Tetrahedron 70 (2014) 7505-7510

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Selectfluor mediated one pot synthesis of cyclohexanone ring fused isoxazole derivatives

Tetrahedror

R.R. Rajawinslin, Mustafa J. Raihan, Donala Janreddy, Veerababurao Kavala, Chun-Wei Kuo, Ting-Shen Kuo, Mei-Ling Chen, Chiu-Hui He, Ching-Fa Yao*

Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Tingchow Road, Taipei 116, Taiwan, ROC

ARTICLE INFO

Article history: Received 28 March 2014 Received in revised form 21 July 2014 Accepted 8 August 2014 Available online 14 August 2014

Keywords: Synthetic methods Defluorination N–O coupling Heterocycles

ABSTRACT

A Selectfluor and base mediated protocol for the synthesis of cyclohexanone ring fused isoxazole derivatives from isoxazoline *N*-oxides has been successfully developed. This rapid, one-pot, two-step transformation is achieved in acetonitrile, through nitroso intermediate followed by hydration, defluorination and N–O coupling in the presence of triethylamine. The scope and mechanism of the protocol have been demonstrated.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Isoxazoles are valuable heterocyclic compounds of natural and synthetic origin with varied applications in industrial and medicinal agents and they have been demonstrated to be very versatile building blocks in organic synthesis.¹ Structurally, isoxazole rings are the core component in different drug categories and natural products.² The construction of the isoxazole ring can be achieved by several synthetic approaches,^{3,4} including the two major routes such as 1,3-dipolar cycloaddition of alkenes and alkynes with nitrile oxides and the reaction of hydroxylamine with a three-carbon atom component, such as 1,3-diketone or an α , β unsaturated ketone. Since, isoxazole derivatives has been a much attentive focus in recent agricultural and medicinal industries, synthesis of these compounds by alternative and optimized routes are required.

The carbon–fluorine bond is the strongest covalent bond in organic chemistry. Selective C–F bond activation and transformation have become an interesting challenge in organic synthesis.⁵ In this context, base mediated C–F bond cleavage is a useful tool for the synthesis of heterocycles, which are difficult to obtain through classical methodologies. Recently, we reported the selective fluorination of isoxazoline *N*-oxides by C–C bond cleavage by

using Selectfluor.⁶ This reaction proceeds through nitroso intermediate and produced the corresponding ring-cleaved products in the absence of base. But in the presence of base, the above nitroso intermediate undergoes a simultaneous hydration, defluorination and N–O coupling to form cyclohexanone ring fused isoxazoles (Scheme 1). This rapid, multifaceted reaction without ring cleavage of isoxazoline *N*-oxides has not been reported till now. Thus, we intended to develop this reaction using different fluorinating agents.

Scheme 1. Selectfluor and base mediated formation of cyclohexanone ring fused isoxazoles.

Selectfluor (**A**), Selectfluor II (**B**), *N*-fluorobenzenesulfonimide (**C**) and 1-fluoropyridinium tetrafluoroborate (**D**) are among the important *N*-fluorinated compounds used in electrophilic fluorination (Fig. 1). Of these, Selectfluor (**A**) is a stable, nonvolatile, user-friendly reagent, widely used in one-step fluorination reaction.⁷ Earlier, we have reported the synthesis of long-chain halo dioxo nitriles from isoxazoline *N*-oxides via nitroso intermediates by

^{*} Corresponding author. E-mail addresses: cheyaocf@ntnu.edu.tw, cheyaocf@yahoo.com.tw (C.-F. Yao).

Fig. 1. Reagents used in this study.

using Selectfluor,⁶ *N*-bromosuccinimide (NBS) and trichloroisocyanuric acid (TCCA).⁸ In continuation of our research work on isoxazoline *N*-oxides and in order to utilize the nitroso intermediate for its wide application in various fields, we have developed a new route for the synthesis of cyclohexanone ring fused isoxazoles.

2. Results and discussion

To achieve this objective, we used cyclohexene-fused isoxazoline *N*-oxide **1** as a model substrate. When Selectfluor (**A**) was used, the starting material was completely consumed after 8 min, and the nitroso intermediate was formed, which on treatment with NaHCO₃, a cyclohexanone ring fused isoxazole was formed after 12 h, but the yield of the product was only 22% (Table 1, entry 1). Aiming to increase the yield of the product and also to decrease the reaction time, we tested the reaction with various other inorganic and organic bases, such as K₂CO₃, pyridine, diethylamine, triethylamine etc. (Table 1, entries 2-4). The reaction with K₂CO₃ provided 26% of the desired product, while pyridine and diethylamine gave a mixture of products. Interestingly, when triethylamine was used as base, the nitroso intermediate was completely converted into the desired product (i.e., 1a) in good yield (84%) at room temperature (Table 1, entry 5). The structure of the product was confirmed by 1 H, ¹³C NMR spectroscopy, MS, HRMS, and single-crystal X-ray analysis (Fig. 2).

