

Contents lists available at ScienceDirect

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

New types of asymmetrical bromonium salts $[R_F(R_F')Br]Y$ where R_F and/or R_F' represent perfluorinated aryl, alkenyl, and alkynyl groups

Hermann-Josef Frohn^{a,*}, Matthias Giesen^a, Vadim V. Bardin^b

^a Department of Chemistry, Institute of Inorganic Chemistry, University of Duisburg-Essen, Lotharstr. 1, D-47048 Duisburg, Germany ^b N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, Acad. Lavrentjev Ave. 9, 630090 Novosibirsk, Russian Federation

ARTICLE INFO

Article history: Received 10 June 2010 Received in revised form 29 June 2010 Accepted 30 June 2010 Available online 8 July 2010

Keywords: Bis(perfluoroorganyl)bromonium salts Organyl(perfluoroorganyl)bromonium salts Aryldifluorobromane Perfluoroorganylboron difluorides Aryltrifluorosilanes NMR spectroscopy

ABSTRACT

A series of previously unknown asymmetrical fluorinated bis(aryl)bromonium, alkenyl(aryl)bromonium, and alkynyl(aryl)bromonium salts was prepared by reactions of $C_6F_5BrF_2$ or $4-CF_3C_6H_4BrF_2$ with aryl group transfer reagents Ar'SiF₃ (Ar' = C_6F_5 , $4-FC_6H_4$, C_6H_5) or perfluoroorganyl group transfer reagents $R_F'BF_2$ ($R_F = C_6F_5$, *trans*-CF₃CF=CF, $C_3F_7C\equiv$ C) preferentially in weakly coordinating solvents (CCl₃F, CCl₂FCClF₂, CH₂Cl₂, CF₃CH₂CH₂(PFP), CF₃CH₂CF₂CH₃ (PFB)). The presence of the base MeCN and the influence of the adducts $R_F'BF_2$ with Alkr/BF₂ in PFP gave mainly C_6F_5Br and Alkr/F (Alkr/ = C_6F_{13} , $C_6F_{13}CH_2CH_2$), presumably, deriving from the unstable salts [$C_6F_5(Alk_F')Br$] (Y = [Alkr/BF₃]⁻). Prototypical reactivities of selected bromonium salts were investigated with the nucleophile I⁻and the electrophile H⁺. [4-CF₃C₆H₄(C₆F₅)Br][BF₄] showed the conversion into 4-CF₃C₆H₄Br and C₆F₅I when reacted with [Bu₄N]I in MeCN. Perfluoroalkynylbromonium salts [$C_nF_{2n+1}C\equiv C(R_F)Br$][BF₄] slowly added HF when dissolved in aHF and formed [$Z-C_nF_{2n+1}C=CH(R_F)Br$][BF₄].

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Asymmetrical bis(aryl)bromonium salts were the first isolated and unambiguously characterized organic derivatives of bromine(III) (see reviews [1,2]). The first representatives were obtained in trace amounts by decomposition of benzenediazonium tetrafluoroborates in an excess of hot bromobenzene (Eq. (1)) [3–5].

 $[ArN_2][BF_4] \\$

$$+ C_{6}H_{5}Br(excess) \xrightarrow{80-90\,^{\circ}C,\,7-8\,h} [Ar(C_{6}H_{5})Br][BF_{4}] + N_{2}$$
(1)

Ar = $2-CH_3C_6H_4$, $4-CH_3C_6H_4$, $2,4-(CH_3)_2C_6H_3$, 2-naphthyl, $4-ClC_6H_4$, $4-C_2H_5OC(O)C_6H_4$.

Decomposition of [ArN₂][BF₄] in the presence of trifluoroacetic acid led to somewhat better results (Eqs. (2) and (3)) [6,7].

$$\begin{split} & [3\text{-}FC_6H_4N_2][BF_4] \\ & + C_6H_5Br \overset{C_6H_5Br/CF_3CO_2H}{\underset{reflux,4h}{\longrightarrow}} [3\text{-}FC_6H_4(C_6H_5)Br][BF_4] + N_2 \end{split} \tag{2}$$

 $[ArN_2][PF_6] \\$

$$+ C_{6}H_{5}Br^{1} \xrightarrow{C_{6}H_{5}Br/CF_{3}CO_{2}H, \, 65-70 \,^{\circ}C, \, 2\,h}_{2. \, \text{aq. Na}[Ph_{4}B], \, -\text{Na}[PF_{6}]} [Ar(C_{6}H_{5})Br][Ph_{4}B] + N_{2}$$
(3)

 $Ar = 2-CH_3C_6H_4$, $4-CH_3C_6H_4$

It was assumed that these salts were formed via in situ generated aryl cations or structurally related electrophilic species which added to valence electron lone pairs of the bromine atom [2,3]. Later several bis(alkyl)bromonium (Eq. (4)) and alkyl(aryl)-bromonium salts (Eq. (5)) were prepared in solution by alkylation of alkyl bromides or aryl bromides with highly electrophilic carbocations [1,2].

$$AlkF + Alk'Br + SbF_5 \xrightarrow{SO_2, -78^{\circ}C} [Alk(Alk')Br][SbF_6]$$
(4)

Alk = CH₃,
$$C_2H_5$$
; Alk' = CH₃, C_2H_5 , (CH₃)₂CH

$$AlkF + C_6H_5Br + SbF_5 \xrightarrow{SO_2, -70^{\circ}C} [Alk(C_6H_5)Br][SbF_6]$$
(5)

Alk = CH_3 , C_2H_5

In this context it is worth to mention, that the attempted methylation of the perfluorinated aryl bromide, 1,4-dibromotetra-fluorobenzene, with CH_3F -SbF₅ in SO₂ failed [8].

A more efficient route to asymmetrical bromonium salts is fluorine/organyl substitution in RBrF₂. The in situ formation of

^{*} Corresponding author. Tel.: +49 203 379 3310; fax: +49 203 379 2231. *E-mail address:* h-j.frohn@uni-due.de (H.-J. Frohn).

^{0022-1139/\$ –} see front matter \circledcirc 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.jfluchem.2010.06.022

 $C_6H_5BrF_2$ was proposed in reactions of C_6H_5Br with XeF₂ (Eqs. (6) and (8)), of C_6H_6 with BrF₃ (Eq. (7)), and of (C_6H_5)₂Hg with BrF₃ (Eq. (9)). Subsequently, the second aryl group was introduced by arenes [9,10], tetraarylstannanes [11], or diarylmercury [12] as arylating agents.

$$C_{6}H_{5}Br + XeF_{2} \underset{-70^{\circ} C}{\overset{SO_{2}}{-}} C_{6}H_{5}BrF_{2} \xrightarrow{ArH, BF_{3} \cdot OEt_{2}} [Ar(C_{6}H_{5})Br][BF_{4}]$$
(6)

 $Ar = 4 - FC_6H_4$, $4 - ClC_6H_4$, $4 - CH_3C_6H_4$, $2 - CH_3OC(0)C_6H_4$

$$C_{6}H_{6} + BrF_{3} \xrightarrow{CH_{2}Cl_{2}/MeCN/BF_{3} \circ OEt_{2}} C_{6}H_{5}BrF_{2} \xrightarrow{ArH} [Ar(C_{6}H_{5})Br][BF_{4}]$$
(7)

$$C_{6}H_{5}Br + XeF_{2} \xrightarrow{CH_{2}Cl_{2}/MeCN/BF_{3} \cdot OEt_{2}} C_{6}H_{5}BrF_{2} \xrightarrow{Ar_{4}Sn, BF_{3} \cdot OEt_{2}}$$

$$[Ar(C_{6}H_{5})Br][BF_{4}]$$

$$Ar = 4-CH_{3}C_{6}H_{4} (55\%), 4-CH_{3}OC_{6}H_{4} (32\%)$$
(8)

