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a b s t r a c t

A novel and practical procedure was developed for the preparation of steroidal[17,16-d]pyrimidines
by chlorotrimethylsilane (TMSCl)-promoted one-pot multicomponent Biginelli-like condensations of
steroid-17-ones, urea and aromatic aldehydes. First, treatment of the steroid-17-ones with urea and
aromatic aldehydes in dimethylformamide (DMF)/acetonitrile (ACN) gives the corresponding Biginelli
vailable online 25 June 2010
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products, following the aromatising reaction of the Biginelli products at the same time under air to yield
the desired steroidal[17,16-d]pyrimidines (78–88%). Since steroidal[17,16-d]pyrimidines with hydroxyl
group can be subsequently converted into steroidal[17,16-d]pyrimidine derivatives, this general method
provides a highly efficient route to these biologically important compounds.

© 2010 Elsevier Inc. All rights reserved.

yrimidine
MSCl

. Introduction

Pentacyclic steroids and their derivatives are a very impor-
ant class of steroids. There are many examples of pentacyclic
teroidal derivatives of pharmacological and biological importance
1–5]. For many years, the preparation of pentacyclic steroids
as attracted considerable attention from medicinal and synthetic
rganic chemists. Further, it is proved that a number of biologi-
ally important properties of modified steroids are dependent upon
tructural features of the steroid D-ring [6]. Chemical modifica-
ion of the steroid D-ring provides a way to alter the functional
roups, sizes and stereochemistry of the D-ring, and numerous
tructure–activity relationships have been established by such syn-
hetic alterations.

It is known that substituted pyrimidines are an impor-
ant class of heterocyclic compounds. A number of synthetic
harmacophores based upon the pyrimidyl structure exhibit bio-

ogical activities, which were used widely as anti-inflammatory
gents, antimalarial, anti-hypertensive, antibacterial, antiasth-
atic, antiprotozoan, anti-rubella virus, antituberculosis, tyrosine

inase-inhibiting agents, anti-HIV and anticancer activity [7–9].

n the other hand, steroids’ fused heterocyclic rings are pharma-
eutically important compounds due to their inherent biological
roperties [10–13]. For example, the in vitro antibacterial evalu-
tion of the pyrimidinoandrostane derivatives showed that they

∗ Corresponding author. Tel.: +86 514 8797 5568; fax: +86 514 8797 5244.
E-mail address: wangcd@yzu.edu.cn (C. Wang).

039-128X/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
oi:10.1016/j.steroids.2010.06.007
have high significant antibacterial activity against the used strains
of Gram-positive and Gram-negative bacteria [12c]. Pyrimidines
of the estratriene series are agents for the treatment of hyperc-
holesterolaemia [10l]. Considerable attention is being paid to the
annelate steroidal moiety with isoxazole, pyrazole, pyridine and
pyrrole rings using various synthetic methods. Nevertheless, the
effort made towards the development of newer preparation for
annelated steroidal pyrimidines is still limited [10l,11–13].

Realising that the structure–activity relationship of the pen-
tacyclic steroids indicates that the fusion of the carbocyclic or
heterocyclic ring plays an important role of biological activity, we
synthesised steroidal D-ring fused pyrimidines as new pentacyclic
steroid skeletons for promising potential drug candidates.

In view of the remarkable importance from the pharmacologi-
cal and synthetic viewpoints, the development of new pentacyclic
steroids promising biological activity by new synthetic approaches
using mild reaction conditions remains an active research area.
Many previous studies proved that chlorotrimethylsilane (TMSCl)
has been used as a mild and efficient promoter for various
organic transformations [14,15]. It has also been reported as a
mild useful and inexpensive Lewis acid catalyst or promoter for
biguanide formation with benzylamine and dicyandiamide, [16]
‘direct’ cross aldol additions and the related Claisen condensa-
tion using TiCl4/Bu3N [17]. In our previous work [18], TMSCl was

employed to carry out several unusual cyclo-condensations includ-
ing one-pot synthesis of substituted quinolines and pyrroles. The
search for novel steroid libraries with potential biological activi-
ties is a major focus for chemical biology and medicinal chemistry.
Therefore, efficient methodologies to access new steroid skele-

dx.doi.org/10.1016/j.steroids.2010.06.007
http://www.sciencedirect.com/science/journal/0039128X
http://www.elsevier.com/locate/steroids
mailto:wangcd@yzu.edu.cn
dx.doi.org/10.1016/j.steroids.2010.06.007
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was obtained as a white solid. Mp 265–267 ◦C (methanol); IR (KBr)
� 3415, 2939, 1732, 1640, 1606, 1563, 1512, 1443, 1378, 1251,
ig. 1. Structure and numbering of the steroidal[17,16-d]pyrimidine ring systems.