Table 1

Optimization of the reaction conditions with various solvents, bases and reagents

$O_{2N} \xrightarrow{O} O_{N} $							
Entry ^a	Reagent	Solvent	Base	Time	Yield (%) ^b		
1	Selectfluor (A)	CH ₃ CN	NaHCO ₃	12 h	22		
2	Selectfluor (A)	CH₃CN	K ₂ CO ₃	4 h	26		
3	Selectfluor (A)	CH₃CN	Pyridine	15 min	c		
4	Selectfluor (A)	CH₃CN	Et ₂ NH	20 min	C		
5	Selectfluor (A)	CH₃CN	Et ₃ N	10 min	84		
6	Selectfluor (A)	CHCl ₃	Et ₃ N	12 h	15		
7	Selectfluor (A)	THF	Et₃N	2 h	28		
8	Selectfluor (A)	CH_2Cl_2	Et₃N	12 h	18		
9	Selectfluor (A)	MeOH	Et₃N	12 h	12		
10	Selectfluor (A)	H_2O	Et₃N	12 h	10		
11	Selectfluor (B)	CH₃CN	Et ₃ N	30 min	56		
12	N-Fluorobenzenesulfonimide (C)	CH ₃ CN	Et_3N	10 h	38		
13	1-Fluoropyridinium tetrafluoroborate (D)	CH₃CN	Et₃N	12 h	No reaction		

^a All the reactions were performed on 0.5 mmol scale by using 1.1 equiv of reagent.

^b NMR yields (CH₂Br₂ as an internal standard)

^c Mixture of products.

Fig. 2. Crystal structure of compound 1a.¹⁰

Having achieved this result, we conducted the same reaction in different solvents, as shown in Table 1. Whilst acetonitrile was used as solvent at room temperature, the nitroso intermediate was formed quickly, and the desired product (i.e., **1a**) was formed in good yields by the addition of triethylamine. With other solvents, the reaction times were longer, and the yields were lower. The reason might be explained by the assumption that the solubility of selectfluor is higher in acetonitrile than other solvents. Thus, we selected acetonitrile as a suitable solvent for this reaction (Table 1, entry 5). As shown in Table 1, we tested the reaction with various other fluorinating reagents, such as Selectfluor II (**B**), *N*-fluorobenzenesulfonimide (**C**) and 1-fluoropyridinium tetrafluoroborate (**D**)(Table 1, entries 11–13). The desired product was formed in moderate yield for Selectfluor II (**B**), and poor yield for *N*-fluorobenzenesulfonimide (**C**), however, no reaction was progressed for the latter.

We assume that, in this reaction a fluorocarbocationic intermediate (**I**) was generated upon the electrophilic addition of Selectfluor to the cyclohexene ring.^{6,9} It leads to the loss of a proton (H^a) to produce the nitroso intermediate (**II**) in the presence of base that was formed from the Selectfluor. This intermediate (**II**) was isolated and confirmed by ¹H NMR and ¹³C NMR spectra (see Supplementary data). When triethylamine was added, intermediate (**II**) might undergo a rapid multifaceted set of reactions, starting with a base-induced ketoxime formation, followed by a sequential nucleophilic addition of hydroxide (⁻OH)/ elimination of floride (F⁻), which afforded intermediate (**III**), and a subsequent N–O coupling, which produced the final product (**1a**) (Scheme 2).

Scheme 2. Plausible mechanism for the formation of cyclohexanone ring fused isoxazoles.

Having obtained the optimized conditions, we turned our attention to examine the substrate scope of this method. As shown in Table 2, various *p*-substituted isoxazoles were successfully synthesized from isoxazoline *N*-oxides. For the substrates bearing

Table 2

Θ

Selectfluor and base mediated synthesis of cyclohexanone ring fused isoxazoles from o- or p- and unsubstituted isoxazoline N-oxides

R	O - N I Selectfluor (A) CH ₃ CN, r.t.	$\left[\begin{array}{c} 0 & N^{2^{0}} \\ R \\ H \\ H$	Et ₃ N R ^{II}	O-N
1	-15 4 - 10 11111	Nitroso intermediate		1a - 15a
Entry ^d	Substrate O_2N 1 O_2N 1	Product O_2N O_2N O_2N O_1	Time (min) (8)10	Yield (%) ⁹ 79
2			(8)10	75
3			(8)10	81
4			(10)12	84
5			(4)6	63
6	$ \overset{\oplus, \circ}{\underset{K}{\overset{\oplus, \circ}{\underset{K}{\underset{K}{\overset{\oplus, \circ}{\underset{K}{\underset{K}{\underset{K}{\overset{\oplus, \circ}{\underset{K}{\underset{K}{\underset{K}{\underset{K}{\underset{K}{\underset{K}{\underset{K}{$	Br O-N ON 6a	(4)6	68
7	$ \begin{matrix} F & O \longrightarrow N \\ V & O \\ V & V \\ V \\ V \\ V \end{matrix} $		(4)6	78
8			(4)6	70
9			(8)10	72
10	$ \underset{F}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset$	NO ₂ 0-N F 10a	(5)7	51
11	$ \underset{C }{\overset{\Theta O}{\overset{\Theta O}{}}} $		(5)7	56
12		NO ₂ O N Br 12a	(5)7	61

