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A convenient and efficient one-pot multi-component synthesis of novel polysubstituted 4-amino-2,3-
dihydropyridines from carbonyl compounds, malononitrile and acetonitrile, using indium triflate is
reported. Acetonitrile acts both as a solvent as well as a substrate.
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Dihydropyridines constitute an important class of bioactive het-
erocycles.1–5 Among these, 4-substituted 1,4-dihydropyridines are
established calcium channel regulators and their synthesis has
been the subject of extensive study.6–12 On the other hand, the syn-
thesis of 2,3-dihydropyridines,which are useful intermediates in
the formation of biologically active substances, has not received
adequate attention. This may be due to their tendency to undergo
facile disproportionation to pyridine derivatives.13 The known
methods for the synthesis of 2,3-dihydropyridines include the
oxidative dehydrogenation of tetrahydropyridine,14 thermal cycli-
zation of allene amidines,15 acid catalyzed cyclization of some
2,4-dinitrophenyl hydrazones,16 Ritter reaction of saturated and
unsaturated diols17 and the reduction of pyridinium salts.18 Trial-
kyl 2,3-dihydropyridinium salts have been prepared by the Lewis
acid catalyzed condensation–cyclization of acyclic aldehydes and
benzyl ammonium chloride.19 These reactions also afforded the
corresponding pyridinium salts in the ratio of 3:1. Despite their
attractiveness, most of the known methodologies are associated
with the limitations of stringent reaction conditions, formation of
multitude of products, and poor yield. Therefore, a simple and
efficient synthetic methodology for the preparation of usefully
functionalized 2,3-dihydropyridines is still desirable.

Since, multi-component reactions are flexible, atom-economic,
and eco-friendly they have gained great importance in synthetic
ll rights reserved.
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organic chemistry.20–22 Our aim to establish a synthetic methodol-
ogy for the one-pot preparation of stable polysubstituted 2,3-dihy-
dropyridines, from the readily accessible substrates, led us to
explore the reaction of alkyl and aryl ketones with malononitrile
and acetonitrile in the presence of Lewis acids. Herein, we wish
to report a simple and efficient one-pot synthesis of novel polysub-
stituted 2,3-dihydropyridines, under ambient reaction conditions,
and their subsequent semi-synthetic transformation to carboxylic
acid and amino derivatives.

Acetonitrile has been used as a solvent in many Lewis acid cat-
alyzed reactions. We assumed that in the presence of Lewis acids,
acetonitrile, by virtue of the presence of a triple bond, may partic-
ipate actively in chemical reactions and behave as a substrate as
well. Initially, we studied the reaction of acetone, malononitrile,
and acetonitrile, in the presence of Lewis acids, at room tempera-
ture, as a model for our methodology. After trying several Lewis
acids viz ZnCl2, BiCl3, TiCl4 and their triflates it was observed that
indium triflate and triethylamine catalyzed the multi-component
reaction, at room temperature, to afford the 2,3-dihydropyridine
(3a), albeit in low yield (40%).

In order to improve the yield, we set out to modify the catalyst
system and found that the addition of a catalytic amount of triflic
acid to the catalyst mixture of In(OTf)3 and triethylamine enhanced
the catalytic activity of the mixture and carried forward the reac-
tion efficiently, at room temperature.

Optimization of the reaction conditions revealed that for the
best performance the concentration of In(OTf)3, Et3N, and triflic
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acid in the catalyst mixture was 20 mol %, 1 mol equivalent of ace-
tone, and 0.1 mol %, respectively. Moreover, acetonitrile was
needed in slight excess. With optimized conditions in hand, a mix-
ture of acetone, acetonitrile, and malononitrile (1:5:2 mol) were
stirred, at room temperature, in the presence of the catalyst
mixture.23 The reaction was complete within 8 h and the product
3a separated out as a colorless crystalline solid in 89% yield
(Table 1). Its IR spectrum displayed characteristic absorption bands
at mmax 3333 (NH2), 2210, 2215 (C„N), 1645 (C@N), 1580 (C@N).
The 1H NMR spectrum24 was quite simple and displayed resonance
signals at d 1.35, 1.39, 1.93 (s, 3H each), and 7.04 (s br, exch. D2O,
2H, and NH2). 13C NMR spectrum confirmed the presence of three
nitrile groups, dC 112.0, 113.4, and 114.4. The structure of com-
pound 3a was finally confirmed by XRD (CCDC No. 66716).25

In order to determine the scope and limitations of the indium tri-
flate promoted multicomponent reaction, the reaction was ex-
tended to higher homologs of acetone and various methyl aryl
ketones (Scheme 1). Under optimized reaction conditions, these
reactions afforded the corresponding 4-amino-2,3-dihydropyri-
dine-3,3,5-tricarbonitrile derivatives 3b–3j, as the major products
and in high yield (Table 1). The reaction was also carried out with
different aldehydes. Acetaldehyde did not afford the required 2,3-
dihydropyridine derivative. This may be due to its tendency to poly-
merize. However, the reaction of aromatic aldehydes afforded com-
plex mixtures of compounds, which were not further investigated.

Mechanistically, the reaction leading to the formation of 4-ami-
no-2,3-dihydropyridine-3,3,5-tricarbonitriles seems to proceed by
a condensation-addition reaction (Scheme 2). Acetonitrile func-
tions both as a substrate as well as a solvent. It may be pertinent
to mention here that with the current methodology, we were able
to prepare multigram quantities of the compounds 3a–3j.

