

Available online at www.sciencedirect.com



Tetrahedron

Tetrahedron 62 (2006) 8360-8372

## Microwave-assisted tandem Wittig–intramolecular Diels–Alder cycloaddition. Product distribution and stereochemical assignment

Jinlong Wu,<sup>a</sup> Lijie Sun<sup>a</sup> and Wei-Min Dai<sup>a,b,\*</sup>

<sup>a</sup>Laboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, China <sup>b</sup>Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China

> Received 19 April 2006; revised 11 June 2006; accepted 13 June 2006 Available online 7 July 2006

**Abstract**—The IMDA cycloadditions of 10 different ester-tethered 1,3,8-nonatrienes have been examined under controlled microwave heating (MeCN, 180 °C, 30 min), giving 90–99% yields, and the stereochemical outcome of the *exo* and *endo* adducts established together with X-ray crystal structural analysis. A microwave-assisted tandem Wittig–IMDA cycloaddition protocol has been established for a modular synthesis of the bicyclic lactones starting from  $\alpha$ -bromoacetates of 2,4-pentadien-1-ols and  $\alpha$ -oxo carbonyl compounds in the presence of PPh<sub>3</sub> and 2,6-lutidine (MeCN, 180 °C, 30 min). The overall yields of the tandem reactions are 68–80% and the stereoselectivity of the major adducts formed from *E*-substituted 1,3,8-nonatriene is the same as that observed for the purified 1,3,8-nonatrienes. © 2006 Elsevier Ltd. All rights reserved.

### 1. Introduction

The Diels-Alder cycloaddition remains the most powerful and efficient synthetic tool for accessing highly functionalized carbocycles, possibly generating up to four continuous stereogenic centers in one operation.<sup>1</sup> In particular, the intramolecular Diels-Alder (IMDA) cycloaddition has been extensively used for assembly of complex molecular architectures of designed or natural products origin.<sup>2</sup> Biosynthetic pathways incorporating IMDA reactions have been recognized and examples of biomimetic total synthesis of natural products by using a key IMDA cycloaddition are known.<sup>2i</sup> A good understanding on stereocontrol is fundamental to application of IMDA reactions in organic synthesis. A number of theoretical<sup>3,4b–e,5e–h,j,7d</sup> and experimental<sup>4–8</sup> studies have addressed the stereoselectivity of IMDA cycloadditions of the ester-tethered 1,3,8-nonatrienes<sup>9</sup> (Chart 1). The type I substrates have been extensively studied for formation of bicyclic lactones A. The acrylates Ia<sup>4</sup> undergo IMDA reactions at 132-250 °C while the doubly activated E- and Z-substituted 1,3,8-nonatrienes Ib,c cyclize, respectively, in PhMe (100–130 °C for **Ib**)<sup>5,6</sup> and in refluxing PhMe or xylene (110–140 °C for **Ic**).<sup>7</sup> As similar to the reactivity of Ia, the substrates  $II^8$  afford the IMDA adducts B at temperatures of 135-250 °C depending on the nature of



Chart 1. Ester-tethered 1,3,8-nonatrienes I and II and the IMDA adducts A and B.

substituents R<sup>1</sup> and R<sup>2</sup>. Synthetically useful stereoselectivity has been achieved for the lactones **A** by using a stereogenic substituent R<sup>1</sup> or R<sup>4</sup> at the position C1 or C5, <sup>4a,b,5a-d,f,g,j,k,6p</sup> a cooperative effect<sup>4d-h</sup> of two substituents R<sup>3</sup> and R<sup>4</sup> at the positions C3 and C5, and an internal hydrogen bonding interaction<sup>5h</sup> with CH<sub>2</sub>OH (=R<sup>2</sup>) at the position C2. We report here our original results on the IMDA cycloadditions of the type **Ib** substrates under controlled microwave heating.<sup>10</sup>

Keywords: Wittig; IMDA; Microwave; Lactones; Tandem reactions.

<sup>\*</sup> Corresponding author. Tel.: +852 23587365; fax: +852 23581594; e-mail addresses: chdai@ust.hk; chdai@zju.edu.cn

We also disclose results on the tandem Wittig–IMDA reactions for a modular synthesis of the bicyclic lactones **C** by using  $\alpha$ -bromoacetates **III** and  $\alpha$ -oxo carbonyl compounds **IV** as the building blocks (Chart 2).



Chart 2. Proposed tandem Wittig–IMDA reactions of III under controlled microwave heating.

#### 2. Results and discussion

### 2.1. Microwave-assisted IMDA cycloadditions of estertethered 1,3,8-nonatrienes

As reported by Arseniyadis et al.5b and Paddon-Row et al., 5e,j the terminally activated *E*-isomers of 1,3,8-nonatrienes 8a,b underwent the IMDA reactions in PhMe at 100–110 °C for 23–24 h to provide the bicyclic lactones exo-10a.b and endo-11a.b in 78-85% combined yields and with exo:endo ratios of 60:40-65:35 (Scheme 1: Table 1. entries 2 and 5). The Z-substituted 1,3,8-nonatrienes 9a showed a higher reactivity toward cycloaddition (110 °C, 2 h) and gave the bicyclic lactones exo-12a and endo-13a in 79% combined yield and with an exo:endo ratio of 79:21 (Table 1, entry 12).<sup>5e,j</sup> In connection with our interest in applying controlled microwave heating in closed reaction vials to solution<sup>11</sup> and solid-phase<sup>12</sup> organic synthesis, we assumed that the IMDA cycloadditions of the ester-linked 1,3,8-nonatrienes could be facilitated at higher temperatures, which are applicable on a technical microwave reactor with temperature and pressure regulation capability. The specific question we need to address centers on whether stereocontrol in the microwave-assisted IMDA reactions decreases due to a temperature effect.<sup>13</sup> As illustrated in Schemes 1 and 2, we prepared 10 different E- and Z-substituted 1,3,8-nonatrienes 8a-e and 9a-e and the yields are listed in Table 1. Condensation of 1-3 with fumaric acid monomethyl ester **4** or monoethyl ester  $5^{14}$  in the presence of DCC-DMAP at 0 °C for 2 h afforded the E-substituted **8a-d** in 85–90% vields. It was found that the combination of DIC-i-Pr<sub>2</sub>NEt-DMAP<sup>15</sup> was more suitable for the formation of the Z-substituted trienes 9a-d, which were obtained in 65–71% yields from 1–3 and maleic acid monomethyl ester 6 or monoethyl ester 7.<sup>16</sup> The ketoesters 8e and 9ewere prepared by a modified Wittig olefination procedure by using MeOH as the solvent<sup>17</sup> in order to get much more amount of the Z-isomer 9e. The  $\alpha$ -bromoacetate 14 was treated with PPh<sub>3</sub> in MeCN at room temperature for overnight to give quantitatively the phosphonium salt 20, which reacts with phenylglyoxal monohydrate in the presence of Et<sub>3</sub>N in MeOH (0 °C, 30 min), giving 8e and 9e in 37 and 18% yields. We used MeCN as the solvent for the microwave-assisted IMDA reactions<sup>18</sup> due to its better microwave energy absorption property than PhMe<sup>10b</sup> and easy workup with its low boiling point. Moreover, it is advantageous to use MeCN in IMDA cycloadditions of the ester-linked substrates because a polar solvent effect was known, resulting in a significant rate acceleration.<sup>13c-e</sup> After heating a MeCN solution of 8a in a closed pressurized reaction vial at 180 °C for 30 min, the adducts exo-10a and endo-11a were isolated in 91% combined vield and in a 67:33 isomer ratio (Table 1, entry 1). Similarly, exo-10b and endo-11b were isolated from the triene 8b in 90% combined yield and in a 66:34 isomer ratio (Table 1, entry 3). For the purpose of the tandem Wittig-IMDA cycloadditions discussed below, we applied the same microwave heating conditions for the IMDA reactions of Z-isomers **9a.b** although they could cyclize at a lower temperature. The expected exo-12a,b and endo-13a,b were produced in 98% combined yield for each and in 68:32-76:24 isomer ratios (Table 1, entries 11 and 13). These results confirm two findings: (a) higher product yields with significantly shortened reaction time can be achieved by applying controlled microwave heating; and (b) the same level of stereoselectivity can be maintained for the IMDA cycloadditions in different solvents (MeCN vs PhMe) and at a higher reaction temperature (180 °C vs 100–110 °C) although an exceptional case was



Scheme 1. Synthesis and microwave-assisted IMDA of 1,3,8-nonatrienes 8a-d and 9a-d.

| Entry | Esters         | Yield (%) | Solvent           | Lactones | Yield (%) <sup>b</sup> | exo:endo Ratio <sup>c</sup>       |
|-------|----------------|-----------|-------------------|----------|------------------------|-----------------------------------|
| 1     | (E)- <b>8a</b> | 88        | MeCN              | 10a+11a  | 91                     | 67:33 <sup>d</sup> (73:27)        |
| 2     | (E)- <b>8a</b> |           | PhMe              | 10a+11a  | $85^{f}$               | 65:35 <sup>f</sup>                |
| 3     | (E)- <b>8b</b> | 90        | MeCN              | 10b+11b  | 90                     | 66:34 <sup>d</sup> (66:34)        |
| 4     | (E)- <b>8b</b> |           | MeCN <sup>h</sup> | 10b+11b  | 88                     | 64:36 <sup>d</sup>                |
| 5     | (E)- <b>8b</b> |           | PhMe              | 10b+11b  | 78 <sup>g</sup>        | 60:40 <sup>g</sup>                |
| 6     | (E)-8c         | 83        | MeCN              | 10c+11c  | 95                     | 76:24 <sup>d</sup> (74:26)        |
| 7     | (E)-8c         |           | PhMe <sup>i</sup> | 10c+11c  | 55                     | 71:29 <sup>d</sup>                |
| 8     | (E)-8d         | 85        | MeCN              | 10d+11d  | 91                     | $68:32^{d}$ (67:33)               |
| 9     | (E)- <b>8e</b> | 37        | MeCN              | 10e+11e  | 99                     | 73:27 <sup>e</sup> (71:29)        |
| 10    | (E)- <b>8e</b> |           | PhMe <sup>i</sup> | 10e+11e  | 99                     | 74:26 <sup>d</sup>                |
| 11    | (Z)-9a         | 65        | MeCN              | 12a+13a  | 98                     | 76:24 <sup>e</sup> (67:33)        |
| 12    | (Z)-9a         |           | PhMe              | 12a+13a  | $79^{\rm f}$           | 79:21 <sup>f</sup>                |
| 13    | (Z)-9b         | 69        | MeCN              | 12b+13b  | 98                     | $68:32^{d}$ (NA) <sup>j</sup>     |
| 14    | (Z)-9c         | 70        | MeCN              | 12c+13c  | 97                     | 71:29 <sup>e</sup> (77:23)        |
| 15    | (Z)-9d         | 71        | MeCN              | 12d+13d  | 97                     | $71:29^{\rm e}$ (NA) <sup>j</sup> |
| 16    | (Z)-9e         | 18        | MeCN              | 12e+13e  | 99                     | 45:55 <sup>d</sup> (47:53)        |
| 17    | (Z)-9e         |           | MeCN <sup>h</sup> | 12e+13e  | $ND^k$                 | 44:56 <sup>d</sup>                |
| 18    | (Z)-9e         |           | PhMe <sup>i</sup> | 12e+13e  | $(100)^{1}$            | 65:35 <sup>d</sup>                |

Table 1. Synthesis and IMDA of E- and Z-substituted 1,3,8-nonatrienes 8a-e and 9a-e<sup>a</sup>

Except for otherwise stated, all IMDA cycloadditions were carried out in MeCN at 180 °C for 30 min in closed pressurized vials with the reaction temperature measured by an IR sensor.

Combined isolated yields.

<sup>c</sup> The numbers in the parentheses are taken from Table 3 for the tandem reactions. <sup>d</sup> The ratio was determined by <sup>1</sup>H NMR of the product mixtures.

<sup>e</sup> The ratio was calculated based on the weights of the isolated products.

Data taken from Ref. 5e. Compounds 8a and 9a were heated in PhMe at 110 °C for 23 and 2 h, respectively.

Data taken from Ref. 5b. Compound **8b** was heated in PhMe at 100 °C for 24 h.

h 2,6-Lutidine (1.3 equiv) was added.

Heated in PhMe in an oil bath at 110 °C for 80 and 1 h for 8c and 9e, respectively, or in a microwave reactor at 150 °C for 1 h for 8e.

Not available.

Not determined.

Conversion of **9e** as determined by <sup>1</sup>H NMR of the product mixture.

found for the reaction of Z-substituted 1,3,8-nonatriene 9e (vide infra).