Table 2 (continued)

Entry ^a	Substrate	Product	Time (min)	Yield (%) ^b
13	$\begin{array}{c} H_3C \sim 0 \qquad \bigoplus \\ H_3C \sim 0 \qquad H_3C H_3C$	$\begin{array}{c} H_3C_{0} & 0 \\ H_3C_{0} & 0 \\ H_3C_{0} & \mathbf{13a} \end{array}$	(8)10	58
14		NO2 14a	(8)10	65
15			(8)10	80

^a All the reactions were performed on 0.5 mmol scale by using 1.1 equiv of reagent.

^b Isolated yields. The time mentioned in the parentheses corresponds the time for addition of triethylamine.

either an electron withdrawing group (nitro, cyano and chloro) or an electron donating group (methyl) on the aromatic ring, the reaction proceeded smoothly and furnished the corresponding isoxazoles in good yields (Table 2, entries 1–4). Subsequently, we tested a number of *o*- or *m*-substituted and unsubstituted phenyl derivatives, with the optimized conditions. *o*-substituted derivatives such as 2-nitro, 2-bromo, 2-fluoro, and 2-chloro produced the desired products in moderate to good yields (Table 2, entries 5–8). Similarly, the disubstituted derivatives such as 2,4-dichloro, 2-nitro-5-fluoro, 2-nitro-5-bromo, 2,5-dimethoxy also gave moderate to good yields of desired products (Table 2, entries 9–13). Finally, the *m*-substituted derivative (3-nitro) and unsubstituted derivatives were tested and the yield was moderate for the former (entry 14) and good for the latter (entry 15).

Finally, in order to enhance the substrate scope, we tested the reaction of isoxazoline *N*-oxide (**16**) generated from acyclic Baylis—Hillman oxime, in the present reaction conditions. Under these conditions, the reaction provided a different product **16b** rather than **16a**. On the other hand, the treatment of triethylamine with compound **16** in acetonitrile also produced the same product (Scheme 3). The structure of this new product was confirmed by ¹H, ¹³C NMR spectroscopy, MS, HRMS, and single-crystal X-ray analysis (Fig. 3). The plausible base mediated reaction pathway for the formation of **16b** is described in Scheme 4. From these two experiments, it is quite clear that the formation of nitroso intermediate did not occur with Selectfluor in the case of acyclic isoxazoline *N*-oxide.

Scheme 3. Base mediated synthesis of 3-methyl-4-methylene-5-(4-nitrophenyl)-4,5-dihydroisoxazol-5-ol.

Fig. 3. Crystal structure of compound 16b.¹⁰

Scheme 4. Plausible reaction pathway for the formation of 16b.

3. Conclusion

In conclusion, we have demonstrated a Selectfluor and base mediated protocol for the synthesis of cyclohexanone ring fused isoxazole derivatives from isoxazoline *N*-oxides via nitroso intermediates. The scope of this transformation is broad, and we have reported the synthesis of a series of isoxazole derivatives from substrates bearing electron-donating or electron-withdrawing groups on the phenyl ring.

4. Experimental section

4.1. General

General remarks: Reagents and solvents were purchased from commercial suppliers and were used directly without any further purification unless otherwise stated. Column chromatography was performed on 63–200 mesh silica gel. ¹H and ¹³C NMR spectra were recorded at 400 and 100 MHz, respectively. Chemical shifts are reported in parts per million (ppm) on the δ scale by using CDCl₃ and DMSO-*d*₆ as an internal standard, and coupling constants are expressed in Hertz (Hz). IR spectra were recorded with an FTIR spectrometer, and data are reported in cm⁻¹. Melting points were recorded by using an Electro Thermal capillary melting point apparatus.

4.1.1. Procedure for the Selectfluor and base mediated synthesis of cyclohexanone ring fused isoxazole derivatives from Isoxazoline *N*-oxides (**1a**–**15a**). Selectfluor (0.55 mmol) was added to a stirred solution of isoxazoline *N*-oxide derivative (0.5 mmol) in acetonitrile (2 mL) at room temperature. The reaction was monitored by TLC. After the formation of the intermediate (for details, refer Table 2), add 0.2 mL of triethylamine. After 2 min, the reaction mixture was added to brine (15 mL) and the organic phase was extracted with ethyl acetate (3×15 mL). The combined organic extracts were dried with magnesium sulfate and filtered. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography.