ons of privileged structures are of special interest. Some studies
bserved that pentacyclic steroids obtained by fusion of a carbo-
yclic ring, such as benzene or cyclohexane or cyclopentane, to
he steroid nucleus or pentacyclic steroids derived from the fusion
f a carbocyclic ring to a heterosteroid skeleton was a convenient
rocedure [4].

However, none of the synthetic procedures provides a general
oute for one-pot synthesis of the steroids’ D-ring of fused pyrim-
dines promoted by TMSCl described here. Thus, as part of our
ngoing research on the development of new synthetic methods,
e report a TMSCl-promoted one-pot synthesis of steroidal[17,16-
]pyrimidines (Fig. 1) from steroid-17-ones, urea and aromatic
ldehydes (Scheme 1 and Table 1).

. Experimental section

.1. General remarks

All melting points (mps) were determined on a Yanaco melt-
ng point apparatus and are uncorrected. Infrared (IR) spectra were
ecorded on a Nicolet FT-IR 5DX spectrometer as KBr pellets. The
H nuclear magnetic resonance (NMR) and 13C NMR spectra were
ecorded on a Bruker ACF-300 spectrometer with TMS as internal
eference. The J values are given in hertz. The elemental analyses
ere performed on a Perkin–Elmer 240C instrument.

.2. Organic synthesis

General procedures for the synthesis of steroidal[17,16-
]pyrimidines: To a mixture of steroid-17-one (1 mmol), urea
120 mg, 2 mmol) and aromatic aldehyde (1.5 mmol) in dimethyl-
ormamide (DMF)/CH3CN (6/12 ml) were added TMSCl (0.26 ml,
mmol) at room temperature. The resultant mixture was heated at
0 ◦C for 12 h. After the mixture was cooled to room temperature,
ater (20 ml) was added to the reaction mixture and the resulting
ixture was extracted with CH2Cl2 (2× 15 ml), the organic phase
as washed with water and brine, and dried over Na2SO4. After
emoval of solvent, the residue was purified by column chro-
atography (silica gel, EtOAc/CH2Cl2/MeOH, 1:1:0.05) to give the

esired product (3aa–cc; Table 1).

Scheme 1. Novel preparation of some steroidal[
 (2010) 1033–1038

2.3. (2aS,4S,6aS,6bS,8aS,13aS,13bR)-10-Hydroxy-6a,8a-
dimethyl-12-phenyl-2,2a,3,4,5,6,6a,
6b,7,8,8a,13,13a,13b-tetradecahydro-1H-
naphtho[2′,1′:4,5]indeno[1,2-d]pyrimidin-4-yl acetate
(3aa)

Following the general procedure, the title compound 3aa (85%)
was obtained as a white solid. Mp 320 ◦C (dec); IR (KBr) � 3413,
2939, 1733, 1648, 1578, 1464, 1378, 1245, 1025 cm−1; 1H NMR
(300 MHz, CDCl3, ppm): 7.77–7.73 (m, 2H, aromatic H), 7.28–7.51
(m, 3H, aromatic H), 4.69–4.67 (m, 1H, C3-H), 2.63–2.48 (m, 2H,
C15-H), 2.19 (s, 1H, C14-H), 2.02 (s, 3H, CH3CO2), 1.08 (s, 3H, C18-
H), 0.89 (s, 3H, C19-H); 13C NMR (75 MHz, CDCl3, ppm): 171.8 (C17),
170.4 (CH3CO2), 160.5 (pyimidinyl C2-OH), 150.5 (pyimidinyl C6-
Ar), 131.6 (Ar), 130.7 (Ar), 128.9 (2C, Ar), 128.3 (2C, Ar), 114.6 (C16),
73.4 (C3), 54.8 (C14), 54.3 (C9), 46.7 (C13), 44.6 (C10), 36.4 (C5), 35.6
(C8), 34.3 (C12), 33.8 (C4), 32.5 (C1), 31.3 (C2), 28.7 (C15), 28.2 (C7),
27.3 (C6), 21.3 (C11), 20.6 (CH3CO2), 16.6 (C18), 12.1 (C19). Anal.
Calcd for C29H36N2O3: C, 75.62; H, 7.88; N, 6.08. Found: C, 75.48;
H, 7.64; N, 6.23.

