
Inorganic Chemistry Communications 132 (2021) 108847

Available online 8 August 2021
1387-7003/© 2021 Elsevier B.V. All rights reserved.

A novel berberine-based colorimetric and fluorometric probe for Hg2+

detection and its applications in water samples 

Shutang Ruan a, Yan Zhang a, Suzhen Wu b, Yu Gao a, Lijuan Yang a, Mingxin Li a, Yiqin Yang a, 
Zhonglong Wang a,*, Shifa Wang a,* 

a Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry 
University, Nanjing 210037, China 
b School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China   

A R T I C L E  I N F O   

Keywords: 
Berberine 
Fluorescent probe 
Colorimetric probe 
Hg2+ detection 

A B S T R A C T   

The development of small molecule fluorescent probes for detection of heavy metal ions is highly desirable in 
fluorescent sensors area, and mercury (Hg2+) is a heavy metal pollutant in environment and food chain pro-
cesses. Herein, we reported the design and synthesis of a novel berberine-based fluorescent probe P1, which can 
specifically recognize Hg2+ in CH3OH/PBS (8:2, v/v, pH = 7.4, 10 mM) solution by the colorimetric and fluo-
rometric changes. The probe P1 displayed high selectivity, superior sensitivity and fast response toward Hg2+

with a low detection limit and a wide range of pH values. This probe can provide a convenient and effective way 
for Hg2+ detection on test paper strips. Moreover, the probe P1 can be applied to quantitatively detect Hg2+ in 
real environmental water samples.   

1. Introduction 

Hg2+ is a high toxic heavy metal pollutant and widely distributes in 
water and soil [1–3]. Excessive Hg2+ in the bodies easily causes some 
serious diseases, such as kidney damage [4], minamata disease [5], 
endocrinium and nervous system damage [6], cognitive and motor 
disorders [7]. It is necessary to control the content of Hg2+ in environ-
mental and agricultural products within safe limits [8]. 

During the past two decades, many chemical analysis methods have 
been used for detecting toxic heavy metal, such as atomic absorption 
spectroscopy [9], high resolution ICP-MS [10], spectrophotometry [11] 
and fluorescent probe technique [12–15]. Among these detection 
methods, fluorescent probe technique has been widely accepted owing 
to its on-site detection, real-time analysis, high sensitivity, low cost and 
fast response. Recently, a number of fluorescent probes have been re-
ported for detecting Hg2+ in real samples and living cells. However, 
some probes were based on “turn-off” mechanism through the spin–orbit 
coupling effect which cause fluorescence quenching [16–18]. Therefore, 
the fluorescent probes for detecting Hg2+ based on “turn-on” mechanism 
have attracted more and more attentions [19–22]. 

Berberine is a kind of typical isoquinoline alkaloids extracted from 
huanglian (Rhizoma coptidis) [23], and its derivatives were widely used 

as anti-bacterial agent [24], antiviral agent [25–27], antioxidant and 
anticancer [28,29]. In addition, it is a valuable researching direction of 
fluorescence-based theranostics based on berberine for effective diag-
nosis and therapy in cancer cells [30]. 

In our previous work [31], a dual-functional fluorescent probe for 
the detection of both Hg2+ and ClO─ has been designed and synthesized 
from berberine. In order to further expand the application of berberine 
and detect Hg2+ by the naked eye and fluorescence conveniently. 
Herein, based on the desulfurization reaction of the mercaptal group, a 
dual-mode berberine-based colorimetric and fluorometric probe was 
designed and synthesized for the recognization of Hg2+. Meanwhile, the 
probe P1 showed “turn-on” fluorescent response toward Hg2+ recogni-
tion in real water samples. Moreover, from the fluorescence detection 
experiments, the probe P1 exhibited fast response, wide pH range, lower 
detection limit, high selectivity and sensitivity. 

2. Experimental 

2.1. Instruments and materials 

All chemicals and solvents were purchased from commercial sources 
and used without further purification. 1H NMR and 13C NMR spectra 
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were recorded on a Bruker AV 400 spectrometer in DMSO‑d6 and tet-
ramethylsilane (TMS) as internal standard. High-resolution mass spectra 
(HRMS) were tested by an America Agilent 5975c mass spectrometer. 
UV–vis absorption spectra were recorded by a Shimadzu UV-2450 at the 
room temperature. Fluorescence spectra were carried out on fluores-
cence spectrophotometer (LS 55, Perkin Elmer). 