4.1.2. Procedure for the preparation of 3-methyl-4-methylene-5-(4-nitrophenyl)-4,5-dihydro isoxazol-5-ol (**16b**). Triethylamine (0.2 ml) was added to a stirred solution of isoxazoline *N*-oxide derivative **16** (0.5 mmol) in acetonitrile (2 mL) at room temperature. The reaction was monitored by TLC. After the completion of the reaction (30 min) the reaction mixture was added to brine (15 mL) and the organic phase was extracted with ethyl acetate (3×15 mL). The combined organic extracts were dried with magnesium sulfate and filtered. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography.

4.2. Spectral data

4.2.1. 3-(4-Nitrophenyl)-6,7-dihydrobenzo[c]isoxazol-4(5H)-one (**1a**). White solid; mp 226–228 °C, IR [NaCl, cm⁻¹] 3429, 1692, 1682, 1565, 1533, 1347; ¹H NMR (400 MHz, CDCl₃): δ 8.66 (d, *J*=8.8 Hz, 2H), 8.35 (d, *J*=8.9 Hz, 2H), 3.02 (t, *J*=6.4 Hz, 2H), 2.67 (t, *J*=6.3 Hz, 2H), 2.24–2.17 (m, 2H); ¹³C NMR (100 MHz, CDCl₃); δ 192.7, 168.1, 165.4, 149.8, 131.8, 129.9, 124.1, 114.2, 40.3, 22.4, 21.9; MS *m*/*z* (relative intensity): 257 (100), 255 (10); HRMS (ESI⁻) calcd for C₁₃H₉N₂O₄ ([M–H]⁻): 257.0562, found 257.0562.

4.2.2. 4-(4-Oxo-4,5,6,7-tetrahydrobenzo[c]isoxazol-3-yl) benzonitrile (**2a**). White solid; mp 208–210 °C, IR [NaCl, cm⁻¹] 3499, 2870, 1680, 1573, 1542, 1049; ¹H NMR (400 MHz, CDCl₃): δ 8.59 (d, *J*=8.5 Hz, 2H), 7.81 (d, *J*=8.5 Hz, 2H), 3.01 (t, *J*=6.3 Hz, 2H), 2.66 (t, *J*=6.4 Hz, 2H), 2.23–2.16 (m, 2H); ¹³C NMR (100 MHz, CDCl₃); δ 192.7, 168.4, 165.4, 132.7, 130.2, 129.2, 118.3, 115.6, 113.9, 40.3, 22.3, 21.9; MS *m*/*z* (relative intensity): 239 (100), 247 (20); HRMS (EI⁺) calcd for C₁₄H₁₀N₂O₂ ([M⁺H]⁺): 239.0743, found 239.0744.

4.2.3. 3-(4-*Chlorophenyl*)-6,7-*dihydrobenzo*[*c*]*isoxazo*l-4(5*H*)-*one* (**3***a*). Colorless liquid; IR [NaCl, cm⁻¹] 3422, 2958, 1678, 1583, 1466; ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.38 (d, *J*=8.6 Hz, 2H), 7.69 (d, *J*=8.6 Hz, 2H), 2.94 (t, *J*=6.3 Hz, 2H), 2.60 (t, *J*=6.3 Hz, 2H), 2.12–2.06 (m, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆); δ 192.8, 167.9, 165.3, 137.2, 129.9, 129.1, 124.6, 112.6, 21.6, 20.9; MS *m/z* (relative intensity): 247 (100), 246 (10), 220 (10); HRMS (EI⁺) calcd for C₁₃H₁₀O₂NCl ([M⁺]): 247.0400, found 247.0401.

4.2.4. 3-p-Tolyl-6,7-dihydrobenzo[c]isoxazol-4(5H)-one (**4a**). Colorless liquid; IR [NaCl, cm⁻¹] 3414, 2927, 1678, 1580, 1481; ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, J=8.0 Hz, 2H), 7.24 (d, J=8.0 Hz, 2H), 2.66 (t, J=6.6 Hz, 2H), 2.54–2.50 (m, 2H), 2.40 (s, 3H), 2.01–1.94 (m, 2H), ¹³C NMR (100 MHz, CDCl₃); δ 192.7, 171.1, 165.1, 143.3, 129.6, 128.9, 123.9, 112.2, 40.3, 22.5, 22.1, 21.9; MS *m/z* (relative intensity): 228 (100), 227 (20), 212 (10); HRMS (FAB⁺) calcd for C₁₄H₁₄O₂N ([M⁺H]⁺): 228.1025, found 228.1021.

