; Li, Y. X.; Yu, B. J. Org. Chem. 2008, 73, 4978–4985.
- (a) Roy, B.; Verma, P.; Mukhopadhyay, B. Carbohydr. Res. 2009, 344, 145–148;
 (b) Vidadala, S. R.; Thadke, S. A.; Hotha, S. J. Org. Chem. 2009, 74, 9233–9236.
- 14. Verma, P.; Mukhopadhyay, B. Carbohydr. Res. 2009, 344, 2554-2558
- 15. Fairweather, J. K.; Karoli, T.; Ferro, V. Bioorg. Med. Chem. 2004, 12, 6063-6075.
- 16. Wang, P.; Wang, J.; Guo, T. T.; Li, Y. X. Carbohydr. Res. 2010, 345, 607-620.
- 17. Kamijo, S.; Matsumura, S.; Inoue, M. Org. Lett. 2010, 12, 4195–4197.
- Nunes, R. M. D.; Peixoto, A. F.; Axet, M. R.; Pereira, M. M.; Moreno, M. J.; Kollár, L.; Claver, C.; Castillón, S. J. Mol. Catal. A: Chem. 2006, 247, 275–282.
- Calogeropoulou, T.; Avlonitis, N.; Minas, V.; Alexi, X.; Pantzou, A.; Charalampopoulos, I.; Zervou, M.; Vergou, V.; Katsanou, E. S.; Lazaridis, I.; Alexis, M. N.; Gravanis, A. J. Med. Chem. 2009, 52, 6569–6587.
- Cheng, M. S.; Yan, M. C.; Liu, Y.; Zheng, L. G.; Liu, J. Carbohydr. Res. 2006, 341, 60–67.
- Cheng, M. S.; Wang, Q. L.; Tian, Q.; Song, H. Y.; Liu, Y. X.; Qiang, Q.; Xu, X.; Miao, H. D.; Yao, X. S.; Yang, Z. J. Org. Chem. 2003, 68, 3658–3662.
- Yu, G. F.; Mulabagal, V.; Diyabalanage, T.; Hurtada, W. A.; DeWitt, D. L.; Nair, M. G. Food Chem. 2008, 110, 991–996.
- 23. Jiang, B.; Shi, H. P.; Tian, W. S.; Zhou, W. S. Tetrahedron 2008, 64, 469-476.