CH. CL. (MacN. (A. CH.-C.-H.) Hg

$$(C_{6}H_{5})_{2}Hg + BrF_{3} \overset{Cr_{2}C_{2}/MeCV}{\longrightarrow} C_{6}H_{5}BrF_{2} \overset{(4-CH_{3}C_{6}H_{4})_{2}r_{8}}{\overset{BF_{3},OEt_{2}}{\longrightarrow}}$$

$$[4-CH_{3}C_{6}H_{4}(C_{6}H_{5})Br][BF_{4}]$$

$$(9)$$

In a preceeding paper [13] we have reported new routes to $[(C_6F_5)_2Br][BF_4]$ and the syntheses of previously unknown types of symmetrical [(R_F)₂Br][Y] salts where R_F represents a perfluorinated alk-1-en-1-yl or alk-1-yn-1-yl group. The approach was based on the nucleophilic replacement of two fluorine atoms in BrF3 or $[BrF_2]^+$ salts by two R_F groups under acidic conditions, e.g., by the reaction of perfluoroorganyldifluoroboranes, R_FBF₂, with bromine trifluoride in weakly coordinating solvents (wcs) like 1,1,1,3,3pentafluoropropane (PFP) or 1,1,1,3,3-pentafluorobutane (PFB), or by the interaction of K[R_FBF₃] with either BrF₃ or [BrF₂][SbF₆] in anhydrous HF (aHF). Despite of variations of temperature and stoichiometry of the reactants R_FBF₂ and BrF₃, we did not detect the intermediate R_FBrF₂ by ¹⁹F NMR spectroscopy and concluded that the F/R_F substitution in the intermediate bromane R_FBrF_2 proceeded faster than the formation of R_FBrF₂ from R_FBF₂ and BrF_3 . The salt $[(C_6F_5)_2Br][BF_4]$ was formed even from a reaction of C₆F₅BF₂ and BrF₃ in a 1:1 molar ratio and in the presence of the base MeCN, which reduces the Lewis acidity of borane. In summary, the replacement of one fluorine atom in BrF₃ by a pentafluorophenyl group accelerates the subsequent F/C₆F₅ substitution step under formation of $[(C_6F_5)_2Br]^+$ salts.

Concerning non-perfluorinated aryl difluorobromanes, only 3and $4-CF_3C_6H_4BrF_2$ are described in the literature. They were prepared in good to excellent isolated yields [14]. $4-CF_3C_6H_4BrF_2$ allowed the syntheses of alkynyl(aryl)bromonium tetrafluoroborates in reactions with alkynyltrimethylstannanes bearing electron-rich alkynyl groups under acidic conditions. The attempted reaction of $4-CF_3C_6H_4BrF_2$ with $C_8H_{17}C\equiv CSiMe_3$ gave only a trace of the desired bromonium salt [15].

$$4-CF_{3}C_{6}H_{4}BrF_{2}$$

$$+ RC \equiv CSnMe_{3} \xrightarrow{BF_{3} \cdot OEt_{2}, CH_{2}Cl_{2}}_{-70^{\circ}C} [4-CF_{3}C_{6}H_{4}(RC \equiv C)Br][BF_{4}]$$
(10)

 $R = C_4H_9$, $(CH_3)_2CHCH_2$, C_8H_{17} , *cyclo*- C_6H_{11} , $(CH_3)_3C$, $(CH_3)_3Si$ (76–89%)

In the present paper we report the preparation of a representative series of asymmetrical bromonium salts $[R_F(R_F')BT]Y$, where $R_{F'}$ and R_F can represent a perfluoroorganyl group, by reaction of penta-fluorophenyldifluorobromane (1) [16] and 4-trifluoromethylphenyldifluorobromane (2) [14] with two types of the organyl transfer

reagents of distinct Lewis acidity: aryltrifluorosilanes (Y = $[SiF_5]^-$) and per- or polyfluoroorganyldifluoroboranes (Y = $[BF_4]^-$ or $[R_{F'}BF_3]^-$).

2. Results and discussion

2.1. Syntheses of asymmetrical bromonium salts using aryltrifluorosilanes

We have found that pentafluorophenyltrifluorosilane (**3**) easily reacted with bromane **2** in the weakly coordinating solvent CCl_3F to give 4-trifluoromethylphenyl(pentafluorophenyl)bromonium pentafluorosilicate (**4a**), which was converted into the thermally more stable hexafluorophosphate (**4b**) by metathesis with H[PF₆] in aqueous solution (Eq. (11)).

$$\begin{array}{c} 4\text{-} CF_{3}C_{6}H_{4}BrF_{2} + C_{6}F_{5}SiF_{3} \xrightarrow{1. \ CCl_{3}F, 0 \cdot C, 15-20 \, h} \\ 2 & \xrightarrow{2. \, aq \, H[PF_{6}]} \\ [4\text{-} CF_{3}C_{6}H_{4}(C_{6}F_{5})Br][PF_{6}] & (11) \\ & \xrightarrow{4b \, (63\%)} \end{array}$$

The attempt to prepare salt **4a** by the alternative route from bromane **1** and 4-trifluoromethylphenyltrifluorosilane (**5**) in CCl₃F, led to a complex mixture without the target product. The same negative result was obtained in the reaction of **1** with 4-fluorophenyltrifluorosilane (**6**) in CCl₃F. Contrary results were obtained in the coordinating solvent MeCN. Salts 4-fluorophenyl(pentafluorophenyl)bromonium hexafluorophosphate (**7**) and phenyl(pentafluorophenyl)bromonium tetrafluoroborate (**8**) could be synthesized on the route shown in Eqs. (12) and (13) in moderate to good yields.

$$C_{6}F_{5}BrF_{2} + ArSiF_{3}^{1. CH_{3}CN,0^{\circ}C,1^{5-20}h}[C_{6}F_{5}(Ar)Br][PF_{6}]$$
(12)

Ar = 4-CF₃C₆H₄ (**4b**) (67%), 4-FC₆H₄ (**7**) (57%)

$$C_{6}F_{5}BrF_{2} + C_{6}H_{5}SiF_{3} \xrightarrow{1. CH_{3}CN,0^{\circ}C,15-20h}{2. aq H[BF_{4}]} [C_{6}F_{5}(C_{6}H_{5})Br][BF_{4}]$$
(13)

The differing results presented afore in reactions of 4-CF₃C₆H₄BrF₂ with C₆F₅SiF₃ compared to C₆F₅BrF₂ with 4-CF₃C₆H₄SiF₃ in weakly coordinating and coordinating solvents can be rationalized on basis of a stronger Br–F bond in C₆F₅BrF₂ than in 4-CF₃C₆H₄BrF₂ due to a higher bond polarity caused by the stronger electron-withdrawing C₆F₅ group and on a higher oxidizing property of [C₆F₅BrF]⁺ (simplified description of the polarized species) relative to [4-CF₃C₆H₄BrF]⁺. MeCN can moderate the oxidizing property of [C₆F₅BrF]⁺ by coordination.

2.2. Syntheses of asymmetrical bromonium salts using organyldifluoroboranes

Perfluorinated organyldifluoroboranes are more acidic [17] and, in general, more easy to prepare [18–21] than the corresponding organyltrifluorosilanes. This situation allowed to study the preparation of asymmetrical bis(organyl)bromonium salts starting from aryldifluorobromanes. By this route we obtained amongst others the previously unknown perfluorinated alkenyl(aryl)- and alkynyl(aryl)bromonium salts. Attempts to synthesize per- and polyfluoroalkyl(pentafluorophenyl) bromonium salts failed.