2.2. Synthesis of probe P1 

As shown in Scheme 1, berberine was selectively demethylated 
under vacuum and heating conditions, and then acidized and formylated 
to get compound 3. The probe P1 was obtained by condensation of 
compound 3 with 1,3-propanedithiol. The chemical structure of the 
above compounds and probe P1 was characterized by 1H NMR and HR- 
MS (Fig. S1-S7). 

2.2.1. Synthesis of compound 2 
Berberine chloride (10.0 g, 26.9 mmol) was heated at 180–190 ◦C for 

30–60 min under vacuum to afford dark wine solid, which was washed 
with MeOH (80 mL) and filtered to afford the red compound. And this 
crude product was added C2H5OH (100 mL) and HCl (3.0 M, 70 mL) to 
stir for 6 h to obtain yellow material, which was washed with CH3OH/ 
Et2O (v/v = 3:1) 3 times (3 × 60 mL) to afford compound 2 as a yellow 
solid, 8.87 g, yield: 92.4%. 1H NMR (400 MHz, DMSO‑d6) δ: 11.31 (s, 
1H), 9.97 (s, 1H), 8.88 (s, 1H), 8.12 (d, J = 8.9 Hz, 1H), 7.82 (s, 1H), 
7.75 (d, J = 8.9 Hz, 1H), 7.10 (s, 1H), 6.21 (s, 2H), 4.96 (t, J = 6.3 Hz, 
2H), 4.09 (s, 3H), 3.25 (t, J = 6.3 Hz, 2H);13C NMR (100 MHz, DMSO‑d6) 
δ: 149.58, 147.61, 145.70, 145.30, 143.75, 136.52, 132.39, 130.33, 
125.43, 120.56, 119.80, 118.03, 117.58, 108.32, 105.29, 101.94, 56.99, 
54.89, 26.48;ESI-MS (m/z): [M− Cl]+ : calcd. for C19H16ClNO4-Cl─, 
322.1074; found, 322.1074. 

2.2.2. Synthesis of compound 3 
Compound 3 was obtained according to the reported procedures 

[31]. Compound 2 (1.0 g, 3.1 mmol) and hexamine (1.26 g, 9.0 mmol) 
were dissolved in trifluoroacetic acid (18 mL), and reacted for 8 h at 
85 ◦C. The reaction system was cooled to room temperature, and 3.0 M 
HCl (15 mL) was added to react at 85 ◦C for another 2 h. The reacted 
mixture was immediately poured into ice water, and extracted with 
ethyl acetate (3 × 30 mL). The combined organic phase was washed with 
distilled water and brine until neutrality, and then evaporated to remove 
off the solvent. The residue was purified by silica gel chromatography 
(CH2Cl2/CH3OH, 10:1, v/v) to give compound 3 as a yellow solid, 0.38 g, 
yield: 34.6%. 1H NMR (400 MHz, DMSO‑d6) δ: 10.19 (s, 1H), 9.28 (s, 
1H), 9.08 (s, 1H), 7.72 (s, 1H), 7.56 (s, 1H), 7.02 (s, 1H), 6.15 (s, 2H), 
4.60 (t, J = 6.3 Hz, 2H), 3.77 (s, 3H), 3.10 (t, J = 6.4 Hz, 2H), 1.24 (s, 

1H) ;ESI-MS (m/z): [M− Cl]+ : calcd. for C20H16ClNO5-Cl-, 350.1023; 
found, 350.1049. 

2.2.3. Synthesis of compound 4 
Compound 3 (50 mg, 0.14 mmol) and 1,3-propanedithiol (45.4 mg, 

0.42 mmol) were dissolved in CH2Cl2 (20 mL), and a catalytic amount of 
BF3⋅Et2O (0.04 mL, 0.30 mmol) was added, and the mixture was reacted 
at room temperature for 15 h under N2 atmosphere. The reacted mixture 
was evaporated to remove off solvent, and the residue was purified by 
recrystallization with CH3OH/Et2O (v/v = 2:1) to obtain compound 4 as 
a red solid, 37.5 mg, yield: 57.3%. 1H NMR (400 MHz, DMSO‑d6) δ: 9.31 
(s, 1H), 8.37 (s, 1H), 7.89 (s, 1H), 7.51 (s, 1H), 7.03 (s, 1H), 6.30 (s, 1H), 
6.15 (s, 2H), 4.60 (t, J = 6.2 Hz, 2H), 3.81 (s, 3H), 3.30 (s, 2H), 3.10 (t, J 
= 6.2 Hz, 2H), 2.90 (dt, J = 14.1, 3.5 Hz, 2H), 1.24 (d, J = 3.3 Hz, 2H) ; 
ESI-MS (m/z): [M− Cl]+ calcd. for C20H16ClNO5-Cl-, 440.0985; found, 
440.1019. 