2.4. (2aS,4S,6aS,6bS,8aS,13aS,13bR)-12-(4-Fluorophenyl)-10-
hydroxy-6a,8a-dimethyl-2,2a,3,4,5,6,6a,6b,7,8,8a,13,13a,13b-
tetradecahydro-1H-naphtho[2′,1′:4,5]indeno[1,2-d]pyrimidin-4-
yl acetate
(3ab)

Following the general procedure, the title compound 3ab (88%)
was obtained as a white solid. Mp 310–312 ◦C (methanol); IR (KBr)
� 3415, 2939, 1734, 1647, 1605, 1583, 1510, 1453, 1376, 1244,
1026 cm−1; 1H NMR (CDCl3, ppm): 7.84 (m, 2H, aromatic H), 7.27
(m, 2H, aromatic H), 4.73 (m, 1H, C3-H), 2.63–2.53 (m, 2H, C15-
H), 2.28 (s, 1H, C14-H), 2.07 (s, 3H, CH3CO), 1.14 (s, 3H, C18-H),
0.95 (s, 3H, C19-H); 13C NMR (CDCl3, ppm): 170.3 (CH3CO2), 165.7
(C17), 162.3 (d, 1JCF = 246 Hz, Ar-F), 160.5 (pyimidinyl C2-OH), 150.5
(pyimidinyl C6-Ar), 130.6 (Ar), 130.5 (Ar), 128.0 (Ar), 115.9 (d,
2JCF = 21.6 Hz, (2C)Ar), 114.5 (C16), 73.2 (C3), 54.7 (C14), 54.2 (C9),
46.6 (C13), 44.5 (C10), 36.3 (C5), 35.5 (C8), 34.2 (C12), 33.7 (C4),
32.3 (C1), 31.2 (C2), 28.7 (C15), 28.0 (C7), 27.2 (C6), 21.2 (C11), 20.4
(CH3CO2), 16.5 (C18), 12.0 (C19). Anal. Calcd for C29H35FN2O3: C,
72.78; H, 7.37; N, 5.85. Found: C, 72.74; H, 7.32; N, 5.76.

2.5. (2aS,4S,6aS,6bS,8aS,13aS,13bR)-10-Hydroxy-12-(4-
methoxyphenyl)-6a,8a-dimethyl-
2,2a,3,4,5,6,6a,6b,7,8,8a,13,13a,13b-tetradecahydro-1H-
naphtho[2′,1′:4,5]indeno[1,2-d]pyrimidin-4-yl acetate
(3ac)

Following the general procedure, the title compound 3ac (88%)
1026 cm−1; 1H NMR (CDCl3, ppm): 7.73 (d, J = 6.9 Hz, 2H, aromatic
H), 7.04 (d, J = 6.9 Hz, 2H, aromatic H), 4.67 (m, 1H, C3-H), 3.87
(s, 3H, OCH3), 2.61–2.51 (m, 2H, C15-H), 2.18 (s, 1H, C14-H), 2.02

17,16-d]pyrimidines promoted by TMSCl.
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s, 3H, CH3CO), 1.07 (s, 3H, C18-H), 0.89 (s, 3H, C19-H); 13C NMR
CDCl3, ppm): 171.8 (C17), 170.5 (CH3CO2), 161.7 ((Ar)COCH3),
60.6 (pyimidinyl C2-OH), 150.6 (pyimidinyl C6-Ar), 130.0 (2C, Ar),
23.8 (Ar), 114.4 (2C, Ar), 113.9 (C16), 73.4 (C3), 55.3 ((Ar)COCH3),
4.9 (C14), 54.4 (C9), 46.6 (C13), 44.6 (C10), 36.5 (C5), 35.7 (C8),
4.3 (C12), 33.9 (C4), 32.5 (C1), 31.4 (C2), 29.0 (C15), 28.2 (C7), 27.3
C6), 21.3 (C11), 20.6 (CH3CO2), 16.6 (C18), 12.1 (C19). Anal. Calcd
or C30H38N2O4: C, 73.44; H, 7.81; N, 5.71. found: C, 73.28; H, 7.72;
, 5.76.