The structural features of compounds 3a–3j prompted us to
study their chemical behavior. The compounds did not respond
to hydrolysis with methanolic HCl and NaOH, at room tempera-
ture. However, on heating the compounds with 1 M HCl in 90%
MeOH on a water bath (temp. 99.5 �C) for 36–48 h,25 compounds
3a–3h afforded the corresponding 3,5-dicarboxylic acids
4a–4h26,27 in 60–65% yield (Scheme 3 and Table 2). The reaction
of compounds 3i and 3j afforded a mixture of products, which were
separated by column chromatography on silica gel and were char-
acterized as pyridine derivatives, 4i, 4j and 5i, 5j (Scheme 4). Sim-
ilar results, with improved yield (70–75%) (Table 2), were obtained
by refluxing the methanolic solutions of 3a–3j in the presence of
Table 1
Yield of Products 3a–3j

Compd Reaction time (h) % Yield Compd Reaction time (h) % Yield

3a 8 89 3f 10 90
3b 10 84 3g 12 80
3c 10 86 3h 9 81
3d 12 88 3i 8 80
3e 12 84 3j 8 82

1a/3a:  R1 = R2 = CH3 1f/3f:  R1 = CH3; R
2 = 4-CH3OC6H5

1b/3b:  R1 = CH3; R
2 = C2H5 1g/3g:  R1 = CH3; R

2 = 4-NO2C6H5

1c/3c:  R1 = CH3; R
2 = C3H7 1h/3h:  R1 = CH3; R

2 = 2-ClC6H5

1d/3d: R1 = CH3; R
2 = C3H7 1i/3i:    R1 = H; R2 = C2H5

1e/3e:  R1 = CH3; R
2 =C6H5 1j/3j:   R1 = H; R2 = C3H7
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Scheme 1. Preparation of polysubstituted 2,3-dihydropyridines.
BF3–Et2O. These results substantiate that for the stability of these
products the presence of a quaternary carbon at position 2 of
2,3-dihydropyridines is essential.

Next, compounds 3a–3j were subjected to metal hydride reduc-
tion. The reduction of 3a–3j with sodium borohydride did not give
satisfactory results. However, reduction with lithium aluminum
hydride proceeded smoothly, at room temperature,28 and afforded
the corresponding compounds 6a–6j in 80–96% yield (Table 3 and
Scheme 5). On spectral analysis,29 the products 6a–6j were found
to result from the regiospecific decyanation and reduction of 3a–
3j. These products were characterized as 4-amino-2,3-dihydropyr-
idine-3,3-dimethyl amine derivatives. While the present study
substantiates that in the presence of metal hydrides a-aminonitr-
iles undergo decyanation30 it also suggests that in the compounds
possessing several nitrile groups at the a-position the group, which
is conjugated to an amino group via a double bond is decyanated
preferentially than the non-conjugated nitrile groups.

In summary, we have developed a convenient and efficient
three component synthesis of novel polysubstituted 4-amino-2,3-
dihydropyridines, which may be further elaborated to useful prod-
ucts by simple chemical manipulation. The advantages of the
aforementioned methodologies are that the reactions are opera-
tionally simple, efficient, cost-effective, and eco-friendly. The mul-
3a/4a: R1 = R2 = CH3 3e/4e: R1 = CH3; R
2 = C6H5
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2 = C2H5 3f/4f:  R1 = CH3; R
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3d/4d: R1 = CH3; R
2 = C3H7 3h/4h: R1 =  CH3; R
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Scheme 3. Hydrolysis of 4-amino-2,3-dihydropyridine-3,3,5-tricarbonitrile
derivatives.

Table 2
Yield of hydrolyzed products 4a–4j and 5i, 5j

Compd Reaction
time (h)

% Yield
(HCl–
MeOH)

% Yield
(BF3�Et2O)

Compd Reaction
time (h)

% Yield
(HCl–
MeOH)

% Yield
(BF3�Et2O)

4a 48 60 75 4g 36 60 73
4b 36 62 71 4h 34 61 70
4c 36 64 74 4i 24 32 24
4d 24 62 73 4j 24 31 25
4e 28 60 71 5i 24 28 75
4f 26 65 72 5j 24 27 73
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Table 3
Yield of reduced products 6a–6j

Compd Reaction time (h) % Yield Compd Reaction time (h) % Yield

6a 24 94 6f 36 90
6b 36 91 6g 48 80
6c 36 92 6h 36 94
6d 48 90 6i 24 96
6e 40 93 6j 38 94

3a/6a: R1 = R2 = CH3 3f/6f:  R1 = CH3; R
2 = 4-CH3OC6H5

3b/6b: R1 = CH3; R
2 = C2H5 3g/6g: R1 = CH3; R

2 = 4-NO2C6H5

3c/6c: R1 = CH3; R
2 = C3H7 3h/6h: R1 = CH3; R

2 =2-ClC6H5

3d/6d: R1 =CH3; R
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CN

NH2

NC

NC

N
R1

R2

3a - 3j

LAH, THF, 24 - 48 h
room temp.

NH2

N
R1

R2

H2N

H2N

6a - 6j

Scheme 5. Lithium aluminum hydride reduction of 4-amino-2,3-dihydropyridine-
3,3,5-tricarbonitrile derivatives.
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ticomponent reaction of ketones, malononitrile, and acetonitrile
can be scaled up easily. Moreover, the synthesized compounds
may also find significant use for the preparation of complex nitro-
gen heterocycles, with useful pharmacological properties. The
scope of the reaction and further synthetic applications of these
products are currently under investigation in our laboratory.
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