The reaction of arylbromane **2** with pentafluorophenyldifluoroborane (**10**) was performed in PFB and 1,1,2-trichlorotrifluoroethane and gave 4-trifluoromethylphenyl(pentafluorophenyl) bromonium tetrafluoroborate (**4c**) in a high yield. Remarkably, the aryl group transfer was completed within 1 h at -20 °C (Eq. (14)), whereas the formation of [4-CF₃C₆H₄(C₆F₅)Br][SiF₅] (**4a**) using silane **3** took 15–20 h at 0 °C (Eq. (11))

$$\begin{array}{l} \label{eq:4-CF_3C_6H_4BrF_2+C_6F_5BF_2} ^{\text{PFB}/1,1,2-C_2C_13F_3,-20\,^{\circ}\text{C}} \\ [4-CF_3C_6H_4(C_6F_5)\text{Br}][\text{BF}_4] \\ \textbf{4c}^{(94\%)} \end{array} \tag{14}$$

Perfluorinated pent-1-yn-1-yl(phenyl)bromonium tetrafluoroborate (**11**) was obtained by addition of heptafluoropent-1-yn-1yldifluoroborane (**12**) to a cold solution of bromane **1** in PFP and was isolated as a white solid after removal of all volatiles in vacuum (Eq. (15))

$$C_{6}F_{5}BrF_{2} + C_{3}F_{7}C \equiv CBF_{2} \xrightarrow{PFP, -40 \,^{\circ}C} [C_{6}F_{5}(C_{3}F_{7}C \equiv C)Br][BF_{4}]$$
(15)

Under similar conditions, *trans*-pentafluoroprop-1-en-1-yldifluoroborane (**13**) reacted with bromane **1** to yield perfluorinated *trans*-prop-1-en-1-yl(phenyl)bromonium *trans*-pentafluoropropenyltrifluoroborate (**14**) (Eq. (16)). The configuration of the alkenyl moiety bonded to the bromine atom retended whereas in case of the previously reported formation of [(CF₃CF=CF)₂Br][CF₃CF=CFBF₃] from borane **13** and BrF₃ a partial conversion to the *cis*-isomer took place [13]. The nature of the counteranion depended on the higher fluoride affinity of borane **13** relative to that of BF₃ (F⁻-affinities 89.0 and 78.8 kcal/mol, respectively [17]) as discussed in Ref. [13].

$$C_{6}F_{5}BrF_{21} + 2 trans-CF_{3}CF = CFBF_{2} \xrightarrow{PFP_{-}=40 \circ C}$$

$$I_{3}$$

$$[C_{6}F_{5}(trans-CF_{3}CF = CF)Br][trans-CF_{3}CF = CFBF_{3}] + BF_{3}$$
(16)
$$I_{4}(60\%)$$

In contrast to the successful syntheses of salts **4c**, **11**, and **14**, the attempted preparation of the perfluorinated hex-1-yl(phenyl)bromonium salt failed. When a solution of perfluorohexyldifluoroborane (**15**) (2 equiv.) in PFP was added to a solution of $C_6F_5BrF_2$ in PFP at -65 °C, a mixture of perfluorohexane (**16**), bromopenta-fluorobenzene (**17**), 1-bromoheptafluorocyclohexa-1,4-diene (**18**), and non-consumed borane **15** was formed (Eq. (17))

$$\begin{array}{c} C_{6}F_{5}BrF_{2}+C_{6}F_{13}BF_{2} \stackrel{PFP,-65 \ ^{\circ C}C}{\longrightarrow} C_{6}F_{5}Br, \\ \mathbf{1} & \mathbf{17} \\ cyclo-1-Br-1, 4-C_{6}F_{7}, C_{6}F_{14}, BF_{3} \\ \mathbf{16} \end{array} \tag{17}$$

A similar result was obtained with the less acidic 1H,1H,2H,2H-tridecafluorooctyldifluoroborane (**19**) which was converted into 1H,1H,2H,2H-tetradecafluorooctane (**20**) (Eq. (18)).

$$\begin{array}{ccc} C_{6}F_{5}BrF_{2} \ + \ C_{6}F_{13}CH_{2}CH_{2}BF_{2} \xrightarrow{PFP,-65 \ ^{\circ}C} C_{6}F_{5}Br, \\ \mathbf{1} & \mathbf{19} & \mathbf{17} \\ cyclo-1-Br-1, 4-C_{6}F_{7}, \ cyclo-1-BrC_{6}F_{9}, \ C_{6}F_{13}CH_{2}CH_{2}F, BF_{3} \ (18) \\ \mathbf{18} & \mathbf{21} & \mathbf{20} \end{array}$$

It should be noted that during the addition of the alkylboranes **15** and **19** to a solution of $C_6F_5BrF_2$, for a short time (10–20 s) a: suspension was observed whose solid decomposed within 20–30 min to yield a colorless solution. Likely, this precipitate may be salt [Alk_F(C₆F₅)Br][XBF₃] (Alk_F = C₆F₁₃CH₂CH₂, X = F; Alk_F = C₆F₁₃, X = C₆F₁₃). Such salts are closely related to the iodonium salt [C₆F₅)IF₁₂ (C₆F₅)IF₂ in PFP and decomposed above 0 °C (Eq. (19)) [22].

The formation of the minor products **18** and **21** in Eq. (18) can be assigned to a parallel reaction channel, the acid-assisted decom-

position of $C_6F_5BrF_2$ to C_6F_5Br and unsaturated cyclic bromocontaining compounds described in Ref. [23].

Furthermore, we investigated the influence of base Lewis acid adducts in case of organyldifluoroboranes·NCCH₃ on fluorine/ organyl substitutions in ArBrF₂. The base adducts R_FBF_2 ·NCCH₃ are less acidic than the underlying boranes itself. We have found that bromane **1** reacted with the adduct $CF_3C\equiv CBF_2$ ·NCCH₃ (**22**) (1 equiv.) in PFP/MeCN to yield trifluoroprop-1-yn-1-yl(pentafluorophenyl)bromonium tetrafluoroborate (**23**), but the conversion of **22** was incomplete and in particular the main product was C_6F_5Br (molar ratio **23:17** = 1:4) (Eq. (20))

$$C_{6}F_{5}BrF_{2} + CF_{3}C \equiv CBF_{2} \cdot NCCH_{3} \xrightarrow{\text{PFP/CH}_{3}CN, -10 \circ C} [C_{6}F_{5}(CF_{3}C \equiv C)Br][BF_{4}], C_{6}F_{5}Br$$

$$[C_{6}F_{5}(CF_{3}C \equiv C)Br][BF_{4}], C_{6}F_{5}Br$$

$$(20)$$

The formation of **17** was also observed in the synthesis of $[(C_6F_5)_2Br][BF_4]$ from BrF_3 and $(C_6F_5)_nBF_{3-n}$ ·NCCH₃ (n = 1-3) [13,24]. Its amount was minimized when the reaction was performed at -70 °C, but it increased at higher temperatures (-20 to 25 °C). This phenomenon can be explained by fluoride abstraction from **1** under the action of a sufficient Lewis acid and following base coordination yielding [C₆F₅BrF·NCCH₃]Y which subsequently decomposed [24]

Contrary, the reaction of bromane **2** with adduct $C_6F_5BF_2$ ·NCCH₃ (**24**) gave salt **4c** in a high yield (Eq. (21)).

$$\begin{array}{c} 4\text{-}CF_{3}C_{6}H_{4}BrF_{22} + C_{6}F_{5}BF_{2} \cdot \text{NCCH}_{3} \xrightarrow{\text{PFB/CH}_{3}CH_{3}CH_{3}} \\ [4\text{-}CF_{3}C_{6}H_{4}(C_{6}F_{5})Br][BF_{4}] \\ \textbf{4c} (> 90\%) \end{array}$$
(21)

2.3. Prototypical reactivities of $[R(R_{F'})Br][BF_4]$

The reactivity of perfluorinated bis(organyl)bromonium salts $[R_F(R_F')BT]Y$ is still not investigated [25] except of thermal decomposition and anion metathesis in case of $[(C_6F_5)_2BT]Y$ [24]. We present here some prototypical examples of their reactivity. When a solution of salt **4c** in MeCN was treated with $[Bu_4N]I$ in MeCN, 4-bromobenzotrifluoride and iodopentafluorobenzene were formed in a 1:1 molar ratio besides $[BF_4]^-$ and pentafluorobenzene (trace) (Eq. (22)).