With the above encouraging results, we turned our attention to the IMDA reactions of the 1,3,8-nonatrienes 8c-e and 9c-e, which were not covered in a recent study by Paddon-Row and Sherburn.<sup>5j</sup> For comparison, the triene **8c** possessing a C1-phenyl group was subjected to cycloaddition in PhMe at 110 °C for 80 h, giving the adducts 10c and 11c in 55% combined yield and in a 71:29 exo:endo ratio (Table 1, entry 7). The stereoselectivity of 8c is slightly better than the C1-methyl analog **8b** (Table 1, entry 5)<sup>5g</sup> although 8c showed a diminished reactivity toward cycloaddition.

For the microwave-heated cycloadditions, the paired adducts 10c-e/11c-e and 12c,d/13c,d were obtained in 91-99% combined yields and in 68:32-76:24 isomer ratios in favor of the exo isomers (Table 1, entries 6, 8, 9, 14, and 15), except for the adducts 12e and 13e, whose ratio is 45:55 (Table 1, entry 16). We repeated the cycloaddition of 9e in MeCN at 180 °C for several times and obtained the same isomer ratio in all cases. It was reported that treatment of the trans-fused lactone A with a catalytic NaOMe gave the corresponding cis-fused isomer.7b We carried out the microwave-assisted IMDA reactions of 8b and 9e in the presence of 2,6-lutidine and obtained almost the same results in both cases (Table 1, entries 4 and 17). Moreover, we did not find any structural



Scheme 2. Synthesis and microwave-assisted IMDA of 1,3,8-nonatrienes 8e and 9e.

change after heating each pure adducts **10e**, **11e**, **12e**, and **13e** at 180 °C for 30 min in MeCN in the presence of 2,6-lutidine. The results confirmed that isomerization of the adducts did not happen even in the presence of a base. When **9e** was heated in PhMe at 110 °C for 1 h, the adducts **12e** and **13e** were formed in a 65:35 ratio in favor of the *exo* isomer **12e** (Table 1, entry 18). Similarly, the IMDA reaction of the *E*-substituted **8e**, after heated in PhMe at 150 °C for 1 h under microwave irradiation, afforded a 74:26 ratio of **10e:11e** in 99% combined yield (Table 1, entry 10). The results indicated that the solvent-dependent stereoselectivity is unique to the (*Z*)-9-acyl-substituted 1,3,8-nonatrienes.

We decided to examine the solvent and temperature effects on the IMDA cycloaddition of the 9-benzoyl-substituted triene 9e. The results are summarized in Table 2. The triene 9e was the most reactive among the 10 substrates we studied and it underwent the IMDA reaction at ambient temperature (Table 2, entries 1–3). After stirring at 20 °C for 70 h, the conversion of 9e was measured by <sup>1</sup>H NMR spectroscopy of the reaction mixtures. The reactivity of 9e parallels with the polarity of the solvent in the order of PhMe< CDCl<sub>3</sub><MeCN and the conversions are 60, 85, and 95%, respectively. The results consist with the rate enhancement ob-served in polar solvents.<sup>13c-e</sup> Moreover, it is interesting to find that the nonpolar solvent, PhMe favored for the exo isomer 12e while the polar solvent, MeCN promoted the formation of the endo isomer 13e. We observed that the ratios of 12e:13e increased from 56:44 to 65:35 in PhMe at 110 °C (Table 2, entry 1 vs entry 4) and from 36:64 to 45:55 in MeCN at 82 °C (Table 2, entry 3 vs entry 5). We attempted to modify the preformed adduct ratios by switching solvent or temperature without success (Table 2, entries 6 and 7). It suggests that an equilibrium through IMDA-retro-IMDA pathways does not exist.

We carefully secured the stereochemistry of **12e** with the help of X-ray crystal structural analysis. As shown in Figure 1, the compound **12e** features a trans-fused bicyclic

Table 2. Solvent effect on IMDA of 9e

| Me<br>Ph |                 | + H <sup>V</sup> O |
|----------|-----------------|--------------------|
| 9e       | exo <b>-12e</b> | endo <b>-13e</b>   |

| Entry | Solvent           | T (°C); $t$ (h) | Conversion (%) <sup>a</sup> | 12e:13e <sup>a</sup> |
|-------|-------------------|-----------------|-----------------------------|----------------------|
| 1     | PhMe              | 20; 70          | 60                          | 56:44                |
| 2     | CDCl <sub>3</sub> | 20; 70          | 85                          | 54:46                |
| 3     | MeCN              | 20; 70          | 95                          | 36:64                |
| 4     | PhMe              | 110; 1          | 100 <sup>b</sup>            | 65:35 <sup>b</sup>   |
| 5     | MeCN              | 82; 1           | 100                         | 45:55                |
| 6     | PhMe <sup>c</sup> | 150; 0.5        | _                           | 45:55                |
| 7     | MeCN <sup>d</sup> | 180; 0.5        | _                           | 35:65                |

<sup>a</sup> The conversion of **9e** and the ratio of the adducts **12e**:**13e** were determined by <sup>1</sup>H NMR of the crude reaction mixture.

<sup>b</sup> Data taken from entry 18 of Table 1.

<sup>c</sup> The 45:55 adduct mixture of entry 5, instead of **9e**, was heated on the microwave reactor.

<sup>d</sup> The 36:64 adduct mixture of entry 3, instead of **9e**, was heated on the microwave reactor.



Figure 1. X-ray crystal structure of 12e (shown as the enantiomer).

skeleton with both trans-oriented substituents sitting at the axial positions of the half-chair-like cyclohexene ring. Indeed, 12e is the expected exo adduct of the Z-substituted 1,3,8-nonatriene system. The IMDA cycloadditions of the related E-substituted 1,3,8-nonatrienes, similar to 8e, possessing a C9-keto unit were reported to yield the adducts in the exo:endo ratios of 61:39-80:20 (PhMe, 120-140 °C, 12-20 h).<sup>60</sup> Our observation for the reaction of 8e is consistent with the reported stereoselectivity (Table 1, entry 9). We also carried out X-ray crystal structural analysis for the adducts 10c and 13d derived from the 1-phenyl-substituted<sup>6g,19</sup> 1,3,8-nonatrienes. Figure 2 is the drawing of the exo adduct **10c**, depicting a trans-fused bicycle with the phenyl group placing in the pseudo axial and the ester moiety in the pseudo equatorial positions. The structural drawing of the cis-fused bicyclic lactone 13d is shown in Figure 3. The phenyl group is placed in the pseudo axial position while the ester moiety occupies the pseudo equatorial orientation. On the basis of our results on IMDA cycloadditions of the 10 different E- and Z-substituted 1,3,8-nonatrienes 8a-e and 9a-e possessing an ester linkage, exo selectivity is generally observed irrespective of the nature of C1-substituent (Me vs Ph) and C9-activator (ester vs keto).<sup>5i</sup> The 'abnormal' exo:endo ratio for the adducts 12e/13e obtained from the (Z)-9-acyl-substitued 9e in MeCN originates from a polar solvent effect, which favors formation of the endo isomer. Its nature is not fully understood.13c,e



Figure 2. X-ray crystal structure of 10c.



Figure 3. X-ray crystal structure of 13d.

# 2.2. Microwave-assisted tandem Wittig-IMDA cycloadditions

The Wittig olefination<sup>20</sup> is another powerful methodology for synthesis of functionalized olefins from halides and carbonyl compounds. The stabilized phosphorus ylides are easily prepared and purified in pure forms. However, the reactivity of stabilized ylides is relatively lower and heating conditions are frequently required with prolonged reaction times. The microwave-assisted Wittig reactions of stabilized phosphorus ylides with aldehydes,<sup>21</sup> ketones,<sup>11a,d,22</sup> and lactones<sup>23</sup> have been explored although the majority was done in domestic microwave ovens. Mechanistically speaking, the Wittig reaction consists of three steps: (a) phosphonium salt formation; (b) ylide formation via deprotonation; and (c) olefination of carbonyl substrates. The step (a) is often carried out under forced conditions such as microwave heating.<sup>24</sup> The most efficient way to conduct a Wittig reaction should begin with the ylide precursor but not the preformed ylide. Development of the so-called 'one-pot' Wittig reaction has been the focus of considerable research efforts,<sup>25</sup> including the work of Westman<sup>25g</sup> for demonstrating the one-pot Wittig reaction of a resin-bound phosphine under controlled microwave heating. As a continuation of our previous studies on the Wittig reactions with microwave irradiation,<sup>11a,d</sup> in aqueous media,<sup>26c,d</sup> and in the asymmetric versions,<sup>24b,26a,b</sup> we proposed to establish a microwave-assisted tandem Wittig–IMDA cycloaddition protocol<sup>27</sup> for a modular synthesis of the bicyclic lactones **C**, starting from the  $\alpha$ -bromoacetates **III** and the  $\alpha$ -oxo carbonyl compounds **IV** (Chart 2). To the best of our knowledge, no prior example of this sort is known in the literature. As a proof-of-concept study, we selected three each of the  $\alpha$ -bromoacetates **14–16** and the hydrate forms of  $\alpha$ -oxo carbonyl compounds **17–19** in our current work. The results are summarized in Scheme 3 and Table 3.

According to the synthesis of **8a** and **9a** shown in Scheme 2, formation of the phosphonium salt 20 from 14 and subsequent olefination could proceed at room temperature. Therefore, the rate-limiting step for our proposed tandem process should be the IMDA cycloaddition. To our delight, the cascade reaction sequence took place at 180 °C consisting of alkylation of PPh<sub>3</sub> with the bromides 14–16, deprotonation of the phosphonium salts with 2,6-lutidine, olefination of the ylides with the  $\alpha$ -oxo carbonyls 17–19, and finally the IMDA cycloadditions. Thus, after heating on a technique microwave reactor in a closed vial at 180 °C for 30 min in MeCN, the bicyclic lactones were produced in 68–80% isolated yields by a single operation. Other bases such as Et<sub>3</sub>N could be used for the Wittig reaction as shown in Scheme 2. In order to avoid formation of a quaternary ammonium salt from Et<sub>3</sub>N at the high temperature, 2.6lutidine was selected. Four isomeric adducts were formed in all reactions and the *exo:endo* ratios are almost identical to those obtained for the IMDA reactions of the purified 1,3,8-nonatrienes 8a-e and 9a-e (Table 1, entries 1, 3, 6, 8, 9, 11, 14, and 16). On the basis of the ratios of (10+11):(12+13) in the entries 1, 3, and 5 of Table 3, it is estimated that the olefins 8:9 are formed in 78:22-88:12 mixtures of E- and Z-isomers at 180 °C. It is clear that the stereoselectivity of the Wittig olefination at high temperature somewhat deteriorated as compared to the room temperature version, which gave a 95:5 ratio for the E- and Z-isomers 8a and 9a (Scheme 2). Aside from the olefination stereoselectivity, our tandem Wittig-IMDA cycloaddition protocol, in combination with controlled microwave heating,



Scheme 3. Synthesis of  $\alpha$ -bromoacetates 14–16 and tandem Wittig–IMDA under microwave heating.

Table 3. Microwave-assisted tandem Wittig-IMDA of 14-16 with 17-19<sup>a</sup>

| Entry | Substrates | Lactones        | Yield (%) <sup>b</sup> | Isomer ratio (10a:11a:12a:13a) | exo:endo Ratios (10:11; 12:13) |
|-------|------------|-----------------|------------------------|--------------------------------|--------------------------------|
| 1     | 14+17      | 10a+11a+12a+13a | 68                     | 64:24:8:4 <sup>c</sup>         | 73:27; 67:33                   |
| 2     | 14+18      | 10b+11b+12b+13b | 71                     | 57:29:14:0 <sup>d,e</sup>      | 66:34; NA <sup>g</sup>         |
| 3     | 15+18      | 10c+11c+12c+13c | 80                     | 58:20:17:5 <sup>°</sup>        | 74:26; 77:23                   |
| 4     | 16+18      | 10d+11d+12d+13d | 76                     | 56:28:16:0 <sup>d,e</sup>      | 67:33; NA <sup>g</sup>         |
| 5     | 14+19      | 10e+11e+12e+13e | 77                     | 59:24:8:9 <sup>c,f</sup>       | 71:29; 47:53                   |

<sup>a</sup> All IMDA were carried out in closed pressurized vials with the reaction temperature measured by an IR sensor.

<sup>b</sup> Combined isolated yields.

<sup>c</sup> The ratio was determined by <sup>1</sup>H NMR of the crude product mixtures. Copies of the <sup>1</sup>H NMR charts are found in Supplementary data.

<sup>d</sup> Due to overlapping of <sup>1</sup>H NMR signals of the stereoisomers, the ratio was calculated based on the weights of the isolated products.

<sup>e</sup> The minor isomer 13 was not isolated, probably lost during purification.

<sup>f</sup> Average values of two runs.