2.3. Spectroscopic measurements of probe P1 

The absorption and fluorescence detection experiments were done in 
CH3OH/PBS (8:2, v/v, pH = 7.4, 10 mM) solution at the room temper-
ature, and the excitation wavelength is 365 nm. The probe P1 stock 
solution (2.5 × 10-4 M) was prepared in CH3OH. The test solution was 
prepared by adding 100 μL stock solution to 10 mL CH3OH/PBS buffer 
(8:2, v/v, pH = 7.4, 10 mM). The solutions of various analytes (5.0 × 10- 

4 M) (including Na+, K+, Ca2+, Mg2+, Co2+, Al3+, Ni2+, Sn2+, Ag2+, 
Zn2+, Cu2+, I─, NO3

─, AcO─, H2PO4
2─, S2─) were prepared in deionized 

water. 

2.4. Visualization of Hg2+ in solution by test paper 

The filter paper was immersed into the CH3OH solution of probe P1 
(2.5 × 10-4 M) and dried in air for 30 min. The treated test papers were 
immersed in the Hg2+ solution with different concentrations (0 μM-500 
μM) for 30 min at the room temperature. The fluorescence color changes 
of filter paper were observed under day light and 365 nm UV light. 

2.5. Quantitation of Hg2+ contamination in real water samples 

The real water samples were respectively taken from Zhangjiang 
river and Poyang lake, and the real water samples were utilized to 
prepare CH3OH solutions (80%, 10 mM). Hg2+ solutions with different 
concentrations (0, 50, 100, 150, 200, 250 μM) were added to the 
aforesaid two water samples, and the fluorescence intensity of the water 
samples were measured using a fluorescence spectrophotometer. 

Scheme 1. Synthesis of probe P1.  
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3. Results and discuss 

3.1. Spectroscopic properties of probe P1 to Hg2+

The UV–vis absorbance and fluorescence spectroscopic properties of 

probe P1 in the presence and absence of Hg2+ at the room temperature 
were examined. As shown in Fig. 1a, the free probe P1 showed two 
absorption peaks at 400 nm and 520 nm. Upon addition of Hg2+, the 
original maximum absorption peaks were significantly reduced and the 
new peaks were appeared obviously at 350 nm and 450 nm, and the 
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Fig. 1. Absorption (a) and fluorescence emission (b) spectra of probe P1 (2.5 × 10-4 M) in CH3OH/PBS (8:2, v/v, pH = 7.4, 10 mM) solution in the presence and 
absence of Hg2+ (5.0 × 10-4 M). λex = 365 nm. Inset: color changes of probe P1 solution after the addition of Hg2+ under daylight and 365 nm UV-light. 
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Fig. 2. (a) Fluorescence intensity of P1 (2.5 × 10-4 M) added to Hg2+ (5.0 × 10-4 M) in CH3OH/PBS (8:2, v/v, pH = 7.4, 10 mM) solution from pH = 2.0 to pH = 12.0 
at 550 nm. Inset: color changes of P1 after the addition of Hg2+ from pH = 2.0 to pH = 12.0 under 365 nm UV-light. (b) Time-dependent fluorescence spectra of P1 
(2.5 × 10-4 M) presence and absence Hg2+ (5.0 × 10-4 M) in CH3OH/PBS (8:2, v/v, pH = 7.4, 10 mM) solution (λem = 550 nm). 
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Fig. 3. (a) Fluorescence spectra of P1 (2.5 × 10-4 M) in the presence of Hg2+ (0–2.0 eqv.) in CH3OH/PBS (8:2, v/v, pH = 7.4, 10 mM) solution. (b) Linear calibration 
curve between the fluorescence intensity of P1 and Hg2+ (0–2.0 eqv.) at 550 nm. 
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colors of the solution changed from light red to pale yellow under 
daylight. 