$$\begin{array}{l} [4\text{-}CF_3C_6H_4(C_6F_5)Br][BF_4] + [Bu_4N]I(excess) \xrightarrow{MeCN, -10 \text{ to } 24 \ ^\circ \text{C}} \\ \textbf{4c} \\ 4\text{-}CF_3C_6H_4Br + C_6F_5I + [Bu_4N][BF_4] \end{array}$$

$$\begin{array}{l} (22) \end{array}$$

Another type of reactivity is the transformation of the polarizable triple bond in the perfluoroalkynyl moiety bonded to Br(III). Salt **11** underwent a slow HF addition in anhydrous HF at 24 °C yielding *Z*-1H-octafluoropent-1-en-1-yl(pentafluorophenyl)bromonium tetrafluoroborate (**25**) (38% conversion after 12 h). When the solution was kept for an additional 60 h at 24 °C, salt **11** was consumed completely and ca. 50% of salt **25** were converted into bromopentafluorobenzene and 1H,1H-octafluoropentan-2-one (**26**) (Eq. (23)). Likely, that the formation of the latter product was caused by permeation of H₂O vapor passing though the 0.35 mm FEP wall during the long-term reaction.

$$[C_{3}F_{7}C \equiv C(C_{6}F_{5})Br][BF_{4}]_{11} + HF \xrightarrow{22^{\circ}C} [Z-C_{3}F_{7}CF = CH(C_{6}F_{5})Br][BF_{4}]$$

$$\xrightarrow{H_{2}O,HF} C_{3}F_{7}C(O)CH_{2}F + C_{6}F_{5}Br + [H_{3}O][BF_{4}]$$

$$(23)$$

HF addition across the triple bond occurred in a solution of bis(trifluoroprop-1-yn-1-yl)bromonium tetrafluoroborate (**27**) [13] in aHF. Here hydrogen fluoride was added to both alkynyl moieties to give in sequence *Z*-1H-trifluoroprop-1-en-1-yl(tri-

fluoroprop-1-yn-1-yl)bromonium tetrafluoroborate (**28**) and bis(*Z*-1H-trifluoroprop-1-en-1-yl)bromonium tetrafluoroborate (**29**) (Eqs. (24) and (25))

$$[(CF_3C \equiv C)_2Br][BF_4] + HF^{25} \xrightarrow{\circ C, 24h}$$

$$[Z-CF_3CFCH(CF_3C \equiv CBr][BF_4] (100\%)$$
(24)

$$[Z-CF_3CF = CH(CF_3C \equiv C)Br][BF_4] + HF_{(64\% \text{ conversion})}^{25°C,9d}$$

$$[(Z-CF_3CF = CH)_2Br][BF_4]$$
(25)

3. Experimental

3.1. General

The NMR spectra were recorded on a Bruker AVANCE 300 spectrometer (300.13 MHz, ¹H; 282.40 MHz, ¹⁹F; 96.29 MHz, ¹¹B; 75.47 MHz, ¹³C). The chemical shifts are referenced to TMS (¹H, ¹³C), CCl₃F (¹⁹F, with C₆F₆ as secondary reference (-162.9 ppm)), and BF₃·OEt₂/CDCl₃ (15%, v/v) (¹¹B), respectively. The composition of the reaction mixtures and the yields of products were determined by ¹⁹F NMR spectroscopy using the internal integral standards C₆F₆ or PFB.

The products $C_6F_{13}CH_2CH_2F$ [26], *cyclo*-1-Br-1,4- C_6F_7 , and *cyclo*-1-Br C_6F_9 [27] were identified by ¹⁹F NMR spectroscopy.

As a convention for the presentation of the NMR spectral data the labelling of the carbon atoms and the attached fluorine (hydrogen) atoms in alkynyl groups is presented by hyphen, e.g., as C-3, F-3, or H-1, and that of the alkyl, alkenyl, and aryl moieties by superscripts, e.g., C^1 , F^2 , or H^3 . The fluorine atoms F^2 at C^2 in [R''C²F=C¹F–X] compounds (X = B, Br) are specified by *cis* or *trans* relative to the position of X, e.g., F^{2trans} .

1,1,1,3,3-Pentafluoropropane (PFP) (Honeywell), 1,1,1,3,3-pentafluorobutane (PFB) (Solvay Fluor), CCl₃F (K11, Solvay Fluor), 1,1,2-trichlorotrifluoroethane (K113, Solvay Fluor) were stored over molecular sieves 3 Å, and $(C_2H_5)_2O$ (Baker) was stored over sodium before use. Acetonitrile (Baker) and dichloromethane (Baker) were purified and dried as described in Ref. [28]. Anhydrous HF (aHF) was stored over CoF₃. Boron trifluoride (Air Liquide), [Bu₄N]I (Fluka) were used as supplied. Aryltrifluorosilanes C₆H₅SiF₃, 4-CF₃C₆H₄SiF₃, and 4-FC₆H₄SiF₃ were synthesized from the corresponding aryltrichlorosilanes and SbF₃ [29], K[C₆F₁₃CH₂CH₂BF₃] [30], [(CF₃C=C)₂Br][BF₄] [13], C₆F₅SiF₃ [31], C₆F₅BrF₂ [16], 4-CF₃C₆H₄BrF₂ [14], and solutions of *trans*-CF₃CF=CFBF₂ [18], CF₃C=CBF₂ [19], C₃F₇C=CBF₂ [19], C₆F₅BF₂ [13], and C₆F₁₃BF₂ [13] in PFB or PFP were prepared as described.

All manipulations were performed in FEP (block copolymer of tetrafluoroethylene and hexafluoropropylene) or PFA (block copolymer of tetrafluoroethylene and perfluoroalkoxyethylene) equipment under an atmosphere of dry argon.

The solubility of 4-CF₃C₆H₄BrF₂ was determined to 0.27 mmol (71 mg) per mL of 1,1,2-C₂Cl₃F₃ and \geq 0.44 mmol (\geq 116 mg) per mL of PFB (¹⁹F NMR, 24 °C).

3.2. Preparation of $C_6F_{13}CH_2CH_2BF_2$ (19) in PFP

A 11.7-mm i.d. PFA trap was charged with $K[C_6F_{13}CH_2CH_2BF_3]$ (344 mg, 0.75 mmol), PFP (3 mL) and cooled to -25 °C. Boron trifluoride (5–7 mmol) was bubbled into the stirred suspension for 30 min. Excess of BF₃ was removed by flushing with dry argon (0 °C, 10 min). The suspension was centrifuged at 20 °C, the colorless mother liquor was decanted, the precipitate was washed with PFP (1 mL), and washing was combined with the mother liquor. The yield of $C_6F_{13}CH_2CH_2BF_2$ (0.63 mmol, 84%) was determined from the ¹⁹F NMR spectrum using PFB as a quantitative integral reference.

C₆F₁₃CH₂CH₂BF₂ (**19**). ¹¹B NMR (PFP, 0 °C): δ 27.9 (s, Δν_{1/2} = 218 Hz). ¹⁹F NMR (PFP, 0 °C): δ -74.1 (s, Δν_{1/2} = 183 Hz, 2F, BF₂), -80.3 (tt, ³*J*(F⁸, F⁷) = 2 Hz, ⁴*J*(F⁸, F⁶) = 10 Hz, 3F, F⁸), -115.2 (m, 2F, F³), -120.7 (m, 2F, F⁵), -121.7 (m, 2F, F⁶), -122.7 (m, 2F, F⁴), -125.3 (m, 2F, F⁷). (lit. [30] ¹H NMR (CH₂Cl₂, 24 °C): δ 1.5 (m, 2H, H¹), 0.5 (m, 2H, H²). ¹¹B NMR (CH₂Cl₂, 24 °C): δ 27.5 (s, Δν_{1/2} = 210 Hz). ¹⁹F NMR (CH₂Cl₂, 24 °C): δ -73.8 (s, Δν_{1/2}) = 218 Hz, 2F, BF₂), -81.6 (tt, ⁵*J*(F⁸, F⁵) = 3 Hz, ⁴*J*(F⁸, F⁶) = 10 Hz, 3F, F⁸), -116.6 (m, 2F, F³), -122.5 (m, 2F, F⁵), -123.5 (m, 2F, F⁶), -124.2 (m, 2F, F⁴), -126.8 (m, 2F, F⁷)).