<sup>g</sup> Not available.

provides a high-throughput synthesis of the bicyclic lactones by using the appropriate bromide and aldehyde building blocks in a combinatorial approach. Structural complexity and functional groups of the lactones **A** (Chart 1) can be easily introduced according to the known chemistry developed for their syntheses over the years.<sup>4–7</sup>

### 3. Conclusion

We have studied the IMDA cycloaddition of the ester-tethered 1,3,8-nonatrienes possessing substituents at both C1 and C9 under controlled microwave heating at 180 °C for 30 min in a polar solvent, MeCN. In general, the predicted *exo* stereoselectivity<sup>5j</sup> for both pentadienyl maleates (**8b–d**) and fumarates (9a-d) has been confirmed. A similar exo stereoselectivity is obtained for IMDA cycloaddition of the C1-substituted pentadienyl (E)-4-oxobut-2-enoate  $8e^{60}$ although (Z)-4-oxobut-2-enoate 9e demonstrates an unusual solvent-dependent stereoselectivity. Our findings suggest that the IMDA cycloadditions can be significantly accelerated with microwave irradiation without deteriorating stereoselectivity. We have also realized a tandem Wittig-IMDA cycloaddition protocol illustrated in Chart 2 for an expedite synthesis of the bicyclic lactones C starting from the bromide and aldehyde building blocks. Our synthetic strategy in combination with controlled microwave heating offers an efficient synthesis of the bicyclic lactones, whose applications can be amplified subject to improvement of the stereoselectivity.

#### 4. Experimental

#### 4.1. General information and the microwave reactor

<sup>1</sup>H, <sup>13</sup>C, and <sup>31</sup>P NMR spectra were recorded in CDCl<sub>3</sub> or DMSO- $d_6$  (300, 400, or 500 MHz for <sup>1</sup>H, 75, 100, or 125 MHz for <sup>13</sup>C, and 121 MHz for <sup>31</sup>P). IR spectra were taken on an FTIR spectrophotometer. Mass spectra (MS) were measured by the +ESI or +EI method. Melting points are uncorrected. Silica gel plates pre-coated on glass were used for thin-layer chromatography using UV light, or 7% ethanolic phosphomolybdic acid and heating as the visualizing methods. Silica gel was used for flash column chromatography. Yields refer to chromatographically and spectroscopically (<sup>1</sup>H NMR) homogeneous materials. Petroleum ether of 60–90 °C fraction was used in this work.

*trans,trans*-2,4-Hexadien-1-ol **1**, fumaric acid monoethyl ester **5**, and phenylglyoxal hydrate **19**, and other reagents were obtained commercially and used as received. Fumaric acid monomethyl ester **4**,<sup>14</sup> maleic acid monomethyl ester **6**,<sup>16</sup> and monoethyl ester **7**,<sup>16</sup> methyl glyoxalate hydrate **17**,<sup>28</sup> and ethyl glyoxalate hydrate **18**<sup>28</sup> were prepared according to the reported procedures. All microwave-assisted reactions were carried out on an Emrys creator from Personal Chemistry AB (now under Biotage AB, Uppsala, Sweden) with temperature measured by an IR sensor. The microwave-assisted reaction time is the hold time at the final temperature.

#### 4.2. General procedure for synthesis of alcohols 2 and 3

To a solution of the dienonate (5 mmol) in dry  $CH_2Cl_2$  (15 mL) cooled in an ice-water bath under a nitrogen atmosphere was added DIBAL-H (11 mL, 1.0 M in hexane) dropwise. The resultant mixture was stirred for 45 min at the same temperature and the reaction was quenched with saturated aqueous sodium potassium tartrate (Rochelle's salt). The mixture was stirred at ambient temperature for 2 h, and then diluted with Et<sub>2</sub>O (10 mL). The aqueous layer was extracted with Et<sub>2</sub>O (10 mL×2) and the combined organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and evaporated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give the 2,4-pentadien-1-ols.

**4.2.1.** (2*E*,4*E*)-5-Phenylpenta-2,4-dien-1-ol (2). Prepared from ethyl (2*E*,4*E*)-5-phenylpenta-2,4-dienoate<sup>29,30</sup> in 95% yield as a white solid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.42–7.22 (m, 5H), 6.79 (dd, *J*=15.6, 10.6 Hz, 1H), 6.57 (d, *J*=15.6 Hz, 2H), 6.43 (dd, *J*=15.2, 10.6 Hz, 1H), 5.97 (dt, *J*=15.2, 6.0 Hz, 1H), 4.26 (d, *J*=5.6 Hz, 2H), 1.75–1.50 (br s, 1H).

**4.2.2.** (2*E*,4*E*)-4-Methyl-5-phenylpenta-2,4-dien-1-ol (3). Prepared from ethyl (2*E*,4*E*)-4-methyl-5-phenylpenta-2,4-dienoate<sup>30</sup> in 95% yield as a white solid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.42–7.27 (m, 5H), 6.60 (s, 1H), 6.52 (d, *J*=15.2 Hz, 1H), 6.00 (dt, *J*=15.6, 6.0 Hz, 1H), 4.34 (d, *J*=5.6 Hz, 2H), 2.89 (s, 1H), 2.08 (s, 3H).

# 4.3. General procedure for synthesis of *E*-substituted 1,3,8-nonatrienes 8a–d

To a solution of the alcohol (1.5 mmol), 4-dimethylaminopyridine (DMAP, 0.15 mmol), and fumaric acid monomethyl ester  $4^{14}$  or monoethyl ester  $5^{16}$  (2 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (15 mL) at 0 °C under a nitrogen atmosphere was added *N,N'*-dicyclohexylcarbodiimide (DCC, 2.0 mmol) in one portion. After stirring for 30 min at the same temperature, the reaction mixture was allowed to warm up to room temperature followed by stirring for another 3 h. Celite was added to the reaction vessel and the mixture, after stirring for 30 min, was then filtered with washing by CH<sub>2</sub>Cl<sub>2</sub>. The combined filtrate was evaporated under reduced pressure to give the crude product, which was purified by silica gel chromatography (3% EtOAc in petroleum ether) to provide the pure product. The yields are given in Table 1.

**4.3.1. Methyl (2***E***,4***E***)-hexa-2,4-dien-1-yl fumarate (8a).<sup>5b</sup> Prepared from (2***E***,4***E***)-hexa-2,4-dien-1-ol <b>1** and fumaric acid monomethyl ester **4** in 88% yield as a white solid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.84 (d, *J*=0.4 Hz, 2H), 6.27 (dd, *J*=15.2, 10.4 Hz, 1H), 6.03 (ddd, *J*=14.8, 10.0, 1.6 Hz, 1H), 5.75 (dq, *J*=14.8, 6.8 Hz, 1H), 5.62 (dt, *J*=15.2, 6.8 Hz, 1H), 4.68 (d, *J*=7.2 Hz, 2H), 3.78 (s, 3H), 1.75 (d, *J*=6.8 Hz, 3H).

**4.3.2. Ethyl (2***E***,4***E***)-hexa-2,4-dien-1-yl fumarate (8b).<sup>5e</sup> Prepared from (2***E***,4***E***)-hexa-2,4-dien-1-ol <b>1** and fumaric acid monoethyl ester **5** in 90% yield as a colorless oil; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.86 (s, 2H), 6.29 (dd, *J*=15.6, 10.4 Hz, 1H), 6.06 (dd, *J*=15.6, 10.0 Hz, 1H), 5.78 (dq, *J*=15.2, 6.4 Hz, 1H), 5.65 (dt, *J*=15.6, 6.4 Hz, 1H), 4.70 (d, *J*=6.8 Hz, 2H), 4.26 (q, *J*=7.2 Hz, 2H), 1.76 (d, *J*=6.4 Hz, 3H), 1.32 (t, *J*=7.2 Hz, 3H).

**4.3.3. Ethyl (2***E***,4***E***)-5-phenylpenta-2,4-dien-1-yl fumarate (8c). Prepared from (2***E***,4***E***)-5-phenylpenta-2,4-dien-1-ol <b>2** and fumaric acid monoethyl ester **5** in 83% yield as a colorless oil;  $R_f$ =0.35 (4.8% EtOAc in hexane); IR (film) 3026, 2984, 1721, 1645, 1294, 1258, 1153, 988 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.38–7.18 (m, 5H), 6.85 (s, 2H), 6.74 (dd, *J*=15.6, 10.4 Hz, 1H), 6.57 (d, *J*=15.6 Hz, 1H), 6.45 (dd, *J*=15.2, 10.4 Hz, 1H), 5.84 (dt, *J*=14.8, 6.8 Hz, 1H), 4.75 (d, *J*=6.8 Hz, 2H), 4.23 (q, *J*=7.2 Hz, 2H), 1.28 (t, *J*=7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  164.8, 164.7, 136.7, 135.1, 134.2, 134.0, 133.3, 128.6 (×2), 127.9, 127.4, 126.5 (×2), 125.9, 65.5, 61.3, 14.1; MS (+ESI) *m*/*z* 595 (2M+Na<sup>+</sup>, 100), 309 (M+Na<sup>+</sup>, 82); HRMS (+ESI) calcd for C<sub>17</sub>H<sub>18</sub>O<sub>4</sub>Na (M+Na<sup>+</sup>), 309.1097; found, 309.1085.

**4.3.4. Ethyl (2***E***,4***E***)-4-methyl-5-phenylpenta-2,4-dien-<b>1-yl fumarate (8d).** Prepared from (2*E*,4*E*)-4-methyl-5phenylpenta-2,4-dien-1-ol **3** and fumaric acid monoethyl ester **5** in 85% yield as a colorless oil;  $R_f$ =0.38 (4.8% EtOAc in hexane); IR (film) 2984, 1721, 1645, 1294, 1258, 1153, 966 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.35–7.20 (m, 5H), 6.88 (d, *J*=0.8 Hz, 2H), 6.55 (s, 1H), 6.50 (d, *J*=15.6 Hz, 1H), 5.84 (dt, *J*=15.6, 6.4 Hz, 1H), 4.80 (d, *J*=6.8 Hz, 2H), 4.24 (q, *J*=6.8 Hz, 2H), 1.99 (s, 3H), 1.30 (td, *J*=7.2, 0.8 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  164.9, 164.8, 140.3, 137.3, 134.5, 134.0, 133.4, 133.0, 129.2 (×2), 128.1 (×2), 126.8, 121.5, 66.0, 61.3, 14.1, 13.8; MS (+ESI) *m*/*z* 623 (2M+Na<sup>+</sup>, 87), 323 (M+Na<sup>+</sup>, 100); HRMS (+ESI) calcd for C<sub>18</sub>H<sub>20</sub>O<sub>4</sub>Na (M+Na<sup>+</sup>), 323.1254; found, 323.1244.

# 4.4. General procedure for synthesis of Z-substituted 1,3,8-nonatrienes 9a–d

To a solution of maleic acid monomethyl ester **6** or monoethyl ester **7**<sup>16</sup> (3.7 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> was added *N*,*N*'diisopropylcarbodiimide (DIC, 1.85 mmol) and the mixture was stirred at 0 °C for 1 h. The insoluble urea was filtered off and the filtrate was added to a solution of the alcohol (1.23 mmol) followed by addition of *i*-Pr<sub>2</sub>NEt (DIEA, 3.70 mmol) and 4-dimethylaminopyridine (DMAP, cat.). The resultant mixture was stirred at 0 °C for 1 h and at ambient temperature for another 1 h. The reaction mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub> and successively washed with saturated aqueous NH<sub>4</sub>Cl and brine. The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and evaporated under reduced pressure to give the crude product, which was purified by silica gel chromatography (9% EtOAc in petroleum ether) to provide the pure product. The yields are given in Table 1.

**4.4.1. Methyl (2***E*,4*E*)-hexa-2,4-dien-1-yl maleate (9a).<sup>5b</sup> Prepared from (2*E*,4*E*)-hexa-2,4-dien-1-ol **1** and maleic acid monomethyl ester **6** in 65% yield as a colorless oil; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.84 (s, 2H), 6.27 (dd, *J*=15.2, 10.4 Hz, 1H), 6.05 (ddd, *J*=15.2, 10.0, 1.2 Hz, 1H), 5.76 (dq, *J*=15.2, 6.8 Hz, 2H), 4.68 (d, *J*=6.8 Hz, 2H), 3.77 (s, 3H), 1.75 (d, *J*=6.8 Hz, 3H).

**4.4.2. Ethyl (2***E***,4***E***)-hexa-2,4-dien-1-yl maleate (9b). Prepared from (2***E***,4***E***)-hexa-2,4-dien-1-ol <b>1** and maleic acid monoethyl ester **7** in 69% yield as a colorless oil;  $R_f$ =0.43 (9.1% EtOAc in hexane); IR (film) 2984, 1735, 1725, 1642, 1403, 1209, 1160, 990 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.25 (dd, *J*=15.6, 10.8 Hz, 1H), 6.21 (s, 2H), 6.07–5.98 (m, 1H), 5.73 (dq, *J*=15.2, 6.4 Hz, 1H), 5.61 (dt, *J*=14.8, 6.8 Hz, 1H), 4.65 (d, *J*=6.8 Hz, 2H), 4.21 (q, *J*=7.2 Hz, 2H), 1.73 (d, *J*=6.4 Hz, 3H), 1.27 (t, *J*=7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  165.1, 164.8, 135.4, 131.4, 130.2, 130.0, 129.3, 122.8, 65.6, 61.1, 18.0, 13.8; MS (+ESI) m/z 471 (2M+Na<sup>+</sup>, 100), 247 (M+Na<sup>+</sup>, 49); HRMS (+ESI) calcd for C<sub>12</sub>H<sub>16</sub>O<sub>4</sub>Na (M+Na<sup>+</sup>), 247.0941; found, 247.0934.

