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Commercially available zinc dust in the presence of ammonium chloride in acetonitrile at reflux removes
the 2,2,2-trichloroethyl (TCE) group at anomeric centers with excellent yields (>95%) in short reaction
times. This present method is easily implemented on substrates containing acyl and benzyl groups and
large-scale reactions also proceed in high yield.

� 2011 Elsevier Ltd. All rights reserved.
Table 1
Comparison of the known methods of removal anomeric TCE on 2,2,2-trichloroethyl
2,3,4,6-tetra-O-acetyl-b-D-glucopyranoside 1a

Entry System Temperature (�C) Time (h) Yielda (%)

1 Zn/AcOH5a 25 29 39.8
2 Zn/AcOH/AcONa5a 25 4 74.6
3 Zn/NMI6b 25 8 <10
4 Zn/pentane-2,4-dione6c 25 1.5 52.4
5 Zn/pentane-2,4-dione6c 50 10 min 75.6

a Isolated yields.
In the course of synthesizing oligosaccharides and glycoconju-
gates, manipulations of the anomeric protection of a sugar moiety
usually play a key role.1 To date, various groups have been devel-
oped to achieve chemoselective transformations or activations,
such as acetyl, benzoyl, allyl, trimethylsilylethyl and phenylthiol.2

Since Woodward first highlighted the elegance of the 2,2,2-trichlo-
roethyl (TCE) ester group in his classical cephalosporin synthesis in
1966,3 the TCE moiety has been the most widely used haloethyl
protecting group for carbon, sulfuric and phosphorus acids.4 Later,
Lemieux, Ogawa and other chemists successfully introduced the
TCE group for the protection of the anomeric center against stan-
dard reaction conditions in carbohydrate chemistry.5,6 Despite
these achievements, cleavage of TCE protection is sometimes still
capricious in the syntheses of polyfunctional molecules. Hence
the development of new methodologies for TCE deprotection re-
mains a challenging task.5a,7 For instance, in our continuous efforts
toward carbohydrate-targeted drug delivery, we have encountered
difficulties in selectively removing this group at the anomeric
center. At the beginning of our work, we first investigated the
TCE removal using the methods developed by other groups, such
as Zn–AcOH,5a Zn–AcOH–NaOAc,5a Zn–pentane-2,4-dione6b and
Zn/NMI.6a However, most methods have drawbacks. For example,
the Zn–AcOH system suffers from long reaction times and low
yields and the use of Zn–pentane-2,4-dione requires pre-activation
of the zinc dust (Table 1).
ll rights reserved.
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ng).
In our earlier research, Zn–NH4Cl–EtOH had been successfully
applied in the deprotection of 2-iodo-3-perfluoroalkyl group at
the anomeric center of carbohydrates and other complex com-
pounds.8 Because most protective groups including ethers, esters,
silyl ethers, and ketals all remained intact under refluxing condi-
tions, we tried this elegant reductive approach in the deprotection
of TCE groups at the anomeric center.9 When a solution of 2,2,
2-trichloroethyl 2,3,4,6-tetra-O-acetyl-b-D-glucopyranoside 1a in
ethanol was treated with non-activated Zn dust and NH4Cl, and al-
lowed to heat at reflux over a period of just 10 min, TLC revealed
only the presence of one new component, which was revealed as
the 2,3,4,6-tetra-O-acetyl-b-D-glucopyranose with the help of
NMR and MS (Table 2, entry 1). Inspired by the fact that the
2,2,2-trichloroethyl could be easily removed using this simple sys-
tem, we established optimal conditions. First, even if the reaction
time was prolonged to 60 min, the starting material was not fully
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Table 3
Deprotection of anomeric O-TCE glycosides in refluxing acetonitrilea

Entry Starting material Product
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Table 2
Initial studies of TCE removal

O

OAc

AcO
AcO

OAc
OTCE

O

OAc

AcO
AcO

OAc
OH

Zn/NH 4Cl
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Entry Catalyst (Zn/NH4Cl)
(equiv)

Solvent Temp
(�C)

Time
(min)

Yielda

(%)