3.3. Preparation of $CF_3C \equiv CBF_2 \cdot NCCH_3$ (22)

A cold (-15 °C) solution of CH₃CN (205 mg, 5.0 mmol) in CH₂Cl₂ (0.7 mL) was added with a syringe to a cold (-15 °C) solution of CF₃C \equiv CBF₂ (1.25 mmol) in PFB (6 mL). The solution was stirred at -15 °C for 10 min and evaporated to dryness in vacuum at 24 °C to give 132 mg (0.72 mmol, 57%) of CF₃C \equiv CBF₂·NCCH₃.

CF₃C≡CBF₂·NCCH₃ (**22**). ¹¹B NMR (CH₃CN, 24 °C): δ −3.6 (s, $\Delta v_{1/2}$ = 50 Hz, BF₂·NCCH₃). ¹⁹F NMR (CH₃CN, 24 °C): δ −50.2 (s, 3F, CF₃), −141.4 (s, BF₂·NCCH₃).

3.4. Syntheses of asymmetrical bromonium salts with aryltrifluorosilanes

3.4.1. Preparation of the aryl(pentafluorophenyl)bromonium salts (8), (4b), and (7)

A cold (0 °C) solution of ArSiF₃ (1 mmol) in CH₃CN (2 mL) was added drop-wise to a cold (-10 °C) solution of C₆F₅BrF₂ (1 mmol) in CH₃CN (5 mL). The reaction solution was stirred at 0 °C for 15–20 h, all volatiles were removed in vacuum, and the residue was dissolved in water. In case of Ar = C₆H₅, the solution was treated with aqueous H[BF₄], extracted with CH₃NO₂/CHCl₃ (3:1, v/v), and the solvent was evaporated. The residue was dissolved in a minimum volume of MeCN and poured into cold (0 °C) ether. The precipitated salt **8** was isolated in 31% yield. When Ar presented 4-CF₃C₆H₄ or 4-FC₆H₄, salts **4b** (67%) and **7** (57%) were precipitated by an analog procedure using aqueous H[PF₆].

 $[C_6H_5(C_6F_5)Br][BF_4] (8). {}^{1}H NMR (CH_3CN): \delta 8.13-7.65 (C_6H_5). \\ {}^{19}F NMR (CH_3CN): \delta -130.2 (m, 2F, F^{2.6}), -140.8 (m, 1F, F^4), -154.8 \\ (m, 2F, F^{3.5}), -149.4 (s, 4F, [BF_4]^-).$

[4-CF₃C₆H₄(C₆F₅)Br][PF₆] (**4b**). ¹H NMR (CH₃CN): δ 8.26 (m, 2H), 7.83 (m, 2H). ¹⁹F NMR (CH₃CN): δ 62.3 (s, 3F, CF₃), -130.1 (m, 2F, F^{2,6}), -140.4 (m, 1F, F⁴), -154.9 (m, 2F, F^{3,5}), -71.9 (d, ¹*J*(F, P) = 707 Hz, 6F, [PF₆]⁻).

[4-FC₆H₄(C₆F₅)Br][PF₆] (**7**). ¹H NMR (CH₃CN): δ 8.19 and 7.95, 7.56 and 7.26 (AA'BB', 4H). ¹⁹F NMR (CH₃CN): δ –101.8 (m, 1F, F⁴), –130.7 (m, 2F, F^{2,6}), –140.9 (m, 1F, F⁴), –155.0 (m, 2F, F^{3,5}), –71.4 (d, ¹*J*(F, P) = 706 Hz, 6F, [PF₆]⁻).

3.4.2. Preparation of $[4-CF_3C_6H_4(C_6F_5)Br]/PF_6]$ (4b)

A cold (0 °C) solution of $C_6F_5SiF_3$ (1 mmol) in CCl₃F (10 mL) was added drop-wise to a cold (-10 °C) solution of 4-CF₃ $C_6H_4BrF_2$ (1 mmol) in CCl₃F (2 mL). The reaction solution was stirred at 0 °C for 15–20 h, all volatiles were removed in vacuum, and the residue was dissolved in water. Salt **4b** (63%) was precipitated by addition of aqueous H[PF₆].

3.5. Syntheses of asymmetrical bromonium salts with organyldifluoroboranes

3.5.1. Preparation of $[4-CF_3C_6H_4(C_6F_5)Br][BF_4]$ (4c)

A 11.7-mm i.d. PFA trap equipped with a Teflon-coated magnetic stir bar was charged with a solution of $4-CF_3C_6H_4BrF_2$

(85 mg, 0.32 mmol) in 1,1,2-C₂Cl₃F₃ (0.5 mL) and PFB (1.4 mL) and cooled to -20 °C. Then a cold (-20 °C) solution of C₆F₅BF₂ (0.32 mmol) in PFB (0.4 mL) was added in portions. The colorless solution was stirred at -20 °C for 1 h and evaporated to dryness in vacuum at 20 °C. The residue was washed with CCl₃F (2 × 3 mL) at 15 °C and the solid was dried in vacuum at 20 °C to yield [4-CF₃C₆H₄(C₆F₅)Br][BF₄] (145 mg, 94%).

B. A solution of 4-CF₃C₆H₄BrF₂ (0.13 mmol) in CH₃CN (0.9 mL) was added in portions to a solution of C₆F₅BF₂ (0.13 mmol) in PFB (0.4 mL) and CH₃CN (1 mL). The solution was stirred at 24 °C for 10 min. The ¹⁹F NMR spectrum showed the formation of [4-CF₃C₆H₄(C₆F₅)Br][BF₄] in nearly quantitative yield besides traces of 4-CF₃C₆H₄Br and C₆F₅H.

 $\begin{array}{l} [4\text{-}CF_3C_6H_4(C_6F_5)\text{Br}][\text{BF}_4] \ (\textbf{4c}). \ ^1\text{H} \ \text{NMR} \ (\text{CH}_3\text{CN}, 24\ ^\circ\text{C}): \ \delta \ 8.24 \\ \text{and} \ 8.21, \ 7.98 \ \text{and} \ 7.96 \ (\text{AA'BB'}, \ 4\text{H}). \ ^{11}\text{B} \ \text{NMR} \ (\text{CH}_3\text{CN}, 24\ ^\circ\text{C}): \ \delta \ -62.9 \\ (s, \ 3F, \ CF_3), \ -131.0 \ (m, \ 2F, \ F^{2,6}), \ -141.6 \ (\text{tt}, \ ^3\textit{J}(\text{F}^4, \ F^{3.5}) = 20 \ \text{Hz}, \ ^4\textit{J}(\text{F}^4, \ F^{2,6}) = 7 \ \text{Hz}, \ 1F, \ F^4), \ -156.1 \ (m, \ 2F, \ F^{3.5}), \ -149.9 \ (s, \ 4F, \ [\text{BF}_4]^-). \ ^1\text{H} \\ \text{NMR} \ (\text{PFB}/1, 1, 2\text{-}C_2\text{Cl}_3\text{F}_3): \ \delta \ 8.22 \ \text{and} \ 8.20, \ 7.88 \ \text{and} \ 7.84 \ (\text{AA'BB'}, \ 4\text{H}). \ ^{11}\text{B} \ \text{NMR} \ (\text{PFB}/1, 1, 2\text{-}C_2\text{Cl}_3\text{F}_3): \ \delta \ -2.1 \ (s, \ \Delta\nu_{1/2} = 5 \ \text{Hz}, \ [\text{BF}_4]^-). \ ^{19}\text{F} \ \text{NMR} \ (\text{PFB}/1, 1, 2\text{-}C_2\text{Cl}_3\text{F}_3): \ \delta \ -63.0 \ (s, \ 3F, \ CF_3), \ -130.3 \ (m, \ 2F, \ F^{2.6}), -140.8 \ \ (\text{tt}, \ \ ^3\textit{J}((\text{F}^4, \ \ F^{3.5}) = 20 \ \text{Hz}, \ \ ^4\textit{J}(\text{F}^4, \ \ F^{2.6}) = 7 \ \text{Hz}, \ 1F, \ \ F^4), \ -156.7 \ (m, \ 2F, \ \ F^{3.5}), \ -145.3 \ (s, \ 4F, \ [\text{BF}_4]^-). \end{array}$