**4.4.3. Ethyl (2***E***,4***E***)-5-phenylpenta-2,4-dien-1-yl maleate (<b>9c**). Prepared from (2*E*,4*E*)-5-phenylpenta-2,4-dien-1-ol **2** and maleic acid monoethyl ester **7** in 70% yield as a colorless oil;  $R_f$ =0.34 (9.1% EtOAc in hexane); IR (film) 2983, 1728, 1643, 1403, 1210, 1162, 989 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.41–7.22 (m, 5H), 6.70 (dd, *J*=15.6, 10.4 Hz, 1H), 6.52 (d, *J*=15.6 Hz, 1H), 6.41 (dd, *J*=14.8, 10.0 Hz, 1H), 6.19 (s, 2H), 5.83 (dt, *J*=15.2, 6.8 Hz, 1H), 4.78 (d, *J*=6.4 Hz, 2H), 4.25 (q, *J*=7.6 Hz, 2H), 1.31 (t, *J*=7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  165.2, 164.9, 136.8, 135.1, 134.0, 130.2, 129.4, 128.6 (×2), 127.9, 127.5, 126.5 (×2), 126.1, 65.5, 61.2, 14.0; MS (+ESI) *m/z* 595 (2M+Na<sup>+</sup>, 100), 309 (M+Na<sup>+</sup>, 57); HRMS (+ESI) calcd for C<sub>17</sub>H<sub>18</sub>O<sub>4</sub>Na (M+Na<sup>+</sup>), 309.1097; found, 309.1086.

**4.4.4. Ethyl (2***E***,4***E***)-4-methyl-5-phenylpenta-2,4-dien-1-yl maleate (9d). Prepared from (2***E***,4***E***)-4-methyl-5-phenylpenta-2,4-dien-1-ol <b>3** and maleic acid monoethyl ester **7** in 71% yield as a colorless oil;  $R_f$ =0.4 (9.1% EtOAc in hexane); IR (film) 2983, 1728, 1643, 1403, 1210, 1161 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.46–7.31 (m, 5H), 6.66 (s, 1H), 6.61 (d, J=15.5 Hz, 1H), 6.36 (s, 2H), 5.96 (dt, J=15.5, 6.5 Hz, 1H), 4.90 (d, J=6.5 Hz, 2H), 4.35 (q, J=7.0 Hz, 2H), 2.10 (d, J=0.5 Hz, 3H), 1.40 (t, J=7.0 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  165.1, 164.9, 140.1, 137.3, 134.5, 132.8, 130.1, 129.4, 129.1 (×2), 128.1 (×2), 126.7, 121.5, 65.9, 61.2, 13.9, 13.7; MS (+ESI) *m/z* 623 (2M+Na<sup>+</sup>, 79), 323 (M+Na<sup>+</sup>, 100); HRMS (+ESI) calcd for C<sub>18</sub>H<sub>20</sub>O<sub>4</sub>Na (M+Na<sup>+</sup>), 323.1254; found, 323.1239.

# 4.5. General procedure for synthesis of the $\alpha$ -bromo-acetates 14–16

To a suspension of the alcohols **1–3** (1.5 mmol), 4-dimethylaminopyridine (DMAP, 0.15 mmol), and bromoacetic acid (2.0 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (15 mL) cooled in an ice-water bath (0 °C) under a nitrogen atmosphere was added *N*,*N'*-dicyclohexylcarbodiimide (DCC, 2.0 mmol) in one portion. After stirring for 30 min at 0 °C, the reaction was allowed to warm up to ambient temperature followed by stirring for 3 h. Celite was added to the reaction mixture and, after stirring for 30 min, the mixture was filtered with washing by CH<sub>2</sub>Cl<sub>2</sub>. The combined filtrate was evaporated under reduced pressure and the residue was purified by silica gel chromatography (3% EtOAc in petroleum ether) to provide the products **14–16**.

**4.5.1.** (2*E*,4*E*)-**Hexa-2,4-dien-1-yl** α-**bromoacetate** (14). Prepared from (2*E*,4*E*)-hexa-2,4-dien-1-ol **1** and α-bromoacetic acid in 84% yield as a colorless oil;  $R_f$ =0.44 (4.8% EtOAc in hexane); IR (film) 3026, 2959, 1739, 1678, 1449, 1276, 1159, 1123, 990 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 6.29 (dd, *J*=15.2, 10.4 Hz, 1H), 6.06 (dd, *J*=15.2, 10.4 Hz, 1H), 5.79 (dq, *J*=15.2, 6.8 Hz, 1H), 5.63 (dt, *J*=15.2, 6.8 Hz, 1H), 4.67 (d, *J*=6.8 Hz, 1H), 3.85 (s, 3H), 1.77 (d, *J*=6.8 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 166.8, 135.7, 131.8, 130.1, 122.4, 66.6, 25.8, 18.0; MS (+ESI) *m/z* 243 (M+2+Na<sup>+</sup>, 100), 241 (M+Na<sup>+</sup>, 97); HRMS (+EI) calcd for C<sub>8</sub>H<sub>11</sub>BrO<sub>2</sub> (M<sup>+</sup>), 217.9937; found, 219.9921 (M<sup>+</sup>+2), 217.9939 (M<sup>+</sup>).

**4.5.2.** (2*E*,4*E*)-**5**-Phenylpenta-2,4-dien-1-yl α-bromoacetate (15). Prepared from (2*E*,4*E*)-5-phenylpenta-2,4-dien-1-ol **2** and α-bromoacetic acid in 88% yield as a colorless oil;  $R_f$ =0.53 (4.8% EtOAc in hexane); IR (film) 3026, 2947, 1736, 1276, 1159, 989, 741, 692 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.42–7.24 (m, 5H), 6.78 (dd, *J*=15.6, 10.8 Hz, 1H), 6.62 (d, *J*=15.2 Hz, 1H), 6.51 (dd, *J*=15.6, 10.4 Hz, 1H), 5.89 (dt, *J*=14.8, 6.8 Hz, 1H), 4.77 (d, *J*=6.8 Hz, 2H), 3.88 (s, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 166.8, 136.6, 135.4, 134.2, 128.5 (×2), 127.8, 127.3, 126.4 (×2), 125.5, 66.3, 25.8; MS (+ESI) *m/z* 305 (M+2+Na<sup>+</sup>, 100), 303 (M+Na<sup>+</sup>, 98); HRMS (+EI) calcd for C<sub>13</sub>H<sub>13</sub>BrO<sub>2</sub> (M<sup>+</sup>), 280.0093; found, 282.0078 (M<sup>+</sup>+2), 280.0100 (M<sup>+</sup>).

**4.5.3.** (2*E*,4*E*)-4-Methyl-5-phenylpenta-2,4-dien-1-yl  $\alpha$ -bromoacetate (16). Prepared from (2*E*,4*E*)-4-methyl-5-phenylpenta-2,4-dien-1-ol **3** and  $\alpha$ -bromoacetic acid in 86% yield as a colorless oil;  $R_f$ =0.43 (4.8% EtOAc in hexane); IR (film) 3022, 2950, 1736, 1274, 1157, 1111, 962 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.38–7.23 (m, 5H), 6.59 (s, 1H), 6.54 (d, *J*=16.0 Hz, 1H), 5.85 (dt, *J*=16.0, 6.4 Hz, 1H), 4.80 (d, *J*=7.2 Hz, 2H), 3.88 (d,

J=1.2 Hz, 3H), 2.02 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 166.9, 140.5, 137.2, 134.4, 133.1, 129.1 (×2), 128.1 (×2), 126.8, 121.0, 66.9, 25.9, 13.7; MS (+ESI) *m/z* 319 (M+2+Na<sup>+</sup>, 100), 317 (M+Na<sup>+</sup>, 97); HRMS (+EI) calcd for C<sub>14</sub>H<sub>15</sub>BrO<sub>2</sub> (M<sup>+</sup>), 294.0250; found, 296.0235 (M<sup>+</sup>+2), 294.0255 (M<sup>+</sup>).

4.5.4. Preparation of phosphonium salt (20). A solution of (2E,4E)-penta-2,4-dien-1-yl  $\alpha$ -bromoacetate **14** (0.3 mmol) and PPh<sub>3</sub> (0.33 mmol) in MeCN (10 mL) was stirred at ambient temperature overnight (12 h). The reaction mixture was evaporated under reduced pressure to give a white solid, which was washed with dry benzene  $(9 \text{ mL} \times 3)$  and dried in vacuum to provide quantitatively the salt 20. The phosphonium salt was used without further purification. Compound **20**: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.86–7.59 (m, 15H), 6.04 (dd, J=15.0, 10.2 Hz, 1H), 5.85 (dd, J=15.0, 10.2 Hz, 1H), 5.67 (dq, J=14.4, 6.9 Hz, 1H), 5.44 (d, J=13.8 Hz, 2H), 5.23 (dt, J=15.0, 7.2 Hz, 1H), 4.41 (d, J=7.2 Hz, 2H), 1.71 (d, J=6.9 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  163.9 (d,  $J_{P-C}$ =4.6 Hz), 136.2, 135.0 (d,  $J_{P-C}=3.1$  Hz), 133.8 (d,  $J_{P-C}=10.9$  Hz,  $\times 2$ ), 132.1, 130.1 (d,  $J_{P-C}=13.6$  Hz,  $\times 2$ ), 129.8, 121.4, 117.6 (d,  $J_{P-C}=$ 88.9 Hz), 67.0, 33.0 (d,  $J_{P-C}=55.0$  Hz), 18.1; <sup>31</sup>P NMR (121 MHz, CDCl<sub>3</sub>)  $\delta$  22.2.

**4.5.5.** Synthesis of (2'E,4'E)-hexa-2',4'-dien-1-yl (2E)-4-phenyl-4-oxo-2-butenoate (8e) and (2'E,4'E)-hexa-2',4'-dien-1-yl (2Z)-4-phenyl-4-oxo-2-butenoate (9e). To a solution of the phosphonium salt **20** (2 mmol) and phenylglyoxal hydrate **19** (2.2 mmol) in MeOH (15 mL) cooled in an icewater bath (0 °C) was added Et<sub>3</sub>N (2.1 mmol). The resultant mixture was stirred for 30 min at 0 °C and the reaction mixture was extracted with EtOAc (30 mL×2). The combined organic layer was washed with 6% aqueous HCl and brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and evaporated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 9% EtOAc in petroleum ether) to give **8e** (37%) and **9e** (18%).

Compound **8e**. A yellow oil;  $R_f$ =0.56 (9.1% EtOAc in hexane); IR (film) 3026, 2936, 1723, 1673, 1292, 1262, 1164, 989 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.00–7.98 (m, 2H), 7.91 (d, J=16.0 Hz, 1H), 7.64–7.60 (m, 1H), 7.51 (t, J=7.6 Hz, 2H), 6.89 (d, J=15.2 Hz, 1H), 6.31 (dd, J=15.6, 11.2 Hz, 1H), 6.08 (ddd, J=15.2, 10.8, 1.6 Hz, 1H), 5.79 (dq, J=15.2, 6.8 Hz, 1H), 5.68 (dt, J=15.2, 6.8 Hz, 1H), 4.74 (d, J=6.8 Hz, 2H), 1.77 (d, J=6.8 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  189.2, 165.1, 136.4, 136.4, 135.4, 133.7, 132.2, 131.6, 130.2, 128.7 (×2), 122.8, 65.7, 18.0; MS (+ESI) m/z 535 (2M+Na<sup>+</sup>, 17), 279 (M+Na<sup>+</sup>, 100), 257 (M+H<sup>+</sup>, 92); HRMS (+ESI) calcd for C<sub>16</sub>H<sub>16</sub>O<sub>3</sub>Na (M+Na<sup>+</sup>), 279.0992; found, 279.0982.