The fluorescence properties of probe P1 were investigated. As shown 
in Fig. 1b, the free probe P1 displayed two weak fluorescence emissions 
at 450 nm and 550 nm with excitation at 365 nm. However, upon 
addition of Hg2+, the fluorescence intensity at around 550 nm was 
significantly enhanced, and the color of the solution changed from pale 
blue to yellow green. These results showed that the probe P1 can serve 
as a colorimetric and fluorometric probe for Hg2+ detection. 

3.2. Response time and effect of pH values of probe P1 to Hg2+

Influence of pH from 2.0 to 12.0 on the fluorescence responses of 
probe P1 with and without Hg2+ were investigated as shown in Fig. 2a, 
It was known from the results of fluorescent experiments that the fluo-
rescence emission intensities were stable in a wide pH range from 3.0 to 
10.0, which indicated that the probe P1 was suitable for detecting Hg2+

under the real water samples in a wide pH range. In addition, the time- 
dependent fluorescence results demonstrated that the probe P1 could 
remain stable and recognize Hg2+ with a short response time (Fig. 2b). 

3.3. Sensitivity of probe P1 to Hg2+

The fluorescence responses of probe P1 to Hg2+ were investigated by 
titration experiments in CH3OH/PBS (8:2, v/v, pH = 7.4, 10 mM) so-
lution, and the results were shown in Fig. 3a. With the increasing of 

Hg2+ concentration from 0 to 2.0 equiv., the emission intensities of 
probe P1 solution enhanced at 550 nm and quenched at 450 nm, which 
may be attributed to an ICT (intra-molecular charge transfer) process 
[32]. Furthermore, the emission intensities at 550 nm showed a good 
linear relationship over the concentration range from 0 μM to 500 μM (y 
= 0.5335x + 184.0493, R2 = 0.9950). The detection limit for Hg2+ was 
calculated to be 5.4 μM based on 3σ/k method (Fig. 3b). 

3.4. Selectivity and competivity of probe P1 to various analytes 

The selectivity experiments were carried out with the addition of 
various analytes. As shown in Fig. 4a, the fluorescence spectral changes 
of probe P1 (2.5 × 10-4 M) were examined in CH3OH/PBS (8:2, v/v, pH 
= 7.4, 10 mM) solution upon addition of different various analytes (5.0 
× 10-4 M, including Na+, K+, Ca2+, Mg2+, Co2+, Al3+, Ni2+, Sn2+, Ag2+, 
Zn2+, Cu2+, I─, NO3

─, AcO─, H2PO4
2─, S2─). Upon addition of these ions, 

there were no significant fluorescence intensity changes, while the 
fluorescence intensity in the presence of Hg2+ (5.0 × 10-4 M) obviously 
increased at 550 nm with the color changes from pale blue to yellow 
green. Meanwhile, the other competing species could hardly interfere 
the detection of Hg2+ in a complex environment (Fig. 4b). Under the 
day-light and 365 UV-light, the competing species did not produce any 
dramatic color changes and “turn-on” fluorescent emission except Hg2+

(Fig. 4c). The results confirmed that the probe P1 is a specific “turn-on” 
fluorescent probe for detecting Hg2+. 

450 500 550 600 650 700
0

100

200

300

400

500(a)

Fl
uo

re
sc

en
ce

 In
te

ns
ity

 (a
.u

.)

Wavelength (nm)

competing species 

P1 + Hg2+

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

100

200

300

400

500  competing specise + Hg2+
 competing specise

(b)

(c)

Fl
uo

re
sc

en
ce

 In
te

ns
ity

 (a
.u

.)