3.5.2. Preparation of $[C_6F_5(C_3F_7C\equiv C)Br][BF_4]$ (11)

A 8-mm i.d. FEP trap equipped with a Teflon-coated magnetic stir bar was charged with a solution of $C_6F_5BrF_2$ (57 mg, 0.20 mmol) in PFP (0.7 mL) and cooled to -40 °C. Then a cold (-40 °C) solution of $C_3F_7C\equiv CBF_2$ (0.22 mmol) in PFP (0.5 mL) was added in portions. After stirring at -40 °C for 2 h the colorless solution was evaporated to dryness in vacuum at 20 °C. The residue was washed with CCl₃F (1 mL) at 15 °C and the solid was dried in vacuum at 20 °C to yield $[C_6F_5(C_3F_7C\equiv C)Br][BF_4]$ (50 mg, 56%).

 $\begin{bmatrix} C_6F_5(C_3F_7C\equiv C)Br \end{bmatrix} \begin{bmatrix} BF_4 \end{bmatrix} (11). \ ^{11}B \ \text{NMR} \ (\text{aHF}, 0 \ ^\circ C): \ \delta \ -2.1 \ (s, \\ \begin{bmatrix} BF_4 \end{bmatrix}^-). \ ^{13}C\{^{19}F\} \ \text{NMR} \ (\text{aHF}, 0 \ ^\circ C): \ \delta \ 118.7 \ (C-5), \ 106.5 \ \text{and} \ 106.4 \ (C-3 \ \text{and} \ C-4), \ 81.3 \ (C-2), \ 50.6 \ (C-1) \ (C_3F_7C\equiv C \ \text{moiety}), \ 146.0 \ \text{and} \ 145.7 \ (C^4 \ \text{and} \ C^{2.6}), \ 139.7 \ (C^{3.5}), \ 101.0 \ (C^1) \ (C_6F_5 \ \text{moiety}). \ ^{19}F \ \text{NMR} \ (\text{aHF}, 0 \ ^\circ C): \ \delta \ -78.4 \ (t, \ ^4J(F-5, F-3) = 9 \ \text{Hz}, \ 3F, F-5), \ -101.3 \ (tq, \ ^3J(F-3, \ F-4) = 4 \ \text{Hz}, \ ^4J(F-3, \ F-5) = 9 \ \text{Hz}, \ 2F, \ F-3), \ -124.0 \ (t, \ ^3J(F-4, \ F-3) = 4 \ \text{Hz}, \ ^4J(F-3, \ F-5) = 9 \ \text{Hz}, \ 2F, \ F-3), \ -124.0 \ (t, \ \ ^3J(F-4, \ F-3) = 4 \ \text{Hz}, \ ^4J(F-3, \ F-5) = 9 \ \text{Hz}, \ 2F, \ F-3) = 10 \ \text{Hz}, \ 1F, \ F^4), \ -151.2 \ (m, \ 2F, \ F^{3.5}) \ (C_6F_5 \ \text{moiety}), \ -148.0 \ (s, \ 4F, \ [BF_4]^-). \ ^{19}F \ \text{NMR} \ (\text{PFP}, \ -40 \ ^\circ C): \ \delta \ -79.0 \ (t, \ ^4J(F-5, \ F-3)) = 9 \ \text{Hz}, \ 3F, \ F-5), \ -101.9 \ (tq, \ ^3J(F-3, \ F-4)) = 4 \ \text{Hz}, \ ^4J(F-3, \ F-5) = 9 \ \text{Hz}, \ 2F, \ F-3), \ -124.8 \ (t, \ ^3J(F-4, \ F-3) = 4 \ \text{Hz}, \ 2F, \ F-4) \ (C_3F_7C\equiv C \ \text{moiety}), \ -127.6 \ (m, \ 2F, \ F^{2.6}), \ -135.1 \ (tt, \ \ ^3J(F^4, \ F^{3.5}) = 19 \ \text{Hz}, \ ^4J(F^4, \ F^{2.6}) = 9 \ \text{Hz}, \ 1F, \ F^4), \ -152.6 \ (m, \ 2F, \ F^{3.5}) \ (C_6F_5 \ \text{moiety}), \ -134.5 \ (s, \ 4F, \ [BF_4]^-).$

3.5.3. Preparation of $[C_6F_5(CF_3C\equiv C)Br][BF_4]$ (23)

A 11.7-mm i.d. PFA trap equipped with a Teflon-coated magnetic stir bar was charged with a solution of $CF_3C \equiv CBF_2 \cdot NCCH_3$ ·NCCH₃ (0.20 mmol) in CH₃CN (1.5 mL) and cooled to -10 °C. Then a cold (-10 °C) solution of $C_6F_5BF_2$ (0.19 mmol) in PFP (2.5 mL) was added in portions. The yellow solution was stirred at -10 °C for 30 min and warmed to 24 °C. The ¹⁹F NMR spectrum showed signals of $[C_6F_5(CF_3C \equiv C)Br][BF_4]$ (δ -50.2 (s, 3F, CF₃), -129.9 (m, 2F, $F^{2,6}$), -141.1 (tt, ³*J*(F⁴, $F^{3.5}$) = 20 Hz, ⁴*J*(F⁴, $F^{2.6}$) = 7 Hz, 1F, F⁴), -156.4 (m, 2F, $F^{3.5}$) (C_6F_5 moiety), -144.5 (s, 4F, $[BF_4]^-$), $CF_3C \equiv CBF_2 \cdot NCCH_3$, and C_6F_5Br in the ratio 1:3:4.

3.5.4. Preparation of $[C_6F_5(trans-CF_3CF=CF)Br][trans-CF_3CF=CFBF_3]$ (14)

An 8-mm i.d. FEP trap equipped with a Teflon-coated magnetic stir bar was charged with a solution of $C_6F_5BrF_2$ (45 mg, 0.15 mmol) in PFP (0.5 mL) and cooled to -40 °C. Then a cold (-45 °C) solution of *trans*-CF₃CF=CFBF₂ (0.15 mmol) in PFP

(0.8 mL) was added in portions. After 10–15 min a white suspension was formed. It was stirred at $-40 \degree C$ for 2 h. The ¹⁹F NMR spectrum ($-10 \degree C$) of the colorless mother liquor showed signals of [*trans*-CF₃CF=CFBF₃]⁻, C₆F₅Br, *cyclo*-1-Br-1,4-C₆F₇, *cyclo*-1-BrC₆F₉, and [C₆F₅(*trans*-CF₃CF=CF)Br]⁺ (resonances at -67.2 (dd, ³*J*(F³, F²) = 10 Hz, ⁴*J*(F³, F¹) = 19 Hz, 3F, F³), -109.7 (qd, ⁴*J*(F¹, F³) = 19 Hz, ³*J*(F¹, F²) = 131 Hz, 1F, F¹), -136.8 (d, ³*J*(F², F¹) = 131 Hz, 1F, F²), -127.1 (m, 2F, F^{2.6}), -134.6 (tt, ³*J*(F⁴, F^{3.5}) = 19 Hz, ⁴*J*(F⁴, F^{2.6}) = 10 Hz, 1F, F⁴), and -152.5 (m, 2F, F^{3.5}) ppm). All volatiles were removed in vacuum at $-10 \degree C$ to yield the white salt [C₆F₅(*trans*-CF₃CF=CF)Br][*trans*-CF₃CF=CFBF₃] (57 mg).