4.2.5. 3-(2-Nitrophenyl)-6,7-dihydrobenzo[c]isoxazol-4(5H)-one (**5a**). Colorless liquid; IR [NaCl, cm⁻¹] 3399, 2950, 1689, 1530, 1349, 1061; ¹H NMR (400 MHz, CDCl₃): δ 8.18 (d, *J*=7.6 Hz, 1H), 7.76–7.69 (m, 3H), 3.02 (t, *J*=6.3 Hz, 2H), 2.54 (t, *J*=6.4 Hz, 2H), 2.22–2.16 (m, 2H); ¹³C NMR (100 MHz, CDCl₃); δ 192.7, 167.3, 164.4, 148.6, 133.3, 132.3, 132.0, 125.4, 122.0, 113.9, 39.3, 22.6, 21.7; MS *m*/*z* (relative intensity): 259 (100), 257 (10), 233 (20); HRMS (EI⁺) calcd for C₁₃H₁₁O₄N₂ ([M⁺H]⁺): 259.0719, found 259.0721.

4.2.6. 3-(2-Bromophenyl)-6,7-dihydrobenzo[c]isoxazol-4(5H)-one (**6a**). Colorless liquid; IR [NaCl, cm⁻¹] 3414, 2950, 1689, 1614, 1421, 1322; ¹H NMR (400 MHz, CDCl₃): δ 7.72–7.70 (m, 1H), 7.56–7.54 (m, 1H), 7.45–7.36 (m, 2H), 3.02 (t, *J*=6.3 Hz, 2H), 2.57 (t, *J*=6.4 Hz, 2H), 2.23–2.17 (m, 2H); ¹³C NMR (100 MHz, CDCl₃); δ 192.1, 170.0, 164.3, 133.8, 132.6, 132.1, 128.4, 127.4, 122.9, 114.5, 39.7, 22.7, 21.7; MS *m*/*z* (relative intensity): 292 (100), 278 (15), 275 (5); HRMS (EI⁺) calcd for C₁₃H₁₁O₂N Br ([M⁺H]⁺): 291.9973, found 291.9969.

4.2.7. 3-(2-Fluorophenyl)-6,7-dihydrobenzo[c]isoxazol-4(5H)-one (**7a**). Yellow liquid; IR [NaCl, cm⁻¹] 3422, 2950, 1689, 1625, 1591, 1464; ¹H NMR (400 MHz, CDCl₃): δ 7.96–7.29 (m, 1H), 7.57–7.51 (m, 1H), 7.31–7.20 (m, 2H), 3.01 (t, *J*=6.3 Hz, 2H), 2.59 (t, *J*=6.4 Hz, 2H), 2.22–2.16 (m, 2H); ¹³C NMR (100 MHz, CDCl₃); δ 192.1, 166.7, 164.5, 161.6, 159.0, 133.9 (d, *J*=9.0 Hz), 131.4, 124.4 (d, *J*=4.0 Hz), 116.7 (d, *J*=21.0 Hz), 115.2 (d, *J*=13.0 Hz), 39.9, 22.6, 21.9; MS *m*/*z* (relative intensity): 231 (100), 230 (20); HRMS (EI⁺) calcd for $C_{13}H_{10}O_2N$ F ([M⁺]): 231.0696, found 231.0698.

4.2.8. 3-(2-Chlorophenyl)-6,7-dihydrobenzo[c]isoxazol-4(5H)-one (**8a**). Colorless liquid; IR [NaCl, cm⁻¹] 3414, 2950, 1692, 1533, 1347; ¹H NMR (400 MHz, CDCl₃): δ 7.62–7.60 (m, 1H), 7.54–7.45 (m, 2H), 7.40–7.36 (m, 1H), 3.02 (t, *J*=6.3 Hz, 2H), 2.57 (t, *J*=6.4 Hz, 2H), 2.23–2.17 (m, 2H); ¹³C NMR (100 MHz, CDCl₃); δ 192.1, 168.9, 164.3, 134.0, 132.6, 131.9, 130.5, 126.8, 126.3, 114.7, 39.8, 22.7, 21.9; MS *m/z* (relative intensity): 249 (100), 212 (20), 201 (20); HRMS (EI⁺) calcd for C₁₃H₁₀O₂NCl ([M⁺H]⁺): 247.0400, found 247.0402.

4.2.9. 3-(2,4-Dichlorophenyl)-6,7-dihydrobenzo[c]isoxazol-4(5H)one (**9a**). White solid; mp 108–110 °C, IR [NaCl, cm⁻¹] 3422, 2950, 1689, 1610, 1459; ¹H NMR (400 MHz, CDCl₃): δ 7.59–7.54 (m, 2H), 7.37 (dd, *J*=2.0, 8.4 Hz, 1H), 3.02 (t, *J*=6.3 Hz, 2H), 2.57 (t, *J*=6.3 Hz, 2H), 2.23–2.16 (m, 2H); ¹³C NMR (100 MHz, CDCl₃); δ 192.1, 167.8, 164.4, 138.4, 134.9, 132.8, 130.6, 127.3, 124.7, 114.8, 39.7, 22.7, 21.8; MS *m/z* (relative intensity): 281 (100), 273 (55); HRMS (EI⁺) calcd for C₁₃H₉O₂N Cl₂ ([M⁺]): 281.0010, found 281.0014.