*Compound* **9e.** A yellow oil;  $R_f$ =0.24 (9.1% EtOAc in hexane); IR (film) 3026, 2933, 1722, 1673, 1203, 1165, 990 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.95–792 (m, 2H), 7.61–7.44 (m, 3H), 6.89 (dd, *J*=11.7, 0.6 Hz, 1H), 6.29 (dd, *J*=12.6, 1.2 Hz, 1H), 6.11 (dd, *J*=15.0, 10.2 Hz, 1H), 5.96 (ddd, *J*=15.0, 10.5, 1.2 Hz, 1H), 5.70 (dq, *J*=15.0, 6.9 Hz, 1H), 5.40 (dt, *J*=15.0, 6.6 Hz, 1H), 4.49 (d, *J*=6.6 Hz, 2H), 1.75 (d, *J*=6.9 Hz, 3H); <sup>13</sup>C NMR (75 MHz,

CDCl<sub>3</sub>)  $\delta$  194.0, 164.5, 141.3, 135.8, 135.4, 133.7, 131.5, 130.3, 128.8 (×2), 128.7 (×2), 125.9, 122.7, 65.7, 18.3.

Note: The triene 9e undergoes IMDA cycloaddition at ambient temperature and the adducts 12e and 13e were formed during the course of measurement of <sup>1</sup>H NMR. Therefore, mass data were not attempted for 9e.

### **4.6.** General procedure for microwave-assisted intramolecular Diels–Alder reactions of *E*- and *Z*-substituted **1,3,8-nonatrienes 8a–e and 9a–e**

To a 10-mL pressurized process vial was added the 1,3,8nonatrienes (0.50 mmol) in CH<sub>3</sub>CN (4 mL). The loaded vial was then sealed with a cap containing a silicon septum, and put into the microwave cavity and heated at 180 °C for 30 min. The reaction mixture was evaporated under reduced pressure and the residue was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give the desired products. The structures, isomer ratios, and yields are found in Schemes 1 and 2 and Table 1.

**4.6.1. Methyl (3a** $R^*$ ,6 $S^*$ ,7 $R^*$ ,7 $aS^*$ )-6-methyl-1-oxo-**3.3a**,6,7,7**a**-hexahydroisobenzofuran-7-carboxylate (**10a**).<sup>5e</sup> The major isomer from IMDA reaction of **8a** was obtained as a colorless oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  5.78 (ddd, J=9.6, 1.5, 1.5 Hz, 1H), 5.70 (ddd, J=9.9, 3.0, 3.0 Hz, 1H), 4.46 (dd, J=8.1, 6.3 Hz, 1H), 3.93 (dd, J=11.4, 8.4 Hz, 1H), 3.77 (s, 3H), 2.97 (dd, J=11.1, 6.9 Hz, 1H), 2.91–2.61 (m, 2H), 2.59 (dd, J=13.2, 11.4 Hz, 1H), 0.98 (d, J=6.6 Hz, 3H).

**4.6.2. Methyl (3a**R\*,6S\*,7S\*,7aR\*)-6-methyl-1-oxo-**3.3a,6,7,7a-hexahydroisobenzofuran-7-carboxylate** (**11a**).<sup>5e</sup> The minor isomer from IMDA reaction of **8a** was obtained as a colorless oil (this sample contains 8% **10a**); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  5.77 (ddd, J=9.9, 2.4, 2.4 Hz, 1H), 5.60 (ddd, J=10.5, 3.3, 2.1 Hz, 1H), 4.48 (dd, J=8.7, 7.5 Hz, 1H), 4.00 (dd, J=8.7, 6.3 Hz, 1H), 3.77 (s, 3H), 3.27–3.16 (m, 1H), 3.11 (dd, J=8.1, 8.1 Hz, 1H), 2.66 (dd, J=6.6, 6.6 Hz, 1H), 2.65–2.56 (m, 1H), 1.11 (d, J=7.2 Hz, 3H).

**4.6.3.** Methyl (3a*R*\*,6*S*\*,7*R*\*,7a*R*\*)-6-methyl-1-oxo-3,3a,6,7,7a-hexahydroisobenzofuran-7-carboxylate (12a).<sup>5e</sup> The major isomer from IMDA reaction of 9a was obtained as a colorless oil; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.78 (ddd, *J*=13.2, 1.8, 1.8 Hz, 1H), 5.65 (ddd, *J*=9.6, 3.2, 3.2 Hz, 1H), 4.52 (dd, *J*=7.4, 7.4 Hz, 1H), 3.86 (dd, *J*=11.6, 8.0 Hz, 1H), 3.69 (s, 3H), 3.25–3.15 (m, 1H), 2.96 (d, *J*=4.0 Hz, 1H), 2.97–2.89 (m, 1H), 2.35 (dd, *J*=13.2, 3.6 Hz, 1H), 1.19 (d, *J*=7.2 Hz, 3H).

**4.6.4.** Methyl (3a*R*\*,6*S*\*,7*S*\*,7a*S*\*)-6-methyl-1-oxo-3,3a,6,7,7a-hexahydroisobenzofuran-7-carboxylate (13a).<sup>5e</sup> The minor isomer from IMDA reaction of 9a was obtained as a colorless oil; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.82 (ddd, *J*=10.0, 4.0, 2.4 Hz, 1H), 5.60 (ddd, *J*=10.0, 2.4, 2.4 Hz, 1H), 4.44 (dd, *J*=8.4, 7.6 Hz, 1H), 4.17 (dd, *J*=8.4, 4.4 Hz, 1H), 3.75 (s, 3H), 3.34 (dd, *J*=9.6, 5.2 Hz, 1H), 3.24–3.17 (m, 1H), 3.09 (dd, *J*=5.2, 5.2 Hz, 1H), 2.75–2.65 (m, 1H), 1.15 (d, *J*=7.2 Hz, 3H). **4.6.5. Ethyl** (3a $R^*$ ,6 $S^*$ ,7 $R^*$ ,7a $S^*$ )-6-methyl-1-oxo-3,3a,6,7,7a-hexahydroisobenzofuran-7-carboxylate (10b).<sup>5b</sup> The major isomer from IMDA reaction of **8b** was obtained as a colorless oil; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.79 (ddd, J=9.6, 1.6, 1.6 Hz, 1H), 5.72 (ddd, J=9.6, 3.0, 3.0 Hz, 1H), 4.47 (dd, J=8.0, 6.4 Hz, 1H), 4.28 (q, J=7.0 Hz, 2H), 3.95 (dd, J=10.8, 7.6 Hz, 1H), 2.97 (dd, J=11.6, 7.2 Hz, 1H), 2.92–2.79 (m, 2H), 2.61 (dd, J=13.2, 11.6 Hz, 1H), 1.33 (t, J=7.2 Hz, 3H), 1.02 (d, J=7.6 Hz, 3H).

**4.6.6.** Ethyl  $(3aR^*, 6S^*, 7S^*, 7aR^*)$ -6-methyl-1-oxo-**3.3a,6,7,7a-hexahydroisobenzofuran-7-carboxylate** (**11b**).<sup>5b</sup> The minor isomer from IMDA reaction of **8b** was obtained as a colorless oil; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.77 (ddd, *J*=10.4, 2.6, 2.6 Hz, 1H), 5.60 (ddd, *J*=10.4, 3.2, 2.4 Hz, 1H), 4.47 (dd, *J*=8.8, 8.0 Hz, 1H), 4.22 (qd, *J*=6.8, 1.2 Hz, 2H), 3.98 (dd, *J*=8.8, 6.4 Hz, 1H), 3.25– 3.16 (m, 1H), 3.11 (dd, *J*=8.4, 8.4 Hz, 1H), 2.66–2.56 (m, 2H), 1.29 (t, *J*=7.2 Hz, 3H), 1.11 (d, *J*=7.2 Hz, 3H).

**4.6.7. Ethyl (3a** $R^*$ ,6 $S^*$ ,7 $R^*$ ,7a $R^*$ )-6-methyl-1-oxo-**3.3a**,6,7,7**a**-hexahydroisobenzofuran-7-carboxylate (**12b**). The major isomer from IMDA reaction of **9b** was obtained as a colorless oil;  $R_f$ =0.55 (25% EtOAc in hexane); IR (film) 2966, 1789, 1731, 1181, 1093, 993 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.76 (d, J=10.0 Hz, 1H), 5.63 (ddd, J=9.6, 3.0, 3.0 Hz, H), 4.49 (dd, J=7.6, 7.6 Hz, 1H), 4.20–4.08 (m, 2H), 3.83 (dd, J=11.6, 8.0 Hz, 1H), 3.19 (br dd, J=19.6, 12.4 Hz, 1H), 2.91 (br d, J=3.2 Hz, 2H), 2.33 (dd, J=13.6, 3.6 Hz, 1H), 1.22 (t, J=7.2 Hz, 3H), 1.17 (d, J=7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.8, 171.7, 134.6, 123.0, 70.5, 60.9, 42.6, 41.4, 36.2, 33.9, 21.9, 13.9; MS (+ESI) m/z 471 (2M+Na<sup>+</sup>, 100), 247 (M+Na<sup>+</sup>, 16); HRMS (+ESI) calcd for C<sub>12</sub>H<sub>16</sub>O<sub>4</sub>Na (M+Na<sup>+</sup>), 247.0941; found, 247.0940.

**4.6.8. Ethyl** (3a $R^*$ ,6 $S^*$ ,7 $S^*$ ,7 $aS^*$ )-6-methyl-1-oxo-3,3a,6,7,7a-hexahydroisobenzofuran-7-carboxylate (13b). The minor isomer from IMDA reaction of 9b was obtained as a colorless oil;  $R_f$ =0.43 (25% EtOAc in hexane); IR (film) 2976, 2932, 1770, 1728, 1176, 1016 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.80 (ddd, J=9.6, 4.0, 1.6 Hz, 1H), 5.59 (ddd, J=10.0, 2.4, 2.4 Hz, 1H), 4.43 (dd, J=8.4, 8.4 Hz, 1H), 4.20 (q, J=6.8 Hz, 2H), 4.16 (dd, J=8.0, 4.0 Hz, 1H), 3.32 (dd, J=9.2, 5.2 Hz, 1H), 3.22–3.16 (m, 1H), 3.05 (dd, J=5.2, 5.2 Hz, 1H), 2.70–2.65 (m, 1H), 1.27 (t, J=7.2 Hz, 3H), 1.15 (d, J=7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  177.2, 171.3, 134.0, 124.4, 71.3, 60.7, 42.0, 38.5, 35.1, 30.2, 17.6, 14.1; MS (+ESI) m/z 471 (2M+Na<sup>+</sup>, 46), 247 (M+Na<sup>+</sup>, 100); HRMS (+ESI) calcd for C<sub>12</sub>H<sub>16</sub>O<sub>4</sub>Na (M+Na<sup>+</sup>), 247.0941; found, 247.0936.

**4.6.9. Ethyl (3a** $R^*$ , 6 $S^*$ , 7 $R^*$ , 7a $S^*$ )-6-phenyl-1-oxo-**3.3a**, 6, 7, 7a-hexahydroisobenzofuran-7-carboxylate (10c). The major isomer from IMDA reaction of 8c was obtained as colorless needles; mp 156–157 °C (EtOAc– hexane);  $R_f$ =0.33 (25% EtOAc in hexane); IR (KBr) 3034, 2984, 1784, 1735, 1321, 1180, 1085, 978 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.32–7.25 (m, 3H), 7.17–7.13 (m, 2H), 6.07 (ddd, J=10.0, 2.0, 2.0 Hz, 1H), 5.82 (ddd, J=10.0, 3.4, 3.4 Hz, 1H), 4.54 (dd, J=8.0, 6.0 Hz, 1H), 4.05 (dd, J=11.2, 8.4 Hz, 1H), 4.07–4.02 (m, 1H), 3.80–3.60 (m, 2H), 3.16 (dd, J=11.6, 8.0 Hz, 1H), 2.96–2.86 (m, 1H), 2.77 (dd, J=13.6, 11.6 Hz, 1H), 0.89 (t, J=7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.9, 169.9, 139.2, 132.3, 129.4 (×2), 128.2 (×2), 127.6, 123.9, 70.3, 60.5, 45.5, 44.4, 40.6, 40.2, 30.9, 13.6; MS (+ESI) *m*/*z* 309 (M+Na<sup>+</sup>, 98), 287 (M+H<sup>+</sup>, 100). Anal. Calcd for C<sub>17</sub>H<sub>18</sub>O<sub>4</sub>: C, 71.31; H, 6.34. Found: C, 71.22; H, 6.33.