 $\begin{bmatrix} C_{6}F_{5}(trans-CF_{3}CF=CF)Br \end{bmatrix} [trans-CF_{3}CF=CFBF_{3}] & (14). \\ \ ^{11}B \ ^{11}B$

3.5.5. Reaction of $C_6F_5BrF_2$ with $C_6F_{13}BF_2$

A solution of $C_6F_5BrF_2$ (60 mg, 0.21 mmol) in PFP (1.5 mL) was cooled to -65 °C and a cold (-65 °C) solution of $C_6F_{13}BF_2$ (0.45 mmol) in PFP (2 mL) was added in portions. The solution was stirred at -60 °C for 1 h. The initially formed yellow suspension became quickly (in 10–15 s) dark colored and after 20–30 min a colorless solution was formed. The ¹⁹F NMR spectrum (-60 °C) showed resonances of $C_6F_{13}BF_2$, C_6F_{14} , C_6F_5Br , and *cyclo*-1-Br-1,4- C_6F_7 (45:20:23:12) besides PFP.

3.5.6. Reaction of $C_6F_5BrF_2$ with $C_6F_{13}CH_2CH_2BF_2$

A solution of $C_6F_5BrF_2$ (0.31 mmol) in PFP (1.9 mL) was cooled to -63 °C and a cold (-62 °C) solution of $C_6F_{13}CH_2CH_2BF_2$ (0.31 mmol) in PFP (1.5 mL) was added in portions within 3 min. The initially formed yellow suspension became quickly (in 20–30 s) dark colored and after 20–30 min a colorless solution was formed. The reaction mixture was stirred at -60 °C for 1 h. The ¹⁹F NMR spectrum (-60 °C) showed resonances of $C_6F_{13}CH_2CH_2BF_2$, $C_6F_{13}CH_2CH_2F$, C_6F_5Br , *cyclo*-1-Br-1,4-C₆F₇, *cyclo*-1-BrC₆F₉ and BF₃ (36:11:33:6:4:10) besides PFP. The ¹¹B NMR spectrum (-60 °C) contained signals of $C_6F_{13}CH_2CH_2BF_2$ (28.8 ppm) and BF₃ (9.7 ppm) (1:1).

3.6. Reactions of $[R_F(R_F')Br][BF_4]$

3.6.1. Reaction of $[C_6F_5(C_3F_7C\equiv C)Br][BF_4]$ (11) with aHF

A solution of salt **11** (50 mg) in aHF (0.6 mL) was kept at 22 °C in a FEP inliner. After 12 h, the conversion of **11** was 38% and after 72 h the signals of **11** had disappeared (¹⁹F NMR) and new resonances of C₆F₅Br, C₃F₇C(O)CH₂F, [*Z*-C₃F₇CF=CH(C₆F₅)Br]⁺, and [BF₄]⁻(1:1:2:4) were now present. The solution was extracted with cold (-20 °C) CCl₃F (0.5 mL). The extract contained C₆F₅Br and C₃F₇C(O)CH₂F whereas the salt [C₆F₅(*Z*-C₃F₇CF=CH)Br][BF₄] remained in the acid phase.

 $\begin{bmatrix} C_6F_5(Z-C_3F_7CF=CH)Br \end{bmatrix} \begin{bmatrix} BF_4 \end{bmatrix} (\textbf{25}). \ ^{1}H \ \text{NMR} \ (aHF, 24 \ ^{\circ}C): \ \delta \ 7.94 \\ (d, \ ^{3}J(H^1, F^2) = 21 \ \text{Hz}, 1H, H^1). \ ^{19}F \ \text{NMR} \ (aHF, 24 \ ^{\circ}C): \ \delta \ -80.3 \ (t, \ ^{4}J(F^5, F^3) = 9 \ \text{Hz}, 3F, \ F^5), \ -91.1 \ (m, \ 1F, \ F^2), \ -117.6 \ (dq, \ ^{3}J(F^3, F^2) = 13 \ \text{Hz}, \\ ^{4}J(F^3, F^5) = 9 \ \text{Hz}, 2F, \ F^3), \ -125.8 \ (m, 2F, \ F^4) \ (Z-C_3F_7CF=CH \ \text{moiety}), \\ -129.1 \ (m, \ 2F, \ F^{2.6}), \ -136.3 \ (tt, \ \ ^{3}J(F^4, \ F^{3.5}) = 20 \ \text{Hz}, \ \ ^{4}J(F^4, \ F^{2.6}) = 9 \ \text{Hz}, 1F, \ F^4), \ -153.8 \ (m, 2F, \ F^{3.5}) \ (C_6F_5 \ \text{moiety}), \ -151.0 \ (s, \ 4F, \ [BF_4]^-). \end{bmatrix}$

1H,1H-octafluoropentan-2-one (**26**). ¹H NMR (CCl₃F, 0 °C): δ 5.30 (d, ²*J*(H¹, F¹) = 46 Hz, 2H, H¹). ¹⁹F NMR (CCl₃F, 0 °C): δ -81.2 (t, ⁴*J*(F⁵, F³) = 9 Hz, 3F, F⁵), -122.9 (q, ⁴*J*(F³, F⁵) = 9 Hz, 2F, F³), -127.8 (m, 2F, F⁴), -237.2 (t, ²*J*(F¹, H¹) = 46 Hz, 1F, F¹). (cf. C₄F₉C(O)CH₂F, lit [32], ¹H (CDCl₃): δ = 5.25 (d ²*J*(H¹, F¹) = 45.8 Hz, 2H, H¹). ¹⁹F (CDCl₃): δ -81.0 (3F, F⁶), -121.3 (2F, F³), -123.1 (2F, F⁴), -125.7 (2F, F⁵), -237.0 (t ²*J*(F¹, H¹) = 45.8 Hz, 1F, F¹)).

3.6.2. Reaction of $[(CF_3C\equiv C)_2Br][BF_4]$ (27) with aHF

When a solution of **27** in aHF was kept at 0 °C for 24 h a mixture of $[(CF_3C\equiv C)_2Br][BF_4]$ and $[Z-CF_3CF=CH(CF_3C\equiv C)Br][BF_4]$ (**28**) (1:5) was formed. The conversion of **27–28** was completed at 25 °C within 24 h. Further maintaining at 25 °C led to the formation of $[(Z-CF_3CF=CH)_2Br][BF_4]$ (**29**) (molar ratio **28:29** was 94:6 after 2 d and 64:36 after 9 d) besides minor unknown products.

[(*Z*-CF₃CF=CH)₂Br][BF₄] (**29**). ¹H NMR (aHF, 0 °C): δ 7.44 (d, ³*J*(H¹, F²) = 20 Hz, 1H, H¹). ¹¹B NMR (aHF, 0 °C): δ -1.1 (s, [BF₄]⁻). ¹⁹F NMR (aHF, 0 °C): δ -70.5 (d, ³*J*(F³, F²) = 9 Hz, 6F, F³), -96.0 (qd, ³*J*(F², F³) = 10 Hz, ³*J*(F², H¹) = 22 Hz, 2F, F²), -149.0 (s, 4F, [BF₄]⁻).

