View Article Online View Journal

# ChemComm

# Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: H. Yao, S. Luo, J. Liu, Y. Liu, S. Xie, J. Xu, Z. Zhu and S. Xu, *Chem. Commun.*, 2019, DOI: 10.1039/C9CC02829C.



This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.



rsc.li/chemcomm

## **Journal Name**

# ARTICLE

# Controllable Thioester-Based Hydrogen Sulfide Slow-releasing **Donors as Cardioprotective Agents**

Received 00th January 20xx, Accepted 00th January 20xx

Hong Yao,<sup>‡</sup><sup>a</sup> Shanshan Luo,<sup>‡</sup><sup>b</sup> Junkai Liu,<sup>a</sup> Shaowen Xie,<sup>a</sup> Yanpeng Liu,<sup>a</sup> Jinyi Xu,<sup>\*a</sup> Zheying Zhu,<sup>c</sup> and Shengtao Xu\*a

DOI: 10.1039/x0xx00000x

www.rsc.org/

Published on 30 April 2019. Downloaded on 5/5/2019 12:51:37 AM

Hydrogen sulfide (H<sub>2</sub>S) is an important signaling molecule with promising protective effects in many physiological and pathological processes. However, the study on H<sub>2</sub>S has been impeded by the lack of appropriate H<sub>2</sub>S donors that could mimic its slow-releasing process in vivo. Herein, we report the rational design, synthesis, and biological evaluation of a series of thioester-based H<sub>2</sub>S donors. These cysteine-activated H<sub>2</sub>S donors release H<sub>2</sub>S in a slow and controllable manner. Most of the donors comprising allyl moiety showed significant cytoprotective effects in H9c2 cellular models of oxidative damage. The most potent donor 5e decreased the mitochondrial membrane potential (MMP) loss and lactate dehydrogenase (LDH) release in H<sub>2</sub>O<sub>2</sub>-stimulated H9c2 cells. More importantly, donor 5e exhibited potent cardioprotective effect in an in vivo myocardial infarction (MI) mice model by reducing myocardial infarct size and cardiomyocytes apoptosis. Taken together, our studies demonstrated that these new allyl thioesters are potential cardioprotective agents by releasing H<sub>2</sub>S.

### Introduction

H<sub>2</sub>S has been recognized as an important signaling molecule owing to its significant functions in many aspects of human health and disease.<sup>[1]</sup> Many studies have shown various therapeutic effects of H<sub>2</sub>S, including vasodilation, anti-inflammation, anti-oxidation, and cardiovascular protection.<sup>[2]</sup> In order to explore the physiological and pathological properties of H<sub>2</sub>S, researchers used inorganic sulfide salts such as Na<sub>2</sub>S and NaHS to mimic endogenous H<sub>2</sub>S generation.<sup>[3]</sup> However, the uncontrollable and rapid release of H<sub>2</sub>S from sulfide salts does not mimic the slow and controllable H<sub>2</sub>S production in the living system, which greatly limits their usage.<sup>[4]</sup> Considering these disadvantages, small H<sub>2</sub>S-releasing organic molecules (H<sub>2</sub>S donors) have been developed and used as the primary tools, mainly including diallyl trisulfide (DATS), derivative of Lawesson's reagent (GYY4137), dithiolethione (ADT-OH), geminal-dithiol species (gem-dithiol) and so on (Figure 1).<sup>[5]</sup> More recently, donors based on esteraseactivation, pH-modulation, ROS-activation and cysteine-activation as well as their H<sub>2</sub>S-related biological effects have been reported.<sup>[6]</sup>



Figure 1. Representative H<sub>2</sub>S donors.

It should be noted that although a number of H<sub>2</sub>S donors have been reported, ideal donors with controllable and slow H<sub>2</sub>S-releasing properties are still lacking.<sup>[7]</sup> Recently, Liang and co-workers clarified the misunderstanding of diallyl disulfide (DADS) as a rapid H<sub>2</sub>Sreleasing donor, which was attributed to its DATS impurity.<sup>[8]</sup> The results showed that H<sub>2</sub>S was released in fact via a sluggish reaction of DADS with GSH through an  $\alpha$ -carbon nucleophilic substitution pathway within hours. Thus, we envisioned the core structure of DADS (diallyl disulfide) to be valuable template for the design of H<sub>2</sub>S slow-releasing donors (Scheme 1, Step c).