4.6.10. Ethyl (3aR\*,6S\*,7S\*,7aR\*)-6-phenyl-1-oxo-3,3a,6,7,7a-hexahydroisobenzofuran-7-carboxylate (11c). The minor isomer from IMDA reaction of 8c was obtained as colorless needles; mp 117-118 °C (EtOAchexane);  $R_f=0.33$  (25% EtOAc in hexane); IR (KBr) 2981, 1773, 1722, 1180, 1163 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) § 7.33–7.25 (m, 3H), 7.20–7.16 (m, 2H), 5.97 (ddd, J=10.0, 2.0, 2.0 Hz, 1H), 5.87 (ddd, J=10.4, 3.0, 3.0 Hz, 1H), 4.56 (dd, J=8.0, 8.0 Hz, 1H), 4.09 (d, J=8.4 Hz, 1H), 4.06 (q, J=6.4 Hz, 2H), 3.76 (ddd, J=8.0, 5.2, 2.0 Hz, 1H), 3.37-3.27 (m, 1H), 3.20 (dd, J=9.2, 9.2 Hz, 1H), 2.83 (dd, J=9.2, 8.4 Hz, 1H), 1.07 (t, J=7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  176.2, 172.7, 141.4, 132.2, 128.6 (×2), 127.9 (×2), 127.3, 124.4, 71.5, 61.1, 46.1, 43.4, 40.1, 34.6, 13.9; MS (+ESI) m/z 309 (M+Na<sup>+</sup>, 98), 287 (M+H<sup>+</sup>, 100). Anal. Calcd for C<sub>17</sub>H<sub>18</sub>O<sub>4</sub>: C, 71.31; H, 6.34. Found: C, 71.36; H, 6.30.

4.6.11. Ethyl (3aR\*,6S\*,7R\*,7aR\*)-6-phenyl-1-oxo-3,3a,6,7,7a-hexahydroisobenzofuran-7-carboxylate (12c). The major isomer from IMDA reaction of 9c was obtained as colorless needles; mp 69-71 °C (EtOAc-hexane);  $R_f=0.42$  (25% EtOAc in hexane); IR (KBr) 2977, 1791, 1724, 1184, 987 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.33–7.20 (m, 5H), 6.08 (d, J=10.0 Hz, 1H), 5.81 (ddd, J=9.6, 3.4, 3.4 Hz, 1H), 4.53 (dd, J=7.4, 7.4 Hz, 1H), 4.27-4.14 (m, 3H), 3.90 (dd, J=11.2, 8.0 Hz, 1H), 3.32-3.20 (m, 1H), 3.17 (d, J=3.2 Hz, 1H), 2.39 (dd, J=13.6, 3.6 Hz, 1H), 1.27 (t, J=7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) § 174.2, 171.2, 142.8, 130.5, 128.6 (×2), 127.7 (×2), 127.0, 125.3, 70.4, 61.1, 44.8, 44.1, 40.2, 36.1, 13.9; MS (+ESI) m/z 595 (2M+Na<sup>+</sup>, 100), 309 (M+Na<sup>+</sup>, 97). Anal. Calcd for C<sub>17</sub>H<sub>18</sub>O<sub>4</sub>: C, 71.31; H, 6.34. Found: C, 71.36; H, 6.30.

4.6.12. Ethyl (3aR\*,6S\*,7S\*,7aS\*)-6-phenyl-1-oxo-3,3a,6,7,7a-hexahydroisobenzofuran-7-carboxylate (13c). The minor isomer from IMDA reaction of 9c was obtained as a colorless oil;  $R_f=0.32$  (25% EtOAc in hexane); IR (film) 2918, 1773, 1722, 1179, 1163, 1033, 1014 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.33–7.18 (m, 5H), 6.05 (ddd, J=10.4, 2.0, 2.0 Hz, 1H), 5.93 (ddd, J=10.0, 3.0, 3.0 Hz, 1H), 4.55 (dd, J=8.6, 8.6 Hz, 1H), 4.37 (dd, J=8.4, 8.4 Hz, 1H), 3.88–3.77 (m, 2H), 3.68–3.60 (m, 1H), 3.45 (dd, J=6.0, 6.0 Hz, 1H), 3.35-3.24 (m, 1H), 3.18 (dd, J=10.8, 6.4 Hz, 1H), 0.81 (t, J=7.4 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 177.4, 171.2, 140.8, 128.2 (×2), 128.2 (×2), 128.1, 127.0, 126.0, 71.6, 60.4, 45.1, 42.1, 39.4, 33.4, 13.4; MS (+ESI) m/z 595 (2M+Na<sup>+</sup>, 16), 309 (M+Na<sup>+</sup>, 100); HRMS (+ESI) calcd for C<sub>17</sub>H<sub>18</sub>O<sub>4</sub>Na (M+Na<sup>+</sup>), 309.1097; found, 309.1085.

**4.6.13.** Ethyl (3a*R*\*,6*S*\*,7*R*\*,7a*S*\*)-5-methyl-6-phenyl-1oxo-3,3a,6,7,7a-hexahydroisobenzofuran-7-carboxylate (10d). The major isomer from IMDA reaction of 8d was obtained as colorless needles; mp 127-129 °C (EtOAchexane);  $R_f = 0.36$  (25% EtOAc in hexane); IR (KBr) 2983, 1786, 1736, 1315, 1195, 1178, 1139, 1080 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.30–7.23 (m, 3H), 7.11 (d, J=6.4 Hz, 2H), 5.79 (s, 1H), 4.49 (dd, J=7.4, 7.4 Hz, 1H), 4.01 (dd, J=11.2, 8.4 Hz, 1H), 3.82 (d, J=8.8 Hz, 1H), 3.84-3.74 (m, 1H), 3.67-3.58 (m, 1H), 3.09 (dd, J=11.6, 7.2 Hz, 1H), 2.96–2.82 (m, 1H), 2.76 (dd, J=13.6, 12.4 Hz, 1H), 1.54 (s, 3H), 0.88 (q, J=7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, taken at 25 °C)  $\delta$  174.1, 169.9, 138.7. 138.7. 128.4 (×2), 127.5. 119.9. 70.7. 60.4. 49.4. 45.9, 41.6, 39.6, 22.4, 13.6 (two aromatic carbon atoms are missing due to slow conformational rotation);  $^{13}C$ NMR (125 MHz, DMSO- $d_6$ , taken at 80 °C)  $\delta$  174.1, 169.5, 139.4, 137.1, 129.4 (×2), 128.0 (×2), 127.1, 120.7, 70.4, 59.4, 49.0, 45.1, 40.7, 39.3, 21.9, 13.5; MS (+ESI) m/z 623 (2M+Na<sup>+</sup>, 100), 323 (M+Na<sup>+</sup>, 59). Anal. Calcd for C<sub>18</sub>H<sub>20</sub>O<sub>4</sub>: C, 71.98; H, 6.71. Found: C, 72.18; H, 6.71.

**4.6.14. Ethyl (3a***R*\*,6*S*\*,7*S*\*,7*aR*\*)-5-methyl-6-phenyl-1oxo-3,3a,6,7,7a-hexahydroisobenzofuran-7-carboxylate (11d). The minor isomer from IMDA reaction of 8d was obtained as an inseparable mixture with 10d;  $R_f$ =0.36 (25% EtOAc in hexane); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, only partial signals shown)  $\delta$  5.64 (s, 1H), 4.12–4.09 (m, 1H), 3.30–3.25 (m, 1H), 3.17–3.13 (m, 1H), 1.59 (s, 3H), 1.14 (t, *J*=7.0 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  176.5, 172.9, 140.1, 136.5, 128.5 (×2), 128.3 (×2), 127.1, 121.8, 72.1, 61.2, 46.3, 46.3, 38.4, 34.4, 22.8, 14.0.

4.6.15. Ethyl (3aR\*,6S\*,7R\*,7aR\*)-5-methyl-6-phenyl-1oxo-3.3a.6.7.7a-hexahvdroisobenzofuran-7-carboxvlate (12d). The major isomer from IMDA reaction of 9d was obtained as a colorless oil;  $R_f=0.49$  (25% EtOAc in hexane); IR (film) 2980, 1785, 1731, 1229, 1184, 1093, 1002 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.33 (t, J=7.4 Hz, 2H), 7.25 (d, J=6.4 Hz, 1H), 7.21 (d, J=7.6 Hz, 2H), 5.82 (s, 1H), 4.53 (dd, J=7.4, 7.4 Hz, 1H), 4.29-4.13 (m, 2H), 4.03 (s, 1H), 3.91 (dd, J=11.2, 8.0 Hz, 1H), 3.29-3.16 (m, 1H), 3.10 (d, J=2.8 Hz, 1H), 2.46 (dd, J=14.0, 3.2 Hz, 1H), 1.63 (s, 3H), 1.28 (t, J=7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) & 174.5, 171.1, 142.2, 137.4, 128.8 (×2), 128.0 (×2), 127.0, 121.1, 70.9, 61.2, 48.9, 45.2, 39.7, 37.2, 22.5, 14.0; MS (+ESI) m/z 623 (2M+Na<sup>+</sup>, 100), 323 (M+Na<sup>+</sup>, 8), 301 (M+H<sup>+</sup>, 10); HRMS (+ESI) calcd for C<sub>18</sub>H<sub>20</sub>O<sub>4</sub>Na (M+Na<sup>+</sup>), 323.1254; found, 323.1244.

4.6.16. Ethyl (3aR\*,6S\*,7S\*,7aS\*)-5-methyl-6-phenyl-1oxo-3,3a,6,7,7a-hexahydroisobenzofuran-7-carboxylate (13d). The minor isomer from IMDA reaction of 9d was obtained as colorless needles; mp 111-112 °C (EtOAchexane);  $R_f=0.23$  (25% EtOAc in hexane); IR (KBr) 2924, 1772, 1731, 1193, 1179, 1111 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) & 7.32-7.20 (m, 5H), 5.67 (s, 1H), 4.44 (dd, J=8.2, 8.2 Hz, 1H), 4.31 (d, J=8.8 Hz, 1H), 4.25-4.10 (m, 2H), 3.91 (d, J=4.8 Hz, 1H), 3.43 (dd, J=9.6, 5.2 Hz, 1H), 3.36-3.27 (m, 1H), 3.29 (dd, J=9.6, 4.8 Hz, 1H), 1.65 (s, 3H), 1.23 (td, J=7.0, 1.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) & 175.3, 170.4, 138.1, 137.2, 130.5 (×2), 127.4 (×2), 127.1, 122.9, 71.2, 60.7, 44.8, 43.9, 36.4, 36.1, 22.8, 13.9; MS (+ESI) m/z 623 (2M+Na<sup>+</sup>, 98), 323 (M+Na<sup>+</sup>, 60), 301 (M+H<sup>+</sup>, 100). Anal. Calcd for C<sub>18</sub>H<sub>20</sub>O<sub>4</sub>: C, 71.98; H, 6.71. Found: C, 71.78; H, 6.67.

4.6.17. (3aR\*,6S\*,7R\*,7aS\*)-7-Benzoyl-6-methyl-3,3a,6,7,7a-hexahydroisobenzofuran-1-one (10e). The major isomer from IMDA reaction of 8e was obtained as a white crystalline solid; mp 197-198 °C (EtOAc-hexane);  $R_f=0.30$  (25% EtOAc in hexane); IR (KBr) 2955, 2925, 1765, 1683, 1176, 1095, 984 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.02 (d, J=7.6 Hz, 1H), 7.59 (t, J=7.2 Hz, 1H), 7.49 (t, J=7.6 Hz, 2H), 5.82 (d, J=9.6 Hz, 1H), 5.71 (br d, J=10.0 Hz, 1H), 4.48 (dd, J=7.2, 7.2 Hz, 1H), 3.98 (dd, J=10.4, 5.2 Hz, 1H), 3.97 (dd, J=10.4, 4.4 Hz, 1H), 3.03-2.69 (m, 3H), 0.83 (t, J=7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 197.4, 174.5, 136.4, 135.8, 133.4. 128.8 (×2), 128.2 (×2), 122.2, 70.3, 44.5, 41.0, 40.4, 33.5, 17.6; MS (+ESI) m/z 535 (2M+Na<sup>+</sup>, 18), 279 (M+Na<sup>+</sup>, 100). Anal. Calcd for C<sub>16</sub>H<sub>16</sub>O<sub>3</sub>: C, 74.98; H, 6.29. Found: C, 74.73; H, 6.27.

4.6.18. (3aR\*,6S\*,7S\*,7aR\*)-7-Benzoyl-6-methyl-3,3a,6,7,7a-hexahydroisobenzofuran-1-one (11e). The minor isomer from IMDA reaction of 8e was obtained as colorless needles; mp 99–100 (EtOAc-hexane);  $R_f$ =0.45 (25% EtOAc in hexane); IR (KBr) 2964, 2905, 1765, 1678, 1269, 1207, 1157, 1120, 986 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.97 (d, J=7.6 Hz, 2H), 7.60 (t, J=7.4 Hz, 1H), 7.50 (t, J=7.6 Hz, 2H), 5.76 (ddd, J=10.4, 4.0, 2.0 Hz, 1H), 5.62 (ddd, J=10.0, 2.4, 2.4 Hz, 1H), 4.48 (dd, J=8.4, 7.2 Hz, 1H), 4.15 (dd, J=9.2, 3.6 Hz, 1H), 3.94 (dd, J=3.8, 3.8 Hz, 1H), 3.45-3.36 (m, 1H), 3.18 (dd, J=8.4, 4.4 Hz, 1H), 2.70–2.50 (m, 1H), 1.21 (d, J=7.6 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 201.2, 178.1, 136.0, 133.4, 133.2, 128.9 (×2), 128.4 (×2), 124.1, 71.9, 44.9, 39.0, 34.0, 31.0, 21.3; MS (+ESI) m/z 535 (2M+Na<sup>+</sup>, 78), 279 (M+Na<sup>+</sup>, 46), 257 (M+H<sup>+</sup>, 100). Anal. Calcd for C<sub>16</sub>H<sub>16</sub>O<sub>3</sub>: C, 74.98; H, 6.29. Found: C, 74.72; H, 6.27.