4.2.10. 3-(5-Fluoro-2-nitrophenyl)-6,7-dihydrobenzo[c]isoxazol-4(5H)-one (**10a**). Yellow liquid; IR [NaCl, cm⁻¹] 3422, 1692, 1636, 1533, 1347; ¹H NMR (400 MHz, CDCl₃): δ 8.24 (dd, *J*=4.8, 9.1 Hz, 1H), 7.44–7.36 (m, 2H), 3.02 (t, *J*=6.4 Hz, 2H), 2.55 (t, *J*=6.4 Hz, 2H), 2.23–2.16 (m, 2H); ¹³C NMR (100 MHz, CDCl₃); δ 192.6, 165.7, 164.5, 163.2, 128.2 (d, *J*=9.0 Hz), 124.7 (d, *J*=10.0 Hz), 119.5, 119.2 (d, *J*=5.0 Hz), 118.9, 114.3, 39.3, 23.6, 21.7; MS *m/z* (relative intensity): 277 (30), 273 (100), 272 (10); HRMS (EI⁺) calcd for C₁₃H₁₀N₂O₄ F ([M⁺H]⁺): 277.0625, found 277.0624.

4.2.11. 3-(5-Chloro-2-nitrophenyl)-6,7-dihydrobenzo[c]isoxazol-4(5H)-one (**11a**). Yellow liquid; IR [NaCl, cm⁻¹] 2950, 1692, 1621, 1533, 1347; ¹H NMR (400 MHz, CDCl₃): δ 8.15 (d, *J*=8.7 Hz, 1H), 7.70–7.65 (m, 2H), 3.02 (t, *J*=6.3 Hz, 2H), 2.54 (t, *J*=6.4 Hz, 2H), 2.22–2.16 (m, 2H); ¹³C NMR (100 MHz, CDCl₃); δ 192.6, 165.7, 164.5, 146.8, 140.0, 132.2, 131.9, 126.8, 123.6, 114.3, 39.2, 22.6, 21.7; MS *m/z* (relative intensity): 293 (100), 277 (10), 273 (5); HRMS (FAB⁺) calcd for C₁₃H₁₀O₄N₂Cl ([M⁺H]⁺): 293.0329, found 293.0332.

4.2.12. 3-(5-Bromo-2-nitrophenyl)-6,7-dihydrobenzo[c]isoxazol-4(5H)-one (**12a**). Yellow liquid; IR [NaCl, cm⁻¹] 3422, 2942, 1686, 1625, 1530, 1345; ¹H NMR (400 MHz, CDCl₃): δ 8.06 (d, J=8.6 Hz, 1H), 7.87–7.82 (m, 2H), 3.02 (t, J=6.3 Hz, 2H), 2.54 (t, J=6.4 Hz, 2H), 2.22–2.16 (m, 2H); ¹³C NMR (100 MHz, CDCl₃); δ 192.6, 165.6, 164.5, 147.3, 135.3, 134.7, 128.2, 126.8, 123.6, 114.3, 39.2, 22.6, 21.7; MS *m*/*z* (relative intensity): 335 (70), 291 (100), 289 (70); HRMS (EI⁺) calcd for C₁₃H₉N₂O₄Br ([M]⁻): 335.9746, found 335.9751.

4.2.13. 3-(2,5-Dimethoxyphenyl)-6,7-dihydrobenzo[c]isoxazol-4(5H)-one (**13a** $). Colorless liquid; IR [NaCl, cm⁻¹] 3429, 2942, 1689, 1580, 1493; ¹H NMR (400 MHz, CDCl₃): <math>\delta$ 7.25 (s, 1H), 7.06 (dd, *J*=3.1, 9.1 Hz, 1H), 6.96 (d, *J*=9.1 Hz, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 2.98 (t, *J*=6.3 Hz, 2H), 2.56 (t, *J*=6.3 Hz, 2H), 2.20–2.14 (m, 2H); ¹³C NMR (100 MHz, CDCl₃); δ 192.0, 169.2, 164.3, 153.3, 152.5, 119.6, 116.3, 115.8, 113.9, 113.3, 56.6, 56.2, 39.9, 22.7, 21.9; MS *m/z* (relative intensity): 273 (100), 256 (15), 242 (50); HRMS (EI⁺) calcd for C₁₅H₁₅O₄N ([M⁺]): 273.1001, found 273.0997.