In addition, due to the ubiquitous targets of H<sub>2</sub>S, localized generation of H<sub>2</sub>S is highly desirable but remains a great challenge. Site-directed delivery of H<sub>2</sub>S by donors ideally shall be triggered by specific cellular species or events.<sup>[9]</sup> H<sub>2</sub>S has been found to improve cardiac functions and serve as a cardioprotectant for the treatment of heart failure and ischemic heart diseases.<sup>[10]</sup> Under the condition of cardiovascular injury, oxidative stress triggered by reactive oxygen species (ROS) including superoxide, hydroxyl radical and hydrogen peroxide plays a vital role.<sup>[11]</sup> As it is well known that the sulfide can be easily converted into disulfide under oxidative conditions, the oxidative stress in the injured cells could be slickly used to trigger the localized generation of H<sub>2</sub>S within injured cells (Scheme 1, Step b).<sup>[12]</sup>

Based on the above researches, we envision that allyl mercaptan is a valuable template for the design of H<sub>2</sub>S slow-releasing donors with cardioprotective effect. However, the simplicity and instability allyl mercaptan limit its direct application. Since of transthioesterification is a common strategy to transfer thioester to thiol in the presence of Cys or GSH (Scheme 1, Step a).<sup>[13]</sup> We

<sup>&</sup>lt;sup>a.</sup> State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China. Email: jinyixu@china.com ; cpuxst@cpu.edu.cn

<sup>&</sup>lt;sup>b.</sup> Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China

<sup>&</sup>lt;sup>c</sup> Division of Molecular Therapeutics & Formulation, School of Pharmacy, the University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K. <sup>+</sup>Electronic Supplementary Information (ESI) available: [details of anv supplementary information available should be included here]. See

DOI: 10.1039/x0xx00000x ‡These authors contributed equally to this work.

#### Journal Name

designed a series of thioester-based hydrogen sulfide donors, which could release  $H_2S$  in a controllable and slow manner.

Herein, we reported a class of thioester-based H<sub>2</sub>S donors with novel H<sub>2</sub>S-releasing mechanism and *in vitro* H<sub>2</sub>S-releasing kinetics. Also their protective effects on H9c2 cells subjected with H<sub>2</sub>O<sub>2</sub> challenge were evaluated, and the cardioprotective effects of selected donors in a mouse model of MI were presented.



Scheme 1. Proposed controllable thioester-based hydrogen sulfide slow release donors.

### **Result and discussion**

Published on 30 April 2019. Downloaded on 5/5/2019 12:51:37 AM

ARTICLE

To test this idea, a series of thioester derivatives **5a-I** were prepared and the synthesis route is illustrated in Scheme 2. Various readily available benzoic acids were used as the starting materials. The treatment of acids with thionyl chloride afforded acyl chlorides **2** as the reactive intermediates, which were further reacted with thioacetamide in toluene to give compounds **3** in almost quantitive yields. After hydrolysis, various thiobenzoic acids **4** were obtained, which were treated with alkyl bromides or benzyl bromides directly in the presence of triethylamine (TEA) to provide the desired compounds **5a-I** in 72-88% total yields. We expected that different substituents would affect the reaction rates of compounds **5** with Cys to generate thiols, thereby regulating the rate of H<sub>2</sub>S generation.



Scheme 2. Synthesis of thioester-based hydrogen sulfide donors 5a-I.

With these compounds in hand, we tested their H<sub>2</sub>S-releasing kinetics in aqueous buffers firstly. These thioesters were stable in PBS buffers, but a time- and dose-dependent H<sub>2</sub>S release was detected when Cys was added into the solutions using the standard methylene blue (MB) method.<sup>[14]</sup> Finally, the optimized condition was determined to be 100  $\mu$ M donors in PBS buffer (pH 7.4, 50 mM) containing 10% THF in the presence of 10 equiv of Cys. As shown in Figure 2, taking compound **5a** as the example, a maximum of 41.5  $\mu$ M of H<sub>2</sub>S at 8 h was detected from 100  $\mu$ M donor in PBS buffer containing 1 mM Cys. To our surprise, other amino acid, like Gly or

Lys, couldn't trigger the H<sub>2</sub>S release of **5a**, we supposed that it might be due to the weaker nucleophilicity of those amino acids. We then systematically compared the H<sub>2</sub>S-releasing capabilities of these donors, and the data are summarized in Table 1. In contrast to DATS (48.8%, 0.35 h), the results of our H<sub>2</sub>S donors showed that up to 52.2 % of the H<sub>2</sub>S can be detected (compound **5f**) and the release time lasts up to 8.5 h (compound **5k**). All those thioester-based H<sub>2</sub>S donors could release H<sub>2</sub>S in a much slower manner than DATS.