4.6.19. (3aR\*,6S\*,7R\*,7aR\*)-7-Benzoyl-6-methyl-3,3a,6,7,7a-hexahydroisobenzofuran-1-one (12e). The minor isomer from IMDA reaction of 9e was obtained as colorless needles; mp 144–145 °C (EtOAc–hexane);  $R_f$ = 0.39 (25% EtOAc in hexane); IR (KBr) 2993, 2962, 1770, 1669, 1184, 1093, 982 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.94 (d, J=7.5 Hz, 1H), 7.61-7.57 (m, 1H), 7.49 (t, J=7.5 Hz, 2H), 5.85 (ddd, J=9.5, 1.8, 1.8 Hz, 1H), 5.62 (ddd, J=10.0, 3.3, 3.3 Hz, 1H), 4.59 (dd, J=7.5, 7.5 Hz, 1H), 3.90 (dd, J=12.0, 8.0 Hz, 1H), 3.81 (d, J=4.0 Hz, 1H), 3.72-3.69 (m, 1H), 2.76-2.70 (m, 1H), 2.49 (dd, J=13.5, 4.0 Hz, 1H), 1.36 (d, J=7.0 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 199.9, 175.3, 136.3, 134.0, 133.3, 128.7 (×2), 128.4 (×2), 123.6, 71.1, 44.3, 42.0, 36.1, 34.4, 22.5; MS (+ESI) m/z 535 (2M+Na<sup>+</sup>, 49), 279 (M+Na<sup>+</sup>, 100), 257 (M+H<sup>+</sup>, 98). Anal. Calcd for C<sub>16</sub>H<sub>16</sub>O<sub>3</sub>: C, 74.98; H, 6.29. Found: C, 74.80; H, 6.28.

**4.6.20.** (3a*R*\*,6*S*\*,7*S*\*,7a*S*\*)-7-Benzoyl-6-methyl-3,3a,6,7,7a-hexahydroisobenzofuran-1-one (13e). The *major isomer* from IMDA reaction of 9e was obtained as a colorless oil;  $R_f$ =0.23 (25% EtOAc in hexane); IR (film) 2967, 1767, 1678, 1226, 1177, 1017 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.88–7.84 (m, 2H), 7.56–7.52 (m, 1H), 7.47–7.42 (m, 2H), 5.74 (ddd, *J*=10.0, 2.6, 2.6 Hz, 1H), 5.64 (ddd, *J*=10.4, 2.4, 2.4 Hz, 1H), 4.50 (dd, *J*=8.4, 8.4 Hz, 1H), 4.39 (dd, *J*=9.6, 6.0 Hz, 1H), 4.19 (dd, *J*=5.4, 5.4 Hz, 1H), 3.30–3.20 (m, 2H), 2.87–2.78 (m, 1H), 0.95 (d, J=7.6 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  201.8, 177.6, 138.9, 132.7, 131.9, 128.5 (×2), 128.0 (×2), 125.3, 71.5, 44.2, 39.6, 34.6, 31.9, 18.6; MS (+ESI) m/z 535 (2M+Na<sup>+</sup>, 100), 257 (M+H<sup>+</sup>, 40); HRMS (+ESI) calcd for C<sub>16</sub>H<sub>16</sub>O<sub>3</sub>Na (M+Na<sup>+</sup>), 279.0992; found, 279.0985.

# 4.7. General procedure for microwave-assisted tandem Wittig–IMDA cycloadditions

To a 10-mL pressurized process vial was added one of the 2,4-pentadienyl  $\alpha$ -bromoacetates **14–16** (0.30 mmol), PPh<sub>3</sub> (0.36 mmol), 2,6-lutidine (0.39 mmol), and one of the  $\alpha$ -oxo carbonyl compounds **17–19** in MeCN (4 mL). The loaded vial was then sealed with a cap containing a silicon septum, and put into the microwave cavity and heated at 180 °C for 30 min. The reaction mixture was diluted with EtOAc (10 mL) and washed with 6% aqueous HCl and brine. The organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and evaporated under reduced pressure. The residue was purified by chromatography on silica gel with EtOAc and petroleum ether (60–90 °C) to afford the adducts. The structures and yields are given in Scheme 3 and Table 3.

# 4.8. X-ray crystallographic structural determination of 12e, 10c, and 13d

The X-ray crystal structures of **12e**, **10c**, and **13d** are given in Figures 1–3 and the crystal data (excluding structure factors) have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC 604672, CCDC 604671, and CCDC 604673, respectively. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 1223 336033 or e-mail: deposit@ccdc.cam.ac.uk).

### Acknowledgements

This work is supported in part by the research grants from Zhejiang University and The National Natural Science Foundation of China (Grant No. 20572092). Mr. Jianming Gu of the X-ray crystallography facility of Zhejiang University is acknowledged for the assistance on crystal structural analysis. We also thank Professor Michael S. Sherburn for providing NMR data of compounds **10a**, **11a**, **12a**, and **13a** published in Ref. 5e. W.-M.D. is the recipient of Cheung Kong Scholars Award of The Ministry of Education of China.

### Supplementary data

Supplementary data associated with this article can be found in the online version, at doi:10.1016/j.tet.2006.06.039.

## **References and notes**

 (a) Oppolzer, W. Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Paquette, L. A., Eds.; Pergamon: Oxford, 1991; Vol. 5, pp 315–399; (b) The Diels–Alder Reaction: Selected Practical Methods; Fringuelli, F., Taticchi, A., Eds.; Wiley: West Sussex, 2002.

- 2. Selected reviews on IMDA reaction, see: (a) Taber, D. F. Intramolecular Diels-Alder and Alder Ene Reactions; Springer: Berlin, 1984; (b) Fallis, A. G. Can. J. Chem. 1984, 62, 183-234; (c) Ciganek, E. Org. React. 1984, 32, 1-374; (d) Craig, D. Chem. Soc. Rev. 1987, 187-238; (e) Roush, W. R. Advances in Cycloaddition: Curran. D. P., Ed.: JAI: Greenwich, CT, 1990; Vol. 2, pp 91-146; (f) Roush, W. R. Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Paquette, L. A., Eds.; Pergamon: Oxford, 1991; Vol. 5, pp 513–550; (g) Craig, D. Stereoselective Synthesis. In Methods of Organic Chemistry (Houben-Weyl) No E21c, 4th ed.; Helmchen, G., Hoffmann, R. W., Mulzer, J., Schumann, E., Eds.; Thieme: Stuttgart, 1995; pp 2872-2904; (h) Bear, B.; Sparks, S. M.; Shea, K. J. Angew. Chem., Int. Ed. 2001, 40, 820-849; (i) Stocking, E. M.; Williams, R. M. Angew. Chem., Int. Ed. 2003, 42, 3078-3115.
- (a) Diedrich, M. K.; Klärner, F.-G.; Beno, B. R.; Houk, K. N.; Senderowitz, H.; Still, W. C. *J. Am. Chem. Soc.* **1997**, *119*, 10255–10259; (b) Tantillo, D. J.; Houk, K. N.; Jung, M. E. *J. Org. Chem.* **2001**, *66*, 1938–1940; (c) Paddon-Row, M. N.; Moran, D.; Jones, G. A.; Sherburn, M. S. *J. Org. Chem.* **2005**, *70*, 10841–10853.
- 4. For IMDA reactions of acrylates of 2,4-pentadien-1-ols, see: (a) White, J. D.; Nolen, E. G., Jr.; Miller, C. H. J. Org. Chem. 1986, 51, 1152-1155; (b) White, J. D.; Demnitz, F. W. J.; Oda, H.; Hassler, C.; Snyder, J. P. Org. Lett. 2000, 2. 3313-3316; (c) Areces, P.: Jiménez, J. L.: de la Cruz Pozo, M.; Román, E.; Serrano, J. A. J. Chem. Soc., Perkin Trans. 1 2001, 754-762; (d) Cayzer, T. N.; Wong, L. S.-M.; Turner, P.; Paddon-Row, M. N.; Sherburn, M. S. Chem.-Eur. J. 2002, 8, 739-750; (e) Wong, L. S.-M.; Sharp, L. A.; Xavier, N. M. C.; Turner, P.; Sherburn, M. S. Org. Lett. 2002, 4, 1955-1957; (f) Van Cauwenberge, G.; Gao, L.-J.; Van Haver, D.; Milanesio, M.; Viterbo, D.; De Clercq, P. J. Org. Lett. 2002, 4, 1579-1582; (g) Wong, L. S.-M.; Sherburn, M. S. Org. Lett. 2003, 5, 3603-3606; (h) Gao, L.-J.; Van Cauwenberge, G.; Hosten, N.; Van Haver, D.; Waelbroeck, M.; De Clercq, P. J. ARKIVOC 2003, iv, 22-45. Also see Refs. 3c and 5j.
- 5. For IMDA reactions of maleates and fumarates of 2,4-pentadien-1-ols, see: (a) Berthon, L.; Tahri, A.; Uguen, D. Tetrahedron Lett. 1994, 35, 3937-3940; (b) Arseniyadis, S.; Brondi-Alves, R.; Wang, Q.; Yashunsky, D. V.; Potier, P. Tetrahedron Lett. 1994, 35, 7949-7952; (c) Arseniyadis, S.; Brondi-Alves, R.; Yashunsky, D. V.; Potier, P. Tetrahedron 1997, 53, 1003–1014; (d) Lilly, M. J.; Sherburn, M. S. Chem. Commun. 1997, 967-968; (e) Lilly, M. J.; Paddon-Row, M. N.; Sherburn, M. S.; Turner, C. I. Chem. Commun. 2000, 2213-2214; (f) Paddon-Row, M. N.; Sherburn, M. S. Chem. Commun. 2000, 2215-2216; (g) Turner, C. I.; Williamson, R. M.; Paddon-Row, M. N.; Sherburn, M. S. J. Org. Chem. 2001, 66, 3963–3969; (h) Cayzer, T. N.; Paddon-Row, M. N.; Sherburn, M. S. Eur. J. Org. Chem. 2003, 4059-4068; (i) Clarke, P. A.; Davie, R. L.; Peace, S. Tetrahedron 2005, 61, 2335-2351; (j) Cayzer, T. N.; Paddon-Row, M. N.; Moran, D.; Payne, A. D.; Sherburn, M. S.; Turner, P. J. Org. Chem. 2005, 70, 5561-5570; (k) Lilly, M. J.; Miller, N. A.; Edwards, A. J.; Willis, A. C.; Turner, P.; Paddow-Row, M. N.; Sherburn, M. S. Chem.-Eur. J. 2005, 11, 2525-2536. Also see Ref. 7d.
- For other examples of IMDA reactions of maleates and fumarates of 2,4-pentadien-1-ols, see: (a) Burke, S. D.; Strickland, S. M. S.; Powner, T. H. J. Org. Chem. 1983, 48, 454–459;

(b) Jenkins, P. R.; Menear, K. A.; Barraclough, P.; Nobbs, M. S. J. Chem. Soc., Chem. Commun. 1984, 1423-1424; (c) Batchelor, M. J.; Mellor, J. M. Tetrahedron Lett. 1985, 26, 5109-5112; (d) Magnus, P.; Walker, C.; Jenkins, P. R.; Menear, K. A. Tetrahedron Lett. 1986, 27, 651-654; (e) He, F.: Wu, Y. Youji Huaxue 1987. 354-356; (f) He, F.: Wu, Y. Tetrahedron 1988, 44, 1933-1940; (g) Eberle, M. K.; Weber, H.-P. J. Org. Chem. 1988, 53, 231-235; (h) Becher, J.; Nielsen, H. C.; Jacobsen, J. P.; Simomsem, O.; Clausen, H. J. Org. Chem. 1988, 53, 1862-1871; (i) Batchelor, M. J.; Mellor, J. M. J. Chem. Soc., Perkin Trans. 1 1989, 985-995; (j) Martelli, J.; Grée, D.; Kessabi, J.; Grée, R. Tetrahedron 1989, 45, 4213-4226; (k) Toyota, M.; Wada, Y.; Fukumoto, K. Heterocycles 1993, 35, 111-114; (1) Tatatori, K.; Hasegawa, K.; Narai, S.; Kajiwara, M. Heterocycles 1996, 42, 525-528; (m) Craig, D.; Ford, M. J.; Gordon, R. S.; Stones, J. A.; White, A. J. P.; Williams, D. J. Tetrahedron 1999, 55, 15045-15066; (n) Turner, C. I.; Paddon-Row, M. N.; Willis, A. C.; Sherburn, M. S. J. Org. Chem. 2005, 70, 1154-1163; For IMDA reactions of esters of (E)-4-oxobut-2-enoic acids, see: (o) Kim, P.; Tsuruda, J. M.; Olmstead, M. M.; Eisenberg, S.; Kurth, M. J. Tetrahedron Lett. 2002, 43, 3963-3966; For an IMDA reaction of an amide-tethered 1,3,8-nonatriene, see: (p) Yoshioka, M.; Nakai, H.; Ohno, M. J. Am. Chem. Soc. 1984, 106, 1133-1135.