4.2.14. 3-(3-Nitrophenyl)-6,7-dihydrobenzo[c]isoxazol-4(5H)-one (**14a**). White solid; mp 173–175 °C, IR [NaCl, cm⁻¹] 3422, 1667, 1527, 1341, 1092; ¹H NMR (400 MHz, CDCl₃): δ 9.39 (s, 1H), 8.81 (d, *J*=7.9 Hz, 1H), 8.39 (dd, *J*=1.1, 8.3 Hz, 1H), 7.73 (t, *J*=8.1 Hz, 1H), 3.03 (t, *J*=6.3 Hz, 2H), 2.68 (t, *J*=6.6 Hz, 2H), 2.24–2.18 (m, 2H); ¹³C NMR (100 MHz, CDCl₃); δ 192.8, 168.1, 165.4,148.7, 134.3, 130.2, 127.9,126.7,123.9, 113.7, 40.2, 22.4, 21.9; MS *m*/*z* (relative intensity): 258 (100), 257 (15), 241 (25), 229 (10); HRMS (EI⁺) calcd for C₁₃H₁₁O₄N₂ ([M⁺H]⁺): 258.0641, found 258.0635.

4.2.15. 3-Phenyl-6,7-dihydrobenzo[c]isoxazol-4(5H)-one (**15a**). Colorless liquid; IR [NaCl, cm⁻¹] 3414, 2935, 1644, 1455, 1258; ¹H NMR (400 MHz, CDCl₃): δ 8.40 (d, *J*=7.0 Hz, 2H), 7.54–7.46 (m, 3H), 2.95 (t, *J*=6.3 Hz, 2H), 2.59 (t, *J*=6.3 Hz, 2H), 2.17–2.10 (m, 2H); ¹³C NMR (100 MHz, CDCl₃); δ 192.7, 170.9, 165.1, 132.5, 128.9, 126.5, 112.5, 40.3, 22.4, 22.0; MS *m/z* (relative intensity): 214 (100), 197 (10), 190 (5), 173 (20); HRMS (ESI) calcd for C₁₃H₁₂NO₂ ([M⁺H]⁺): 214.0868, found 214.0865.

4.2.16. 3-Methyl-4-methylene-5-(4-nitrophenyl)-4,5-dihydro isoxazol-5-ol (**16b**). White solid, mp 184–186 °C, IR [NaCl, cm⁻¹] 1604, 1521, 1414, 1343, 1220, 1179; ¹H NMR (400 MHz, DMSO- d_6): δ 8.23 (d, J=8.8 Hz, 2H), 7.98 (s, 1H), 7.65 (d, J=8.8 Hz, 2H) 5.72 (s, 1H); 5.32 (s, 1H), 2.08 (s, 3H), ¹³C NMR (100 MHz, DMSO- d_6); δ 153.4, 150.9, 148.3, 147.4, 126.9, 123.5, 116.2, 104.1, 9.7, MS *m*/*z* (relative intensity): 234 (100), 217 (20), 205 (15), 150 (70); HRMS (EI⁺) calcd for C₁₁H₁₀O₄N₂ ([M⁺]): 234.0641, found 234.0647.

Acknowledgements

Financial support for this work by the National Science Council of the Republic of China (NSC 99-2119-M-003-003-MY3) and National Taiwan Normal University (99T3030-2, 99-D, 100-D-06) and spectral data collected by the instrumentation center of National Taiwan Normal University is gratefully acknowledged.

Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.tet.2014.08.024.

