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ABSTRACT: Transition metal imide-mediated C−N bond
formation is a powerful strategy for the introduction of nitrogen
into organic compounds. We have discovered that the reaction of
N-mesityl(β-diketiminato)iron imide complex tBuLFeNMes (tBuL =
3,5-bis(2,6-diisopropylphenylimino)-2,2,6,6-tetramethylheptyl and
Mes = 2,4,6-trimethylphenyl) with a terminal alkyne substrate
gives a β-alkynyl enamine product by a novel alkyne carboamination process. Stoichiometric experiments revealed a catalyst
deactivation pathway involving generation of the acetylide complex, tBuLFeCCPh, and mesityl amine (MesNH2) from the acetylene
complex, tBuLFe(HCCPh), and mesityl azide (MesN3). This reactivity is suppressed in the presence of coordinating additive 4-tert-
butylpyridine (tBuPy), likely through formation of the four-coordinate complex tBuLFe(HCCPh)(tBuPy). These insights were
instrumental in identifying reaction conditions that allow for turnover of the iron catalyst.

The incorporation of nitrogen into organic molecules is an
undeniably important goal in chemical synthesis given

the ubiquity of nitrogen in biologically active compounds.1

One valuable approach involves the construction of C−N
bonds via the transfer of nitrene groups (NR) from transition
metal imide complexes.2 Methods that take advantage of imide
complexes based on iron3 are especially attractive given that
iron is nontoxic4 and the most abundant transition metal in
Earth’s crust.5 Iron imides (Fe = NR, Scheme 1) are proposed

as the active species in a variety of catalytic group transfer
reactions,6 including C−H amination,7,8 alkene aziridina-
tion,9,10 and carbodiimide and isocyanate formation (Scheme
1).11,12 Stoichiometric studies like those described by the
Betley8d,13 and Holland11,12 groups support the intermediacy
of iron imide species in these catalytic transformations.
Herein, we report a novel alkyne carboamination process in

the reaction of an iron imide complex with a terminal alkyne
substrate (Scheme 1).14,15 Stoichiometric studies provided
essential insights that allowed us to render this process
catalytic with respect to iron. The reaction generates new C−N
and C−C bonds in the β-alkynyl enamine product, a

compound that we found can also be cyclized in the presence
of a copper(I) salt16 to form the 2,4-disubstituted pyrrole
(Scheme 1; see the Supporting Information),17,18 a common
substructure in medicinal chemistry.19 In addition to
incorporating a new class of substrate, the chemistry described
here couples the nitrene group of an iron imide to two
substrate equivalents, setting it apart from previously reported
iron imide chemistry (Scheme 1).
Our group is interested in iron imide complexes for their

potential as catalytic species in iron-catalyzed C−N bond
formation. Several examples of isolable, mononuclear iron
imides20 have been described since Peters’ seminal report.20f

Exceptional work from the Holland group on iron imides
supported by β-diketiminate ligands11,21−23 suggested the
possibility of accessing a related complex, tBuLFeNMes (2, eq
1). Indeed, reaction of dinitrogen precursor tBuLFeNNFetBuL
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Scheme 1. Iron Imides in C−N Bond-Forming Reactions

Communicationpubs.acs.org/Organometallics

© XXXX American Chemical Society
A

https://doi.org/10.1021/acs.organomet.1c00454
Organometallics XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

T
SI

N
G

H
U

A
 U

N
IV

 o
n 

A
ug

us
t 3

1,
 2

02
1 

at
 2

0:
57

:4
8 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Corey+A.+Richards"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nigam+P.+Rath"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jamie+M.+Neely"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.organomet.1c00454&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.organomet.1c00454?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.organomet.1c00454?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.organomet.1c00454?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.organomet.1c00454?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.organomet.1c00454/suppl_file/om1c00454_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.organomet.1c00454?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.organomet.1c00454?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.organomet.1c00454?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.organomet.1c00454?fig=eq1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.organomet.1c00454?fig=eq1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.organomet.1c00454?fig=eq1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.organomet.1c00454?fig=eq1&ref=pdf
pubs.acs.org/Organometallics?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.organomet.1c00454?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/Organometallics?ref=pdf
https://pubs.acs.org/Organometallics?ref=pdf


(1, eq 1)24 and mesityl azide (MesN3) leads to formation of 2
in 74% yield. Complex 2 is relatively stable, with t1/2 ∼ 4 days
in C6D6 solution at 23 °C. Magnetic susceptibility measure-
ments support an S = 3/2 ground state, consistent with an
intermediate-spin iron(III) species and in agreement with data
previously reported for other (β-diketiminato)iron
imides.11,21−23

The stability of complex 2 allowed us to determine its
molecular structure by X-ray crystallography (Figure 1).