.6. (2aS,4S,6aS,6bS,8aS,13aS,13bR)-10-Hydroxy-6a,8a-
imethyl-12-(2-nitrophenyl)-
,2a,3,4,5,6,6a,6b,7,8,8a,13,13a,13b-tetradecahydro-1H-
aphtho[2′,1′:4,5]indeno[1,2-d]pyrimidin-4-yl acetate
3ad)

Following the general procedure, the title compound 3ad (78%)
as obtained as a white solid. Mp 216–218 ◦C (methanol); IR

KBr) � 3425, 2939, 1732, 1646, 1564, 1529, 1452, 1348, 1247,
026 cm−1; 1H NMR (CDCl3, ppm): 8.13 (d, J = 7.8 Hz, 1H, aromatic
), 7.76 (t, J = 7.2 Hz, 1H, aromatic H), 7.67–7.53 (m, 2H, aromatic
), 4.67 (m, 1H, C3-H), 2.40–2.08 (m, 3H, C15-H and C14-H), 2.02

s, 3H, CH3CO), 1.05 (s, 3H, C18-H), 0.85 (s, 3H, C19-H); 13C NMR
CDCl3, ppm): 171.8 (C17), 170.5 (CH3CO2), 160.1 (pyimidinyl C2-
H), 150.2 (pyimidinyl C6-Ar), 147.3 ((Ar)CNO2), 133.9 (Ar), 131.1

Ar), 131.0 (Ar), 130.8 (Ar), 124.9 (Ar), 116.5 (C16), 73.1 (C3), 54.6
C14), 54.3 (C9), 46.9 (C13), 44.6 (C10), 36.4 (C5), 35.6 (C8), 34.0
C12), 33.8 (C4), 32.2 (C1), 31.2 (C2), 28.0 (C15), 27.3 (C7), 26.9
C6), 21.3 (C11), 20.4 (CH3CO2), 16.6 (C18), 12.0 (C19). Anal. Calcd
or C29H35N3O5: C, 68.89; H, 6.98; N, 8.31. found: C, 68.82; H, 7.06;
, 8.22.

.7. (2aS,4S,6aS,6bS,8aS,13aS,13bR)-10-Hydroxy-6a,8a-
imethyl-12-(3-nitrophenyl)-
,2a,3,4,5,6,6a,6b,7,8,8a,13,13a,13b-tetradecahydro-1H-
aphtho[2′,1′:4,5]indeno[1,2-d]pyrimidin-4-yl acetate
3ae)

Following the general procedure, the title compound 3ae (81%)
as obtained as a white solid. Mp 210–212 ◦C (methanol); IR (KBr)
3425, 3330, 2939, 1732, 1640, 1576, 1531, 1452, 1349, 1247,

026 cm−1; 1H NMR (CDCl3, ppm): 8.58 (s, 1H, aromatic C2-H),
.37 (d, J = 8.1 Hz, 1H, aromatic C4-H), 8.23 (d, J = 7.8 Hz, 1H, aro-
atic C6-H), 7.77 (t, J = 8.1 Hz, 1H, aromatic C5-H), 4.68 (m, 1H,

3-H), 2.65 (d, J = 6.3 Hz, 2H, C15-H), 2.34 (s, 1H, C14-H), 2.03 (s,
H, CH3CO), 1.15 (s, 3H, C18-H), 0.91 (s, 3H, C19-H); 13C NMR
CDCl3, ppm): 170.9 (C17), 170.2 (CH3CO2), 160.1 (pyimidinyl C2-
H), 150.3 (pyimidinyl C6-Ar), 148.0 ((Ar)CNO2), 134.1 (Ar), 131.5

Ar), 130.0 (Ar), 125.0 (Ar), 123.3 (Ar), 115.4 (C16), 73.1 (C3), 54.9
C14), 54.1 (C9), 46.5 (C13), 44.4 (C10), 36.2 (C5), 35.4 (C8), 34.0
C12), 33.6 (C4), 32.1 (C1), 31.1 (C2), 28.6 (C15), 27.9 (C7), 27.1
C6), 21.1 (C11), 20.3 (CH3CO2), 16.6 (C18), 11.9 (C19). Anal. Calcd
or C29H35N3O5: C, 68.89; H, 6.98; N, 8.31. Found: C, 68.78; H, 7.00;
, 8.34.