- For IMDA reactions of citraconates and mesaconates of 2,4pentadien-1-ols, see: (a) White, J. D.; Sheldon, B. G.; Solheim, B. A.; Clardy, J. *Tetrahedron Lett.* **1978**, *19*, 5189– 5192; (b) White, J. D.; Sheldon, B. G. J. Org. Chem. **1981**, 46, 2273–2280; (c) Wei, C.-Q.; Zhao, G.; Jiang, X.-R.; Ding, Y. J. Chem. Soc., Perkin Trans. 1 **1999**, 3531–3536; (d) Cayzer, T. N.; Lilly, M. J.; Williamson, R. M.; Paddon-Row, M. N.; Sherburn, M. S. Org. Biomol. Chem. **2005**, *3*, 1302– 1307.
- For IMDA reactions of sorbate esters, see: (a) Boeckman, R. K., Jr.; Demko, D. M. J. Org. Chem. **1982**, 47, 1789– 1792; (b) Martin, S. F.; Williamson, S. A.; Gist, R. P.; Smith, K. M. J. Org. Chem. **1983**, 48, 5170–5180.
- 9. We adopt the terms used by Paddon-Row and Sherburn found in Ref. 5e. The terms *endo* and *exo* are used to describe the orientation of the dienophile tether connection with respect to the diene. The *endo* and *exo* orientations lead to formation of cis-fused and trans-fused bicycles, respectively.
- For recent reviews on controlled microwave heating, see: (a) Nüchter, M.; Ondruschka, B.; Bonrath, W.; Gum, A. Green Chem. 2004, 43, 128–141; (b) Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250–6284; For recent monographs, see: (c) Microwaves in Organic Synthesis; Loupy, A., Ed.; Wiley-VCH: New York, NY, 2002; (d) Kappe, C. O.; Stadler, A. Microwaves in Organic and Medicinal Chemistry; Wiley-VCH: Weinheim, 2005.
- (a) Wu, J.; Wu, H.; Wei, S.; Dai, W.-M. Tetrahedron Lett. 2004, 45, 4401–4404; (b) Dai, W.-M.; Wang, X.; Ma, C. Tetrahedron 2005, 61, 6879–6885; (c) Feng, G.; Wu, J.; Dai, W.-M. Tetrahedron 2006, 62, 4635–4642; (d) Wu, J.; Li, D.; Wu, H.; Sun, L.; Dai, W.-M. Tetrahedron 2006, 62, 4643–4650; (e) Xing, X.; Wu, J.; Feng, G.; Dai, W.-M. Tetrahedron 2006, 62, 6774–6781; (f) Xing, X.; Wu, J.; Luo, J.; Dai, W.-M. Synlett 2006, in press.
- (a) Dai, W.-M.; Guo, D.-S.; Sun, L.-P.; Huang, X.-H. Org. Lett.
   2003, 5, 2919–2922; (b) Sun, L.-P. Ph.D. Thesis, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China, 2004.

- 13. The effect of pressure on stereoselectivity of IMDA cycloadditions performed in closed vials is not known. For example, the acrylates Ia cyclize in PhMe in a sealed tube up to 250 °C. For our experimental setting, the internal pressure is ca. 13 bars at 180 °C in MeCN in a closed pressurized vial. For reviews on the pressure effects on reactions, see: (a) McCabe, J. R.: Eckert, C. A. Acc. Chem. Res. 1974, 7, 251-257; (b) Asano, T.; Le Noble, W. J. Chem. Rev. 1978, 78, 407-489; (c) Pindur, U.; Lutz, G.; Otto, C. Chem. Rev. 1993, 93, 741-761; For a polar solvent effect on IMDA reactions, see: (d) Jung, M. E. Synlett 1990, 186-190; For a review on solvent effects on rate and stereoselectivity of DA reactions, see: (e) Cativiela, C.; García, J. I.; Mayoral, J. A.; Salvatella, L. Chem. Soc. Rev. 1996, 209-218; For the effect of pressure on microwave-enhanced DA reaction involving gaseous reagents, see: (f) Kaval, N.; Dehaen, W.; Kappe, C. O.; Van der Eyken, E. Org. Biomol. Chem. 2004, 2, 154-156.
- For fumaric acid mono esters, see: Spatz, S. M.; Stone, H. J. Org. Chem. 1958, 23, 1559–1560.
- 15. Paulvannan, K.; Jacobs, J. W. Tetrahedron Lett. 1999, 55, 7433–7440.
- For maleic acid mono esters, see: Sabitha, G.; Srividya, R.; Yadav, J. S. *Tetrahedron* 1999, 55, 4015–4018. Also see Ref. 14.
- 17. Mawaziny, S.; Makky, S. Phosphorus, Sulfur Silicon Relat. Elem. 2000, 167, 61–69.
- 18. For an example of IMDA cycloaddition heated in an open vessel by using a domestic microwave oven, see Ref. 61.
- One stereoisomer was reported for the IMDA reaction of a 1-phenyl-substituted 1,3,8-nonatriene, which took place during vacuum distillation at 160–180 °C/0.2 mmHg. The yield is 35% yield. No other adduct was mentioned, see Ref. 6g.
- Selected reviews on Wittig reaction: (a) Bestmann, H. J.; Vostrowsky, O. Topics in Current Chemistry, Wittig Chemistry; Boschke, F., Ed.; Springer: Berlin, Heidelberg, New York, 1983; Vol. 109, p 85; (b) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863–927; (c) Vedejs, E.; Peterson, M. J. Top. Stereochem. 1994, 21, 1–157; (d) Kolodiazhnyi, O. I. Phosphorus Ylides: Chemistry and Application in Organic Synthesis; Wiley-VCH: New York, NY, 1999; (e) Hoffmann, R. W. Angew. Chem., Int. Ed. 2001, 40, 1411–1416.
- Microwave-assisted Wittig reactions of aldehydes with stabilized phosphorus ylides, see: (a) Xu, C.; Chen, G.; Fu, C.; Huang, X. Synth. Commun. 1995, 25, 2229–2233; (b) Xu, C.; Chen, G.; Huang, X. Org. Prep. Proced. Int. 1995, 27, 559–561; (c) Xi, C.; Chen, G.; Huang, X. Chin. Chem. Lett. 1995, 6, 467–468; (d) Fu, C.; Xu, C.; Huang, Z.-Z.; Huang, X. Org. Prep. Proced. Int. 1997, 29, 587–589; (e) Yu, X.; Huang, X. Synlett 2002, 1895–1897; (f) Silveira, C. C.; Nunes, M. R. S.; Wendling, E.; Braga, A. L. J. Organomet. Chem. 2001, 623, 131–136; (g) Frattini, S.; Quai, M.; Cereda, E. Tetrahedron Lett. 2001, 42, 6827–6829.
- Microwave-assisted Wittig reactions of ketones with stabilized phosphorus ylides, see: (a) Spinella, A.; Fortunati, T.; Soriente, A. Synlett 1997, 93–94; (b) Ramazani, A. Phosphorus, Sulfur Silicon Relat. Elem. 2003, 178, 1839–1844; (c) Rao, V. V. V. N. S. R.; Ravikanth, S.; Reddy, G. V.; Maitraie, D.;

Yadla, R.; Rao, P. S. Synth. Commun. 2003, 33, 1523–1529;
(d) Wei, S.; Wu, J. Zhejiang Daxue Xuebao, Lixueban 2003, 30, 430–433 (CA140: 357016).

- Microwave-assisted Wittig reactions of lactones with stabilized phosphorus ylides, see: (a) Sabitha, G.; Reddy, M. M.; Srinivas, D.; Yadov, J. S. *Tetrahedron Lett.* **1999**, *40*, 165–166; (b) Lakhrissi, Y.; Taillefumier, C.; Lakhrissi, M.; Chapleur, Y. *Tetrahedron: Asymmetry* **2000**, *11*, 417–421.
- 24. Microwave-assisted synthesis of phosphonium and arsonium salts, see: (a) Kiddle, J. J. *Tetrahedron Lett.* 2000, 41, 1339–1341; (b) Dai, W.-M.; Wu, A.; Wu, H. *Tetrahedron: Asymmetry* 2002, 13, 2187–2191.
- 25. For the one-pot Wittig reaction of a stabilized yield starting from a halide, an aldehyde, and a phosphine, see: (a) Buddrus, J. Angew. Chem., Int. Ed. Engl. 1968, 7, 536-537; (b) Castells, J.; Font, J.; Virgili, A. J. Chem. Soc., Perkin Trans. 1 1979, 1-6; (c) Shen, Y.; Xin, Y.; Zhao, J. Tetrahedron Lett. 1988, 29, 6119-6120; (d) Zhen, Q.; Huang, X. Hangzhou Daxue Xuebao, Ziran Kexueban 1989, 16, 230-231 (CA112: 98142); (e) Zheng, J.; Yu, Y.; Shen, Y. Synth. Commun 1990, 20, 3277-3282; (f) Lee, K.-J.; Kim, S.; Park, H. Bull. Korean Chem. Soc. 1991, 12, 120; (g) Westman, J. Org. Lett. 2001, 3, 3745-3747; (h) Balema, V. P.; Wiench, J. W.; Pruski, M.; Pecharsky, V. K. J. Am. Chem. Soc. 2002, 124, 6244-6245; (i) Desai, V. G.; Shet, J. B.; Tilve, S. G.; Mali, R. S. J. Chem. Res., Synop. 2003, 10, 628-629; (j) Valizadeh, H.: Shockravi, A.: Herava, M. M.: Ghadim, H. A. J. Chem. Res., Synop. 2003, 11, 718-720; (k) Azizian, J.; Mohammadizadeh, M. R.; Kazemizadeh, Z.; Karimi, N.; Mohammadi, A. A.; Karimi, A. R.; Alizadeh, A. Lett. Org. Chem. 2006, 3, 56-57; Also see: (1) Shi, L.; Wang, W.; Wang, Y.; Huang, Y.-Z. J. Org. Chem. 1989, 54, 2027-2028; (m) Huang, Z.-Z.; Ye, S.; Xia, W.; Yu, Y.-H.; Tang, Y. J. Org. Chem. 2002, 67, 3096-3103; (n) Huang, Z.-Z.; Tang, Y. J. Org. Chem. 2002, 67, 5320-5326.
- (a) Dai, W.-M.; Wu, J.; Huang, X. Tetrahedron: Asymmetry 1997, 8, 1979–1982; (b) Dai, W.-M.; Lau, C. W. Tetrahedron Lett. 2001, 42, 2541–2544; (c) Wu, J.; Zhang, D.; Wei, S. Synth. Commun. 2005, 35, 1213–1222; (d) Wu, J.; Li, D.; Zhang, D. Synth. Commun. 2005, 35, 2543–2551.
- For known examples of tandem Wittig-IMDA reactions starting with preformed stabilized phosphorus ylides, see: (a) Jarosz, S. J. Chem. Soc., Perkin Trans. 1 1997, 3579–3580; (b) Jarosz, S.; Skóra, S. Tetrahedron: Asymmetry 2000, 11, 1433–1448; (c) Jarose, S.; Szewczyk, K. Tetrahedron Lett. 2001, 42, 3021–3024; (d) Davidson, J. E. P.; Gilmour, R.; Ducki, S.; Davies, J. E.; Green, R.; Burton, J. W.; Holmes, A. B. Synlett 2004, 1434–1436.
- (a) Hursthouse, M. B.; Malik, K. M. A.; Hibbs, D. E.; Roberts, S. M.; Seago, A. J. H.; Sik, V.; Storer, R. *J. Chem. Soc., Perkin Trans. 1* **1995**, 2419–2425; (b) Bailey, P. D.; Smith, P. D.; Pederson, F.; Clegg, W.; Rosaira, G. M.; Teat, S. J. *Tetrahedron Lett.* **2002**, *43*, 1067–1070.
- (a) Cao, X. P. *Tetrahedron* 2002, *58*, 1301–1307; (b) Aggarwal,
   V. K.; Fulton, J. R.; Sheldon, C. G.; Vicente, J. D. J. Am. Chem. Soc. 2003, *125*, 6034–6035.
- 30. Lan, F.; Micheal, R. Tetrahedron 1986, 42, 3181-3198.