Similar to the structures of related N-adamantyl (β-
diketiminato)iron imides,22,23 2 contains a three-coordinate
iron center that is planar, with bond angles that sum to
360.0(2)°. The FeN bond is longer (1.7097(1) Å) and the
FeN−C bond angle is remarkably linear (178.52(9)°)
compared to these examples22,23 (1.670(2) Å and 170.4 (2)°,
1.700 (5) Å and 151.2 (5)°, respectively). Interestingly, the N-
aryl substituent is nearly coplanar with the ligand plane, with a
dihedral angle of 4.5(2)° between N1−Fe1 and C36−C41
bonds, an observation that may result from steric25 and/or
electronic factors.
The unusual structural properties of 2 hinted at the

possibility for new reactivity. We were particularly interested
in the reaction of 2 and phenylacetylene, a substrate that
contains both an activated C−H bond and a π-system. To this
end, 2 was exposed to 1 equiv of phenylacetylene in C6D6
solution. Analysis of the reaction mixture showed total
consumption of phenylacetylene after 15 min as well as
formation of a new organic product, identified as β-alkynyl
enamine 3a as a single Z-isomer (eq 2). The structure of 3a as
the enamine tautomer was confirmed by thorough spectro-
scopic analysis, including 1H−15N HSQC NMR (see the
Supporting Information).
Complete conversion of the imide complex occurs within 15

min when 3 equiv of phenylacetylene are added to 2 (eq 2). In
this case, 3a forms cleanly (85% yield by 1H NMR) alongside a
single organometallic product, identified as the phenyl-
acetylene complex, tBuLFe(HCCPh) (4, eq 2),25 by 1H
NMR. This result is encouraging in the context of a potential
catalytic reaction: the iron center in 4 is in the same formal +1
oxidation state26 as the dinitrogen precursor 1 used to generate
imide complex 2 (eq 1). However, an attempted catalytic
reaction performed by addition of MesN3 followed by 2.1
equiv of phenylacetylene to 10 mol % of 1 (20 mol % of Fe)

leads to 3a in a single turnover (20% yield by 1H NMR, eq
3).27

The lack of catalytic reactivity shown in eq 3 prompted
investigation of the proposed turnover step, conversion of
tBuLFe(HCCPh) (4) to tBuLFeNMes (2). Rather than transfer
of the NMes group to iron to generate 2, reaction of 4 and 1
equiv of MesN3 leads to formation of 2,4,6-trimethylaniline,
MesNH2, in approximately 50% conversion with respect to
MesN3. The major organometallic product was identified as
the iron acetylide complex, tBuLFeCCPh (5, eq 4),28 by 1H
NMR. This result is fully consistent with deactivation of the
iron catalyst and the formation of MesNH2 shown in eq 3.
The reactivity in eq 4 presents a serious problem for

rendering alkyne carboamination catalytic with respect to iron.
Considering how to solve this problem, we hypothesized that a
coordinating additive could suppress this catalyst-deactivating
process through coordination to 4.29 To evaluate this idea, 1
equiv of tBuPy was added to the reaction of 4 and MesN3 (eq
5). Carboamination reactivity is recovered and the process in

eq 4 is avoided under these conditions, evidenced by the
presence of 3a and the absence of MesNH2 in the reaction
mixture (eq 5).
We propose the coordinating additive takes effect through

the formation of a four-coordinate complex, tBuLFe(HCCPh)-
(tBuPy) (6, eq 6). Isolation of the product of the reaction of 4

and 1 equiv of tBuPy from a concentrated pentane solution at
−35 °C and analysis by X-ray crystallography confirmed the
molecular structure of complex 6 in the solid state (Figure 2;
see the Supporting Information for further details). NMR
experiments also point to the existence of 6 in solution. The
1H NMR spectra of reactions of 4 ([4]0 = 20 mM) in the
presence of varied concentrations of tBuPy show sets of
paramagnetic peaks similar to those observed for 4 alone, plus
three additional peaks that can be assigned to the tBuPy ligand.
The chemical shifts of these peaks show a concentration
dependence on tBuPy, consistent with an equilibrium between

Figure 1. Molecular structure of tBuLFeNMes (2) with ellipsoids
drawn at the 50% probability level. Hydrogen atoms have been
omitted for clarity. Selected bond distance (Å) and angles (deg) for 2:
Fe1−N3, 1.7097(1); Fe1−N3−C36, 178.52(9); N1−Fe1−N2,
96.67(4); N1−Fe1−N3, 131.37(4), N2−Fe1−N3, 131.97(4).
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three-coordinate 4 and four-coordinate 6 (Figure 3). Plotting
the change in chemical shift versus [tBuPy]0 revealed an
equilibrium constant (Keq) of 12.4 ± 0.3 M−1 for the reaction
shown in eq 6 (see the Supporting Information).30