.8. (4S,6aR,6bS,8aS,13aS,13bR)-10-Hydroxy-6a,8a-dimethyl-
2-phenyl-3,4,5,6,6a,6b,7,8,8a,13,13a,13b-dodecahydro-1H-
aphtho[2′,1′:4,5]indeno[1,2-d]pyrimidin-4-yl acetate
3ba)

Following the general procedure, the title compound 3ba (83%)

as obtained as a white solid. Mp 292–294 ◦C (methanol); IR

KBr) � 3445, 2943, 1734, 1646, 1558, 1499, 1439, 1377, 1246,
033 cm−1; 1H NMR (CDCl3, ppm): 7.53 (m, 3H, aromatic H), 7.42
d, J = 6.9 Hz, 2H, aromatic H), 5.30 (s, 1H, C CH), 4.60 (m, 1H,
3-H), 2.61–2.51 (m, 2H, C15-H), 2.35 (m, 3H, C-CH), 2.04 (s,
 (2010) 1033–1038 1035

3H, CH3CO), 1.17 (s, 3H, C18-H), 1.09 (s, 3H, C19-H); 13C NMR
(CDCl3, ppm): 171.7 (C17), 170.2 (CH3CO2), 160.5 (pyimidinyl C2-
OH), 150.5 (pyimidinyl C6-Ar), 140.0 (C CH), 131.6 (Ar), 130.5 (Ar),
129.0 (2C, Ar), 128.3 (2C, Ar), 121.6 (C CH), 114.5 (C16), 73.5 (C3),
55.0 (C14), 50.1 (C9), 46.4 (C13), 38.0 (C4), 36.7 (2C, C10 and C12),
32.4 (C8), 31.1 (C1), 30.7 (C2), 28.8 (C7), 27.6 (C15), 21.2 (C11), 20.2
(CH3CO2), 19.2 (C19), 16.3 (C18). Anal. Calcd for C29H34N2O3: C,
75.95; H, 7.47; N, 6.11. Found: C, 75.80; H, 7.38; N, 6.32.

2.9. (4S,6aR,6bS,8aS,13aS,13bR)-12-(4-Fluorophenyl)-10-
hydroxy-6a,8a-dimethyl-3,4,5,6,6a,6b,7,8,8a,13,13a,13b-
dodecahydro-1H-naphtho[2′,1′:4,5]indeno[1,2-d]pyrimidin-4-yl
acetate (3bb)

Following the general procedure, the title compound 3bb (83%)
was obtained as a white solid. Mp 230–232 ◦C (methanol); IR
(KBr) � 3445, 2943, 1734, 1646, 1558, 1499, 1439, 1377, 1246,
1033 cm−1; 1H NMR (CDCl3, ppm): 7.79 (d, J = 8.1 Hz, 2H, aromatic
H), 7.23 (d, J = 8.1 Hz, 2H, aromatic H), 5.39 (s, 1H, C CH), 4.60 (m,
1H, C3-H), 2.63–2.57 (m, 2H, C15-H), 2.34 (m, 3H, C-CH), 2.04
(s, 3H, CH3CO), 1.13 (s, 3H, C18-H), 1.10 (s, 3H, C19-H); 13C NMR
(CDCl3, ppm): 171.3 (C17), 170.2 (CH3CO2), 162.4 (d, 1JCF = 246 Hz,
Ar-F), 160.5 (pyimidinyl C2-OH), 150.5 (pyimidinyl C6-Ar), 140.0
(C CH), 131.6 (Ar), 130.7 (Ar), 129.0 (Ar), 121.5 (C CH), 116.0 (d,
2JCF = 21.6 Hz, (2C)Ar), 114.5 (C16), 73.5 (C3), 55.0 (C14), 50.1 (C9),
46.4 (C13), 37.9 (C4), 36.7 (2C, C10 and C12), 32.3 (C8), 31.0 (C1),
30.6 (C2), 28.8 (C7), 27.5 (C15), 21.2 (C11), 20.2 (CH3CO2), 19.1
(C19), 16.3 (C18). Anal. Calcd for C29H33FN2O3: C, 73.09; H, 6.98; N,
5.88. Found: C, 73.02; H, 6.88; N, 5.72.