References and notes

- (a) Kumar, K. A.; Jayaroopa, P. IJPCBS 2013, 3, 294–304; (b) Heasley, B. Angew. Chem. Int. Ed. 2011, 50, 8474–8477; (c) Speranca, A.; Godoi, B.; Zeni, G. J. Org. Chem. 2013, 78, 1630–1637.
- (a) Poutiainen, P. K.; Oravilahti, T.; Perakyla, M.; Palvimo, J. J.; Ihalainen, J. A.; Laatikainen, R.; Pulkkinen, J. T. *J. Med. Chem.* 2012, *55*, 6316–6327; (b) Frydenvang, K.; Pickering, D. S.; Greenwood, J. R.; Larsen, N. K.; Brehm, L.; Nielsen, B.; Vogensen, S. B.; Hald, H.; Kastrup, J. S.; Larsen, P. K.; Clausen, R. P. *J. Med. Chem.* 2010, *53*, 8354–8361; (c) Liu, J.; Yu, L. F.; Eaton, J. B.; Caldarone, B.; Cavino, K.; Ruiz, C.; Terry, M.; Fedolak, A.; Wang, D.; Ghavami, A.; Lowe, D. A.; Brunner, D.; Lukas, R. J.; Kozikowski, A. P. *J. Med. Chem.* 2011, *54*, 7280–7288.
 (a) Raihan, M. J.; Kavala, V.; Kuo, C.-W.; Raju, B. R.; Yao, C.-F. *Green. Chem.* 2010, Communic 1997, Communication of Networks and Chem. 2011, *54*, 7280–7288.
- (a) Raihan, M. J.; Kavala, V.; Kuo, C.-W.; Raju, B. R.; Yao, C.-F. Green. Chem. 2010, 12, 1090–1096; (b) Tamura, Y.; Inoue, M.; Wada, A.; Fujita, M.; Kita, Y. Chem. Pharm. Bull. 1981, 29, 3226–3231; (c) Hashimoto, Y.; Takada, A.; Takikawa, H.; Suzuki, K. Org. Biomol. Chem. 2012, 10, 6003–6009; (d) Denmark, S. E.; Kallemeyn, J. M. J. Org. Chem. 2005, 70, 2839–2842; (e) Grecian, S.; Fokin, V. V. Angew. Chem. Int. Ed. 2008, 47, 8285–8287; (f) Waldo, J. P.; Larock, R. C. J. Org. Chem. 2007, 72, 9643–9647; (g) Crossley, J. A.; Browne, D. L. J. Org. Chem. 2010, 75, 5414–5416.
- (a) Hansen, T. V.; Wu, P.; Fokin, V. V. J. Org. Chem. 2005, 70, 7761–7764; (b) Tang, S.; He, J.; Sun, Y.; He, L.; She, X. J. Org. Chem. 2010, 75, 1961–1966; (c) She, Z.; Niu, D.; Chen, L.; Gunawan, M. A.; Shanja, X.; Hersh, W. H.; Chen, Y. J. Org. Chem. 2012, 77, 3627–3633; (d) Ueda, M.; Sugita, S.; Sato, A.; Miyoshi, T.; Miyata, O. J. Org. Chem. 2012, 77, 9344–9351; (e) Okitsu, T.; Sato, K.; Potewar, T. M.; Wada, A. J. Org. Chem. 2011, 76, 3438–3449; (f) Kawai, H.; Sugita, Y.; Tokunaga, E.; Shibata, N. Eur. J. Org. Chem. 2012, 1295–1298.
- (a) Kuehnel, M. F.; Lentz, D.; Braun, T. Angew. Chem. Int. Ed. 2013, 52, 3328–3348; (b) Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119–2183; (c) Zhang, L; Zhang, W.; Liu, J.; Hu, J. J. Org. Chem. 2009, 74, 2850–2853; (d) Sung, K.; Lagow, R. J. J. Chem. Soc. Perkin Trans1 1998, 637–638; (e) Nakamura, Y.; Uneyama, K. J. Org. Chem. 2007, 72, 5894–5897; (f) Volkova, Y. A.; Averina, E. B.; Grishin, Y. K.; Bruheim, P.; Kuznetsova, T. S.; Zefirov, N. S. J. Org. Chem. 2010, 75, 3047–3052; (g) Burkhard, J. A.; Tchitchanov, B. H.; Carreira, E. M. Angew. Chem. Int. Ed. 2011, 50, 5379–5382.
- Rajawinslin, R. R.; Raihan, M. J.; Janreddy, D.; Kavala, V.; Kuo, C.-W.; Kuo, T.-S.; Chen, M.-L.; He, C.-H.; Yao, C.-F. *Eur. J. Org. Chem.* **2013**, 5743–5749.

- 7. (a) Nyffeler, P. T.; Duron, S. G.; Burkart, M. D.; Vincent, S. P.; Wong, C. H. Angew. *Chem.* **2005**, *117*, 196–217; (b) Rauniyar, V.; Lackner, A. D.; Hamilton, G. L.; Toste, F. D. Science **2011**, *334*, 1681–1683.
- 8. (a) Raihan, M. J.; Kavala, V.; Guan, Q.-Z.; Kuo, C.-W.; Kataria, S.; Shishodia, S.; Janreddy, D.; Habib, P. M.; Yao, C.-F. *Adv. Synth. Cat.* 2012, 354, 2251–2263; (b)
 Raihan, M. J.; Rajawinslin, R. R.; Kavala, V.; Kuo, C.-W.; Kuo, T.-S.; He, C.-H.;
 Huang, H. N.; Yao, C.-F. *J. Org. Chem.* 2013, 78, 8872–8879; (c) Raihan, M. J.;

Kavala, V.; Habib, P. M.; Guan, Q.-Z.; Kuo, C.-W.; Yao, C.-F. J. Org. Chem. 2011, 76, 424-434.

- Uu, H.-Q.; Loh, T.-P. *Tetrahedron Lett.* 2009, *50*, 1554–15561.
 CCDC-955136 (1a) and CCDC-989222 (16a) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre viawww.ccdc.cam.ac.uk/data_request/cif