Competitive ions

Fig. 4. (a) Fluorescent spectra of P1 (2.5 × 10-4 M) with different competing ions (5.0 × 10-4 M) (including Na+, K+, Ca2+, Mg2+, Co2+, Al3+, Ni2+, Sn2+, Ag2+, Zn2+, 
Cu2+, I─, NO3
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2─, S2─, Hg2+) in CH3OH/PBS (8:2, v/v, pH = 7.4, 10 mM) solution (λex = 365 nm). (b) The fluorescence intensity of P1 (2.5 × 10-4 M) 

with Hg2+ (5.0 × 10-4 M) in the presence of different competitive anions (5.0 × 10-4 M) in CH3OH/PBS (8:2, v/v, pH = 7.4, 10 mM) solution (λex = 365 nm). (c) 
Photographs of P1 (2.5 × 10-4 M) with different competing ions (5.0 × 10-4 M) in CH3OH/PBS (8:2, v/v, pH = 7.4, 10 mM) solution under day-light and 365 nm 
UV light. 
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3.5. Sensing mechanisms of probe P1 to Hg2+

Based on the fluorescence intensities of probe P1 in the presence or 
absence of Hg2+, the detection mechanism was speculated that the 
desulfurization reaction of probe P1 was promoted by Hg2+. The mo-
lecular ion peaks of probe P1 before and after adding Hg2+ were 
440.1019 [Fig. S7, P1-Cl, Exact Mass: 440.0985] and 350.1030 [Fig. S8, 
P1-CHO-Cl, Exact Mass: 350.1023]. In addition, 1H NMR titration of 
probe P1 with Hg2+ can be carried out, and these two methods indicated 
that detection mechanism of probe P1 was the same with the postulated 
shown in Scheme 2 [33–36]. 

3.6. Density functional theory (DFT) calculations 

To further understand the photophysical responses of probe P1 to 
Hg2+, DFT calculations were carried out with the Gaussian 09 software 
package. The optimized geometric structures and corresponding LUMO 
(the lowest unoccupied molecular orbitals) and HOMO (the highest 
occupied molecular orbitals) were presented. As shown in Fig. 5, the 
HOMO of probe P1 was mainly localized on the hydroxyl group and part 
of the D ring. However, its LUMO was evenly distributed in the C and D 
rings, which indicated that there was a weak ICT effect in this molecule. 
Upon addition of Hg2+, the HOMO of compound P1-CHO was localized 
on the hydroxyl group. However, the LOMO was distributed in the 
aldehyde group and D rings, indicating a strong ICT effect. In addition, 

Scheme 2. Sensing mechanism of P1.  

Fig. 5. The optimized geometric structures and corresponding LUMO and HOMO of P1 and P1-CHO by DFT calculation.  

S. Ruan et al.                                                                                                                                                                                                                                    



Inorganic Chemistry Communications 132 (2021) 108847

6

the energy gap between HOMO and LUMO of compound P1-CHO was 
calculated to be 3.14 eV, which is lower than the probe P1 (3.17 eV). 
The result also indicated that the sensing mechanism was shown in 
Scheme 2. 

3.7. Visualization of Hg2+ in solution by test paper 

To investigate the practical application of probe P1 as an on-situ 
detection kit for the detection of Hg2+, the test paper experiments 
were explored. As shown in Fig. 6, as the concentrations of Hg2+

increased from 0 μM to 500 μM, the fluorescence emission of test paper 
strips gradually changed from blue to faint-yellow. Therefore, the probe 
P1 could successfully applied to detect Hg2+ on test paper. 

3.8. Quantitation of Hg2+ contamination in real water samples 

Probe P1 could also be used to detect Hg2+ in two real water samples 
collected from Zhangjiang river and Poyang lake. The water samples 
were mixed with CH3OH (80%) solutions containing the probe P1 (2.5 
× 10-4 M). The various concentrations of Hg2+ solution (0, 50, 100, 150, 
200, 250 μM) were added into experimental water samples respectively. 
The fluorescence intensity of the experimental samples was measured 
using a fluorescence spectrophotometer. As shown in Fig. 7, two good 
linear relationships were obtained, and the detection limit for Hg2+ was 
calculated to be 6.3 μM and 4.4 μM, indicating that the probe P1 can be 
applied to detect Hg2+ in real samples. 

4. Conclusion 

In summary, the probe P1 for detecting Hg2+ was synthesized from 
berberine. This probe could identify Hg2+ in CH3OH/PBS (8:2, v/v, pH 
= 7.4, 10 mM) solution by the obvious color changes at daylight and the 
perfect fluorescence changes under 365 nm UV lamp. The probe P1 
displayed high selectivity, superior sensitivity, and fast response toward 
Hg2+ with a low detection limit and a wide pH range. The probe P1 can 
provide a convenient and effective way for Hg2+ detection by virtue of 
test paper strips. Moreover, this probe can be also applied to monitor 
Hg2+ in real environmental water samples. 
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