2.10. (4S,6aR,6bS,8aS,13aS,13bR)-10-Hydroxy-12-(4-
methoxyphenyl)-6a,8a-dimethyl-3,4,5,6,6a,6b,7,8,8a,13,13a,13b-
dodecahydro-1H-naphtho[2′,1′:4,5]indeno[1,2-d]pyrimidin-4-yl
acetate (3bc)

Following the general procedure, the title compound 3bc (87%)
was obtained as a white solid. Mp 242–244 ◦C (ethanol); 1H NMR
(CDCl3, ppm): 7.75 (d, J = 6.6 Hz, 2H, aromatic H), 7.05 (d, J = 8.1 Hz,
2H, aromatic H), 5.39 (s, 1H, C CH), 4.60 (m, 1H, C3-H), 3.87 (s,
3H, CH3OAr), 2.62–2.56 (m, 2H, C15-H), 2.35–2.12 (m, 3H, C-CH),
2.03 (s, 3H, CH3CO), 1.23 (s, 2 × 3H, C18-H and C19-H); 13C NMR
(CDCl3, ppm): 171.0 (C17), 170.2 (CH3CO2), 161.6 ((Ar)COCH3),
160.6 (pyimidinyl C2-OH), 150.0 (pyimidinyl C6-Ar), 140.0 (C CH),
130.0 (2C, Ar), 123.7 (Ar), 121.6 (C CH), 114.4 (2C, Ar), 113.7 (C16),
73.5 (C3), 55.2 ((Ar)COCH3), 54.9 (C14), 50.1 (C9), 46.3 (C13), 37.9
(C4), 36.6 (2C, C10 and C12), 32.3 (C8), 31.0 (C1), 30.6 (C2), 29.0
(C7), 27.5 (C15), 21.2 (C11), 20.2 (CH3CO2), 19.2 (C19), 16.3 (C18).
Anal. Calcd for C30H36N2O4: C, 73.74; H, 7.43; N, 5.73. Found: C,
73.68; H, 7.22; N, 5.68.

2.11. (6bS,8aS,13aS,13bR)-4-Methoxy-8a-methyl-12-phenyl-
2,6b,7,8,8a,13,13a,13b-octahydro-1H-
naphtho[2′,1′:4,5]indeno[1,2-d]pyrimidin-10-ol
(3ca)

Following the general procedure, the title compound 3ca (84%)
was obtained as a white solid. Mp 282–284 ◦C (methanol); IR (KBr)
� 3411, 2932, 1638, 1559, 1498, 1462, 1378, 1253, 1075 cm−1; 1H
NMR (CDCl3, ppm): 7.78 (d, J = 6.0 Hz, 2H, aromatic H), 7.53 (m, 3H,
aromatic H), 7.22 (d, J = 8.4 Hz, 1H, aromatic C1-H), 6.74 (d, J = 8.4 Hz,
1H, aromatic C2-H), 6.64 (s, 1H, aromatic C4-H), 3.78 (s, 3H, C3-

OCH3), 2.89 (m, 2H, C6-H and C9-H), 2.71 (m, 2H, C15-H), 2.46 (d,
J = 12.9 Hz, 1H, C6-H), 2.33 (m, 2H, C11-H and C12-H), 1.96 (m, 1H,
C14-H), 1.76 (m, 4H, C7-H, C11–2 and C12-H), 1.44 (m, 1H, C7-
H), 1.13 (s, 3H, C18-H); 13C NMR (CDCl3, ppm): 171.7 (C17), 160.6
(pyimidinyl C2-OH), 157.5 (C3), 150.2 (pyimidinyl C6-Ar), 137.4
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Table 1
Preparation of steroidal[17,16-d]pyrimidines (3aa–cc) promoted by TMSCl.

Entry 1 R1 R2 R3 2(ArCHO) R 3(product) Yield (%)

1 a �-OAc �-H CH3 a H 3aa 85
2 a �-OAc �-H CH3 b 4-F 3ab 88
3 a �-OAc �-H CH3 c 4-OCH3 3ac 88
4 a �-OAc �-H CH3 d 2-NO2 3ad 78
5 a �-OAc �-H CH3 e 3-NO2 3ae 81
6 b �-OAc �5(6) CH3 a H 3ba 83
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the silyl enol ether A; expectedly, the siloxy substituent plays the
role of the leaving group, followed by subsequent elimination of
trimethylsilyl alcohol to give the ketone C and Michael addition
reaction with urea promoted by TMSCl to yield the new silyl enol
ether D. Next, the silyl enol ether D isomerises ketone E quickly.

