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The reaction of a substitutionally labile dipalladium(I)
complex [Pd2(CH3CN)6][BF4]2 with isoprene or 1,3-butadiene
in acetonitrile afforded [Pd2(�-�3:�1-C5H8)(CH3CN)5][BF4]2
or [Pd2(�-�3:�1-C4H6)(CH3CN)5][BF4]2. The structure of the
isoprene complex was determined by X-ray crystallographic
analyses. The interconversion between the [Pd2(�-�3:�1-C5H8)-
(CH3CN)5][BF4]2 and [Pd2(�-�2:�2-C5H8)(�-Cl)Cl2][PPh4]
occurred facilely.

Coordination of 1,3-dienes to a mononuclear palladium cen-
ter has been intensively studied in conjunction with the palladi-
um-catalyzed transformation of those substrates.1,2 However, the
coordination of 1,3-dienes to a Pd–Pd bonded center has not
been fully understood. Several dipalladium complexes contain-
ing �-�2:�2-1,3-diene ligands have been isolated, and some of
those were structurally characterized by X-ray crystallographic
studies.3,4 On the other hand, the dinuclear addition of Pd–Pd
bonded moieties to 1,3-dienes has not been reported.5 We recent-
ly reported that the dinuclear addition of [Pd2Ln]

2þ (L = aceto-
nitrile) to 1,3,5-trienes proceeds smoothly to afford the bi-�3-al-
lyl type dipalladium complexes [Pd2{R(CH=CH)3R})L4][PF6]2
(R ¼ Ph and t-Bu).6 Through a mechanistic study including
demonstration of highly stereospecific nature of the reverse
reactions; i.e. dinuclear elimination reactions, we proposed that
the dimetalla-[4�þ 2�] Diels–Alder type process is possibly
involved in the dinuclear addition reactions of 1,3,5-trienes
(Scheme 1).6b While the initial product of such [4�þ 2�] addi-
tion may readily be converted to the more stable bi-�3-allyl
form, it seems of considerable interest to examine what type
of structure is taken by an analogous [4�þ 2�] adduct involv-
ing 1,3-diene, particularly because the �1-allylpalladium is
usually a less stable species.7 Herein, we report that the reaction
of [Pd2(CH3CN)6][BF4]2 (1)8 with 1,3-dienes in acetonitrile
afforded the �-�3:�1-1,3-diene dipalladium complexes.

The reaction of 1 with excess amount of isoprene in CD3CN
at room temperature afforded [Pd2(�-�3:�1-C5H8)(CH3CN)5]-
[BF4]2 (2) almost quantitatively (eq 1).9 No other isomer was
formed. A considerable sp3-hybridized character at the CHCH2

terminal carbon is suggested by the geminal coupling constant
(J ¼ 6:6Hz), as well as the high-field shifted 13C{1H} resonance
(� ¼ 18:3 ppm). The complex 2 was isolated in 55% yield after
recrystallization from CH3CN/Et2O, and a single crystal suita-
ble for X-ray structure analysis was obtained by recrystallization
from CH3CN/CH2Cl2/benzene. The molecular structure of 2 is

shown in Figure 1.10 The Pd–Pd bond in 1 was cleaved during
the formation of 2. Two palladium atoms are located at the op-
posite faces of the pseudo-plane composed of the diene carbons
(C1, C2, C3, and C4). The isoprene ligand coordinated to the Pd2
moiety in a�-�3:�1-mode. As expected, the C3–C4 bond length
(1.488(8) Å) is longer than the C1–C2 and C2–C3 bond lengths
(1.411(8) and 1.407(7) Å) due to its C–C single-bond character.
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The reaction of 1 with 1,3-butadiene in CH3CN afforded
[Pd2(�-�3:�1-C4H6)(CH3CN)5][BF4]2 (3) as a mixture of two
isomers (49% isolated yield after recrystallization from
CH3CN/Et2O, syn/anti = 93/7 at �40 �C). The syn- or anti-al-
lyl structure in each isomer was assumed by the J-coupling con-
stants in the 1HNMR spectra; JHc{Hd ¼ 11:9Hz for syn isomer,
JHc{Hd ¼ 7:9Hz for anti isomer (see Scheme 2 for the labels of
the butadiene protons).11 It should be noted that the isoprene
complex 2 contained only syn isomer in CD3CN solution, as
was confirmed by difference NOE measurements. Relatively
large geminal coupling constant at one of the butadiene termini
was observed (J ¼ 5:6Hz). Raising the temperature from
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Scheme 1.

Figure 1. ORTEP drawing of [Pd2(�-�3:�1-C5H8)(CH3CN)5]-
[BF4]2 (2) (50% probability ellipsoids, BF4 anions were omitted
for clarity). Selected bond lengths (Å): Pd1–C1 2.094(6), Pd1–
C2 2.132(5), Pd1–C3 2.162(5), Pd2–C4 2.041(5), Pd1–N1
2.091(5), Pd1–N2 2.103(5), Pd2–N3 2.001(5), Pd2–N4
2.041(5), Pd1–N5 1.999(5), C1–C2 1.411(8), C2–C3 1.407(7),
C3–C4, 1.488(8), C2–C5 1.472(7).
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�40 �C resulted in the coalescence of the four proton resonances
(Ha, Hb, He, and Hf) and two proton resonances (Hc and Hd) at
around 40 �C, and two broad resonances (� 3.2 and 5.2 ppm) with
relative intensities of 2:1 appeared at 70 �C. This temperature-
dependent NMR behavior can be explained by the occurrence
of rapid exchange between �-�3:�1-mode and �-�1:�3-mode,
through a di-�-bonded intermediate, as depicted in Scheme 2.

Then, we examined the transformation of the �-�3:�1-com-
plexes synthesized here to the �-�2:�2-complexes. When the
isoprene complex 2 was treated with [PPh4]Cl (3 equiv.), the
known �-�2:�2-isoprene trichloride complex [Pd2(�-�2:�2-
C5H8)(�-Cl)Cl2][PPh4] (4)3c containing a Pd–Pd bond was
formed almost quantitatively. Addition of AgBF4 (3 equiv.) to
the complex 4 in CD3CN gave the complex 2 in a quantitative
manner (eq 2). During the interconversion of eq 2, the dimetal-
la-[4�þ 2�] process is probably involved. Similarly to the Pd–
Pd bond formation in the forward reaction of eq 2, the dinuclear
elimination of a [Pd–Pd]2þ moiety was observed to take place
from the bi-�3-allyl dipalladium(II) complexes (i.e. the reverse
reaction of Scheme 1), although no Pd–Pd complex having �-
�2:�2-bound triene ligand was detected.6b

-

Pd PdCl Cl
Cl

CD3CN

CD3CN

[PPh4]Cl (3 equiv.)

PPh4
+AgBF4 (3 equiv.)

(2)

4

Pd

L L

Pd L
L

L

2 BF4
-

2

2+

In summary, it has been proven that the dinuclear addition
of a [Pd2Ln]

2þ moiety to isoprene or 1,3-butadiene takes place
to afford the �-�3:�1-1,3-diene dipalladium complexes.
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Scheme 2. Interconversion between �-�3:�1- and �-�1:�3-
complexes (3-syn).
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