1 5/5 EtOH 78 10 63
2 5/5 AcOH 90 10 56
3 5/5 Toluene 90 10 Trace
4 5/5 THF 66 10 84
5 5/5 CH3CN 82 10 89
6 8/8 CH3CN 82 5 98
7 8/0 CH3CN 82 120 NRb

8 8/1 CH3CN 82 90 98
9 8/4 CH3CN 82 40 98

10 8/6 CH3CN 82 15 98

a Isolated yields.
b NR, no reaction.
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consumed and the yield of product scarcely increased. Then, sev-
eral solvents were tested. We found that the conversion proceeded
much better in aprotic polar solvents especially in acetonitrile (en-
try 5 in Table 2). In addition, the NH4Cl is indispensable to this
reaction. The reaction did not occur at all without NH4Cl (entry
7); moreover, the reaction times are shortened by using more
NH4Cl (entries 6 and 8–10).

These findings prompted us to examine if this novel method
could be effective with other trichloroethyl glycosides. The data
listed in Table 3 represent our preliminary results of the deprotec-
tion under the specified conditions (8 equiv Zn powder, 8 equiv
NH4Cl, CH3CN, reflux). All of the reactions of monosaccharide gly-
cosides with acyl protection went to completion within 5 min (en-
tries 1–6). Similarly, the deprotections are also nearly quantitative
in the presence of benzyl ether protection (entries 7–13). As well,
reactions of disaccharides proceeded smoothly in the presence of
more zinc dust and ammonium chloride (16 equiv Zn powder,
16 equiv NH4Cl, entries 14 and 15). The structure and stereochem-
istry of all products were elucidated by NMR and mass spectral
Time (min) Yieldb (%) a/bc

OH 5 9810 2.7:1

OH
5 9810 1.7:1

OH 5 9610 >19:1

c

OH

5 9614 >19:1

OH
5 9915 1.9:1

OH
5 9715 0.8:1

OH 5 9711 1.8:1

OH
5 9810 1.7:1

OH
5 9613 >19:1
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Table 3 (continued)

Entry Starting material Product Time (min) Yieldb (%) a/bc
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a Reaction conditions: 1 equiv O-TCE glycosides, 8 equiv Zn powder, 8 equiv NH4Cl, solvent, CH3CN (2 mL), reflux.
b Isolated yields.
c a/b ratios were based on the integration of the corresponding anomeric protons in the 1H NMR (500 MHz) spectra.
d 16 equiv Zn powder, 16 equiv NH4Cl.
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data.17 In addition, the same methodology was also shown to be
reliable on scales as large as 4.78 g (10 mmol) using 2,3,4,6-tetra-
O-acetyl-b-D-glucopyranoside as the substrate; the yield was
excellent as well (98%).

In summary, we have demonstrated a facile, highly efficient re-
moval of TCE protecting groups in the presence of either acetyl or
benzyl protection. The time required for the desired deprotective
reactions are remarkably short (5–20 min) and the yields are excep-
tionally high (>95%). All the applied reagents were directly applied
without any pretreatment. In particular, the zinc dust does not need
to be activated before use. Furthermore, the reaction could be done
in neutral media and in large scale; therefore, multiple bicarbonate
washes for removal of acetic acid are avoided. Thus, we expect that
this methodology will find widespread use in the deprotection of
this class of protecting group. Further exploration of this methodol-
ogy is currently under study in our laboratory.

1. Experimental

1.1. General experimental methods

1H NMR spectra were recorded on a Bruker DRX-500 MHz spec-
trometer using tetramethylsilane as internal standard and CDCl3 as
solvent. Silica gel (10–40 l, Yantai, China) was used for column
chromatography. TLC plates (10–40 l, Yantai, China) were used
to monitor the reactions.
1.2. General experimental procedure

To a solution of 2,2,2-trichloroethyl 2,3,4,6-tetra-O-acetyl-b-D-
glucopyranoside (96 mg, 0.2 mmol) in CH3CN (2 mL), were added
Zn powder (104 mg, 1.6 mmol) and NH4Cl (85 mg, 1.6 mmol). After
being heated at reflux for 5 min, the mixture was filtered. The fil-
trate was concentrated to a residue that was purified by silica gel
column chromatography (petroleum ether–EtOAc 3:1) to give
2,3,4,6-tetra-O-acetyl-D-glucopyranose (69 mg, 98%).
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