Table 2
Various promoter/catalysts and solvents effect on reaction.a,b.

Entry Promoter/catalyst Solvent Yieldsc (%)

1 HCl DMF 62a 68b

2 PTSA DMF 28a 36b

3 FeCl3 DMF 52a 65b

4 ZnCl2 DMF 57b

5 ZnO DMF 10b

6 TMSCl DMF 47a 71b

7 TMSCl DMSO 66b

8 TMSCl ACN 48b

9 TMSCl DMF/ACN 73b

10 TMSCl DMF/ACN 85d

a Steroid (1 mmol), urea (2.0 mmol), benzaldehyde (1.5 mmol), catalyst
7 b �-OAc � CH3

8 b �-OAc �5(6) CH3

9 c OCH3 �1,3,5(10)-Triene
10 c OCH3 �1,3,5(10)-Triene

C5), 132.0 (C10), 131.8 (Ar), 130.8 (Ar), 128.9 (2C, Ar), 128.3 (2C,
r), 126.0 (C1), 114.6 (C16), 113.8 (C4), 111.4 (C2), 55.1 (Ar)COCH3),
4.0 (C14), 46.9 (C13), 43.9 (C9), 37.5 (C8), 32.5 (C12), 29.4 (C6), 28.6
C15), 27.2 (C7), 26.0 (C11), 16.7 (C18). Anal. Calcd for C27H28N2O2:
, 78.61; H, 6.84; N, 6.79. Found: C, 78.70; H, 6.72; N, 6.78.

.12. (6bS,8aS,13aS,13bR)-4-Methoxy-12-(4-methoxyphenyl)-
a-methyl-2,6b,7,8,8a,13,13a,13b-octahydro-1H-
aphtho[2′,1′:4,5]indeno[1,2-d]pyrimidin-10-ol
3cc)

Following the general procedure, the title compound 3cc (87%)
as obtained as a white solid. Mp 240–242 ◦C (methanol); IR

KBr) � 3413, 2933, 1632, 1608, 1563, 1513, 1461, 1376, 1256,
181 cm−1; 1H NMR (dimethyl sulphoxide (DMSO)-d6, ppm): 11.44
brs, 1H, pyimidinyl C2-OH), 7.57 (d, J = 8.4 Hz, 2H, aromatic H), 7.07
d, J = 8.7 Hz, 1H, aromatic C2-H), 7.97 (d, J = 8.4 Hz, 2H, aromatic H),
.58 (d, J = 8.7 Hz, 1H, aromatic C1-H), 6.52 (s, 1H, aromatic C4-H),
.73 (s, 3H, CH3OAr), 3.58 (s, 3H, C3-OCH3), 0.92 (s, 3H, C18-H);
3C NMR (DMSO-d6, ppm):172.8 (C17), 161.6 ((Ar)COCH3), 161.2
pyimidinyl C2-OH), 159.2 (pyimidinyl C6-Ar), 157.2 (C3), 137.4
C5), 132.2 (C10), 131.9 (Ar), 130.2 (2C, Ar), 128.0 (C1), 126.1 (Ar),
14.1 (2C, C16 and Ar), 113.7 (C4), 111.6 (C2), 55.5 ((Ar)COCH3),
5.0 ((Ar)COCH3), 53.4 (C14), 46.3 (C13), 43.6 (C9), 37.3 (C8), 32.5
C12), 29.1 (C6), 28.1 (C15), 26.8 (C7), 25.8 (C11), 16.8 (C18). Anal.
alcd for C28H30N2O3: C, 75.99; H, 6.83; N, 6.33. Found: C, 75.82;
, 6.73; N, 6.36

. Results and discussion

The reaction was initially studied with (3�,5�)-3-
cetyloxyandrosterone, urea and benzaldehyde, which were
elected as suitable substrates for reaction development in var-
ous promoters or catalysts and various solvents. At the outset,
arious promoters or catalysts (HCl, FeCl3, ZnCl2, ZnO, p-toluene
ulphonic acid (PTSA) and TMSCl) and solvents (DMF, DMSO,
CN, and DMF + ACN) were screened. To our delight, we observed

he formation of the desired product, 3aa (Table 2), when the
eaction was carried out using steroid (1.0 mmol), benzaldehyde
1.5 mmol), urea (2.0 mmol) and DMF (10 ml) in the presence of
arious promoters or catalysts (0.10 mmol or 2.0 mmol) under
0 ◦C for 12 h.