Certainly, a coordinating additive has the potential to
interact with other iron species present in the catalytic reaction
mixture. We were especially interested in the possible
coordination of tBuPy to 2, given the higher decomposition
ra te o f MeLFeNAd( tBuPy) (MeL = 2 ,4 -b i s(2 ,6 -
diisopropylphenylimino)pentyl and Ad = 1-adamantyl) versus
MeLFeNAd (t1/2 ∼ 30 min versus 2 days, respectively).22 1H
NMR analysis of the reaction of 1 equiv of tBuPy and 2
supports the formation of a four-coordinate complex,
tBuLFeNMes(tBuPy) (see the Supporting Information). This
compound is less stable than three-coordinate complex 2 (t1/2
∼ 1.5 h versus 4 days, respectively). Fortunately, carboamina-
tion is faster than decomposition in the presence of the

phenylacetylene substrate. That is, simultaneous addition of 1
equiv of tBuPy and 3 equiv of phenylacetylene to 2 leads to
formation of 3a, as observed by 1H NMR (see the Supporting
Information).
Importantly, the result in eq 5 implies that 4 can be

converted to 2 in the presence of a tBuPy additive, thus closing
the catalytic cycle. When a catalytic reaction is performed by
adding a solution of MesN3, 2.1 equiv of phenylacetylene, and
40 mol % of tBuPy to 10 mol % of 1, product 3a forms in 60%
yield by 1H NMR (Scheme 2). The remainder of the reaction

mixture sheds light on the reason for this moderate yield. In
addition to 3a, MesNH2 is generated in 10% yield, indicating
that catalyst deactivation still competes with carboamination in
the presence of tBuPy. Furthermore, the iron-containing
product isolated at the end of the reaction with pyridine
(Py) as the additive31 was identified as tBuLFeCCPh(Py) (7,
67% isolated yield based on Fe, Scheme 2) by X-ray
crystallography (Figure 4). Complex 7 presumably arises
from coordination of Py to 5, which is generated by the
process in eq 4.

A proposed catalytic cycle illustrating potential intermediate
complexes that have been observed in stoichiometric experi-
ments is shown in Scheme 3. Iron imide complex 2 reacts with
3 equiv of phenylacetylene by carboamination to give β-alkynyl
enamine 3a and phenylacetylene complex 4. From 4, two
pathways are possible. Catalyst deactivation through inter-
action with MesN3 can occur to form MesNH2 and acetylide
complex 5, which can coordinate the pyridine additive to give
7. Alternatively, 4 may engage the pyridine additive to generate

Figure 2. Molecular structure of tBuLFe(HCCPh)(tBuPy) (6) with
ellipsoids drawn at the 50% probability level. Hydrogen atoms have
been omitted for clarity. Selected bond distances (Å) and angles
(deg) for 6: Fe1−C1, 1.956(4); Fe1−C2, 1.992(4); Fe1−N3,
2.097(7); C1−C2, 1.264(7); C1−C2−C3, 146.0(4), N1−Fe1−N3,
99.1(2); N2−Fe1−N3, 96.9(2).

Figure 3. 1H NMR spectra of the reactions shown in eq 6 at the
indicated initial concentrations of tBuPy and 20 mM 4.

Scheme 2. Catalytic Carboamination in the Presence of
Coordinating Additives

Figure 4. Molecular structure of tBuLFe(CCPh)(Py) (7) with
ellipsoids drawn at the 50% probability level. Hydrogen atoms have
been omitted for clarity. Selected bond distances (Å) and angles
(deg) for 7: Fe1−C41, 2.0126(1); Fe1−N3, 2.1229(1); C41−C42,
1.212(2); Fe1−C41−C42, 165.58(1), N3−Fe1−C41, 104.86(5);
N1−Fe1−N3, 102.87(4); N2−Fe1−N3, 102.39(4).
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four-coordinate complex 6. Release of phenylacetylene and
reaction with MesN3 leads to pyridine-bound imide complex
tBuLFeNMes(RPy), which is in equilibrium with imide complex
2. The detailed mechanisms of carboamination and catalyst
deactivation are both subjects of current work in our lab.
A preliminary reaction scope evaluating the carboamination

reactivity of various 4-substituted arylacetylene derivatives is
shown in Scheme 4. Electron-rich substrates 4-methoxy- and 4-

methylphenylacetylene couple to MesN3 to give β-alkynyl
enamines 3b and 3c in moderate yields (70 and 60%,
respectively, by 1H NMR). 4-Fluorophenylacetylene is also a
competent substrate for alkyne carboamination, delivering 3d
in 65% yield. The reaction of MesN3 and 4-(trifluoromethyl)-
phenylacetylene, on the other hand, leads to 3e in only 30%
yield, suggesting that the electron-withdrawing substituent is
detrimental to reactivity. Products 3b−3e can be converted to
the 2,4-disubstituted pyrroles by copper(I)-catalyzed cycliza-
tion (see the Supporting Information).
We have discovered that the N-mesityl(β-diketiminato)iron

imide complex tBuLFeNMes interacts with phenylacetylene by
alkyne carboamination to give a β-alkynyl enamine product.
Efforts to render the reaction catalytic in iron identified a
competing process that is responsible for catalyst deactivation.
Stoichiometric studies revealed that this reactivity can be
avoided in the presence of a pyridine additive, presumably
through coordination and formation of a four-coordinate
complex. Further studies are underway to fully elucidate the
mechanisms of carboamination and catalyst deactivation and
to explore the scope of this exciting chemistry.
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