3.6.3. Reaction of $[4-CF_3C_6H_4(C_6F_5)Br][BF_4](4c)$ with $[Bu_4N]I$ in MeCN

A cold $(-10 \,^{\circ}\text{C})$ solution of $[4\text{-}CF_3C_6H_4(C_6F_5)Br][BF_4]$ (0.06 mmol) in MeCN (1.2 mL) was poured into a cold $(-15 \,^{\circ}\text{C})$ solution of $[Bu_4N]I$ (229 mg, 0.62 mmol) in MeCN (0.8 mL). The brownish solution was stirred at $-15 \,^{\circ}\text{C}$ for 10 min and warmed to 24 $^{\circ}\text{C}$. The ¹⁹F NMR spectrum contained signals of $4\text{-}CF_3C_6H_4Br$, C_6F_5I , C_6F_5H , and $[BF_4]^-$ in the molar ratio of 34:29:3:34.

4. Conclusions

The successful substitution of one fluorine atom in bromanes ArBrF₂ by organyl groups R' (aryl, alkynyl, alkenyl, and alkyl groups) depends on the type of R' reagents, R'SiF₃ or R'BF₂, their acidity, on the nucleophilicity of R', on the type of solvent (weakly coordinating (wcs) or coordinating), on the oxidation strength of the polarized bromine derivative [Ar(F)Br]⁺, and on the reducing strength of the reagent after interaction with the fluoride donor site of the bromane. Perfluorinated alkynyl, alkenyl, and aryl groups could be successfully used in F/R' substitution reactions with ArBrF₂ in weakly coordinating solvents. Furthermore, it was shown, that MeCN weakens the oxidation strength of [C₆F₅(F)Br]⁺ in reactions of C₆F₅BrF₂ with ArSiF₃ (Ar = C₆H₅, 4-FC₆H₄, 4-CF₃C₆H₄). Per- and polyfluorinated alkylboranes R'BF₂ did not allow the isolation of perfluoroaryl(polyfluoroalkyl)bromonium salts. Instead, C₆F₅Br and R'F were found as products of consecutive

reactions. Bromonium cations showed two prototypical reactivities with a nucleophile and an electrophile at different centers (a) with the strongly reducing iodide ion reaction at Br^{III} and (b) with the super acid HF addition at the C \equiv C bond of the R_F' group.

Acknowledgements

We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

References

- [1] G.A. Olah, Halonium Ions, Wiley, New York, 1975.
- [2] G.A. Olah, K.K. Laali, Q. Wang, Onium Ions, Wiley, New York, 1998, pp. 246-268.
- [3] A.N. Nesmeyanov, T.P. Tolstaya, L.S. Isaeva, Dokl. Akad. Nauk SSSR 104 (1955) 872–875, {Chem. Abstr 50 (1956) 11266}.
- [4] A.N. Nesmeyanov, T.P. Tolstaya, L.S. Isaeva, Dokl. Akad. Nauk SSSR 117 (1957) 996–999, {Chem. Abstr 52 (1958) 8069)}.
- [5] (a) A.N. Nesmeyanov, N.V. Kruglova, R.B. Maternikova, Zh. Obshch. Khim. 26 (1956) 2211–2218, {Chem. Abstr. 51 (1957) 4974};
- (b) A.N. Nesmeyanov, N.V. Kruglova, R.B. Maternikova, J. Gen. Chem. U.S.S.R. 26 (1956) 2473–2478 (Engl. transl.).
- [6] V.V. Grushin, I.I. Demkina, T.P. Tolstaya, M.V. Galakhov, V.I. Bakhmutov, Metallorg. Khim. 2 (1989) 727–736, {Chem. Abstr. 112 (1990) 198446}.
- [7] G.A. Olah, T. Sakakibara, G. Asensio, J. Org. Chem. 43 (1978) 463-468.
- [8] G.A. Olah, Y.K. Mo, E.G. Melby, H.C. Lin, J. Org. Chem. 38 (1973) 367-372.
- [9] A.N. Nesmeyanov, I.N. Lisichkina, A.S. Kulikov, A.N. Vanchikov, T.P. Tolstaya, V.A. Chertkov, Dokl. Akad. Nauk SSSR 243 (1978) 1463–1467, {Chem. Abstr. 90 (1979) 151710}.
- [10] A.N. Nesmeyanov, A.N. Vanchikov, I.N. Lisichkina, N.S. Khrushcheva, T.P. Tolstaya, Dokl. Akad. Nauk SSSR 254 (1980) 652–656, {Chem. Abstr. 94 (1981) 174489}.
- [11] A.N. Nesmeyanov, A.N. Vanchikov, I.N. Lisichkina, V.V. Grushin, T.P. Tolstaya, Dokl. Akad. Nauk SSSR 255 (1980) 1386-1389, {Chem. Abstr. 95 (1981) 6664}.
- [12] A.N. Nesmeyanov, A.N. Vanchikov, I.N. Lisichkina, V.V. Lazarev, T.P. Tolstaya, Dokl. Akad. Nauk SSSR 255 (1980) 1136-1140, {Chem. Abstr. 95 (1981) 24402}.
- [13] H.-J. Frohn, V.V. Bardin, J. Fluorine Chem 131 (2010) 922-932.
- [14] H.-J. Frohn, M. Giesen, J. Fluorine Chem. 89 (1998) 59-63.
- [15] M. Ochiai, Y. Nishi, S. Goto, M. Shiro, H.-J. Frohn, J. Am. Chem. Soc. 125 (2003) 15304–15305.
- [16] H.-J. Frohn, M. Giesen, J. Fluorine Chem. 24 (1984) 9-15.
- [17] A. Abo-Amer, H.-J. Frohn, Chr. Steinberg, U. Westphal, J. Fluorine Chem. 127 (2006) 1311–1323.
- [18] H.-J. Frohn, N.Yu. Adonin, V.V. Bardin, Z. Anorg. Allg. Chem. 629 (2003) 2499– 2508.
- [19] V.V. Bardin, N.Yu. Adonin, H.-J. Frohn, J. Fluorine Chem. 128 (2007) 699-702.
- [20] V.V. Bardin, H.-J. Frohn, Main Group Met. Chem. 25 (2002) 589-613.
- [21] H.-J. Frohn, V.V. Bardin, Z. Anorg. Allg. Chem. 629 (2003) 2465-2469.
- [22] H.-J. Frohn, F. Bailly, V.V. Bardin, Mendeleev Commun. 19 (2009) 67-68
- [23] H.-J. Frohn, F. Bailly, D. Weiting, V.V. Bardin, J. Fluorine Chem. 130 (2009) 301– 307.
- [24] H.-J. Frohn, M. Giesen, D. Welting, G. Henkel, Eur. J. Solid State Inorg. Chem. 33 (1996) 841–853.
- [25] H.-J. Frohn, M. Hirschberg, A. Wenda, V.V. Bardin, J. Fluorine Chem. 129 (2008) 459–473.
- [26] V.A. Petrov, S. Swearingen, W. Hong, W.C. Petersen, J. Fluorine Chem. 109 (2001) 25–31.
- [27] V.V. Bardin, J. Fluorine Chem. 89 (1998) 195-211.
- [28] H.-J. Frohn, M.E. Hirschberg, R. Boese, D. Bläser, U. Flörke, Z. Anorg. Allg. Chem. 634 (2008) 2539–2550.
- [29] V. Bazant, V. Chvalowsky, J. Rathousky, Organosilicon Compounds, vol. 2, no. 1, Publ. House of the Czechoslovak Acad. Sciences, Prague, 1965.
- [30] A. Abo-Amer, N.Yu. Adonin, V.V. Bardin, P. Fritzen, H.-J. Frohn, Ch. Steinberg, J. Fluorine Chem. 125 (2004) 1771–1778.
- [31] H.-J. Frohn, M. Giesen, A. Klose, A. Lewin, V.V. Bardin, J. Organomet. Chem. 506 (1996) 155-164.
- [32] M.M. Chaabouni, A. Baklouti, J. Fluorine Chem. 47 (1990) 227-233.