A comparison of the methods using TMSCl as a promoters
Table 2, entry 6, 71% in yield), with selected other promoters
uch as HCl, PTSA and other Lewis acids (FeCl3 and ZnCl2) or ZnO
Table 2, entry 1, 68% in yield; entry 2, 36% in yield; entry 3, 65%
n yield; entry 4, 57% in yield; entry 5, 10% in yield, respectively)

hat were examined is assembled in Table 2 to demonstrate that
he method using TMSCl as a promoter is indeed superior to sev-
ral of the other protocols. When the catalytic amount of HCl or
TSA or FeCl3 or TMSCl was used in the reaction, a low yield of
roduct 3aa was obtained. Thus, TMSCl was found to be the bet-
b 4-F 3bb 83
c 4-OCH3 3bc 87
a H 3ca 84
c 4-OCH3 3cc 87

ter choice as a promoter for this reaction. Next, solvent, time and
the amount of TMSCl were varied. First, the solvent in the prepara-
tion of steroidal[17,16-d]pyrimidines (3aa) was varied. Among the
solvents tested (Table 2, entries 6–9), the mixed solvent DMF/ACN
gave the best result. The result showed that DMF/ACN gave the
product 3aa in 73%. In the second set of experiments, the model
reaction in DMF/ACN was carried out by varied reaction temper-
ature. After some experimentation, it was found that the model
reaction using a reaction temperature of about 90 ◦C produced the
corresponding compound 3aa in excellent yield. Furthermore, the
reaction time and the catalyst concentration could be reduced to
12 h and two equivalents, respectively (Table 2, entry 1, 85%).

Thus, with these results in hand, the optimised procedure
includes the application of one equivalent of the steroid-17-
one (1a–c) with one-and-a-half equivalents of aromatic aldehyde
(2a–e) and a twofold excess of urea in DMF/ACN in the presence of
two equivalents of TMSCl under air and requires the reaction mix-
ture to be initially maintained at room temperature, and then at
90 ◦C for 12 h. The desired steroidal[17,16-d]pyrimidines(3aa–cc)
were obtained in good yields (Scheme 1). Evidently, a sequence
of reactions involving Biginelli-like condensation took place dur-
ing formation of the product. This may be concluded from the
fact that when condensation of steroid-17-one and benzaldehyde
was carried out, 16-benzylidene-steroid-17-one was isolated as
the product, thereby indicating that a condensation reaction is the
first step in this three-component process. The proposed mecha-
nism of this novel ring formation is depicted in Scheme 2. The silyl
enol ether A is initially generated by TMSCl. A �-siloxy ketone B is
preformed by nucleophilic addition reaction of the aldehyde with
(0.10 mmol), solvent (10 ml); reflux for ACN, 90 ◦C for DMSO, DMF and DMF/ACN
(6/12 ml); 12 h.

b Besides the amount of promoter/catalysts was changed to 1 mmol, other reac-
tion conditions were the same as above conditions.

c Isolated yields.
d Two equivalents of TMSCl were used in the reaction.
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Scheme 2. Proposed mech

hen, as the key step, the nitrogen of urea within the 17-ketone
oiety of steroidal skeleton forms the six-membered heteroring
in an intramolecular cyclisation reaction. Subsequently, water

s eliminated from compound F, giving the dihydropyrimidine
ompound G. Finally, aromatisation occurs under air that leads
o the steroidal[17,16-d]pyrimidines (3aa–cc) [19]. The air oxy-
en apparently acts as an effective oxidant for the aromatisation
f the dihydropyrimidine [19]. In general, unsaturated pyrimidi-
ol compounds are difficult to oxidise. Here, the aromatisation of
ihydropyridinones with aromatic groups was promoted by “HCl”
enerated from TMSCl. However, the aromatisation took a long
ime.

In conclusion, some steroidal[17,16-d]pyrimidines as poten-
ially biologically active pentacyclic heterosteroids were synthe-
ised through an one-pot multicomponent Biginelli-like conden-
ation of steroid-17-ones, urea and aromatic aldehydes promoted
y TMSCl under mild conditions. The methodology also provides
facile strategy for D-ring steroidal[17,16-d]pyrimidines with a

ubstitution at 2′-position.
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