Figure 2. Cysteine mediated H<sub>2</sub>S release from compound 5a

 $\label{eq:table_transform} \textbf{Table 1.} \ \textbf{H}_2 S \text{-releasing profiles of thioester-based hydrogen sulfide donors.}$ 

|        | $\mathbf{R_1} \mathbf{S} \mathbf{R_2}$ |                               | Cys (10 equiv)                         |                          |                            |
|--------|----------------------------------------|-------------------------------|----------------------------------------|--------------------------|----------------------------|
|        |                                        |                               | PBS (pH 7.4, 50 mM)/THF<br>(9:1), 37°C |                          | 9                          |
| Donors | T <sub>peak</sub><br>(h)               | [H₂S] <sub>peak</sub><br>(μM) | Donors                                 | T <sub>peak</sub><br>(h) | $[H_2S]_{peak}$ ( $\mu$ M) |
| 5a     | 8.0                                    | 41.5                          | 5h                                     | 3.5                      | 19.4                       |
| 5b     | 7.0                                    | 17.5                          | 5i                                     | 5.0                      | 15.6                       |
| 5c     | 6.5                                    | 38.3                          | 5j                                     | 3.0                      | 24.3                       |
| 5d     | 5.0                                    | 34.5                          | 5k                                     | 8.5                      | 15.8                       |
| 5e     | 8.0                                    | 50.6                          | 51                                     | 7.5                      | 15.3                       |
| 5f     | 6.0                                    | 52.2                          | DATS                                   | 0.27                     | 48.8                       |
| 5g     | 7.0                                    | 42.4                          |                                        |                          |                            |

To better understand the mechanism of H<sub>2</sub>S generation from these thioester-based hydrogen sulfide donors, we analyzed the reaction between 5a and Cys (10 equiv). As shown in Scheme 3, the decomposition of 5a to 8 was monitored by the formation of 9 using mass spectrometric analysis (Supporting Information, Fig. S1). The formation of disulfide 10 from allyl mercaptan (8) was also confirmed by mass spectra and NMR (Fig. S2). Besides, a great decline in the release of  $H_2S$  was observed under anaerobic conditions. On the basis of the products observed and the previous knowledge,<sup>[8]</sup> we proposed the following mechanism: The reaction is initiated by reversible thiol exchange between 5a and Cys to generate the allyl mercaptan (8), which suffers oxidation to form DADS (10). Meanwhile, the resultant S-benzoyl cysteine 7 should undergo a native chemical ligation (NCL)-type acyl transfer to form a more stable *N*-benzoyl cystein **9**. Compound **10** then undergoes  $\alpha$ -carbon nucleophilic substitution with Cys (Path A) or allyl mercaptan (Path

#### Journal NameARTICLE

B) to generate perthiol intermediate (12), which releases  $H_2S$  in the presence of Cys. However, it is worth mentioning that allyl sulfides are substantially active because of the presence of allylic system, the precise and comprehensive  $H_2S$ -releaseing mechanism of these donors was not clear yet, additional pathways to generate the  $H_2S$  might exist in this complex system.<sup>[15]</sup>



Scheme 3. Proposed Mechanism of H<sub>2</sub>S generation.

H<sub>2</sub>S has been widely proposed to protect the cardiovascular system through its antioxidative role.<sup>[16]</sup> In order to test the protective effects of our newly synthesized H<sub>2</sub>S donors in cells, the H<sub>2</sub>S releasing abilities of these donors in cells were firstly verified in H9c2 cells by a selective H<sub>2</sub>S fluorescent probe WSP-1 (Fig. S3).<sup>[17]</sup> The results showed that the typical donor **5a** released H<sub>2</sub>S well in H<sub>2</sub>O<sub>2</sub>stimulated H9c2 cells. Thus, in vitro model of cardiomyoblasts were established in H<sub>2</sub>O<sub>2</sub>-stimulated H9c2 cells. The cell viability was analyzed by MTT colorimetry and the results were exhibited in Table 2. Compounds 5a, 5c-g significantly attenuated H<sub>2</sub>O<sub>2</sub>-induced cell damage at concentrations of both 20 and 50  $\mu$ M. The weaker protective effects of these donors at higher concentrations (> 100  $\mu$ M) might be attributed to their poor solubility (data not shown). Overall, the protective effects of these donors were similar to that of NaHS, DADS and DATS, and were consistent with their H<sub>2</sub>S release abilities, suggesting that their protective effects are likely due to H<sub>2</sub>S release.

Table 2. Protective effect of compounds on H<sub>2</sub>O<sub>2</sub>-stimulated H9c2 cells.

| NO | Comm  | Cell viability (%) |       |       |       |  |
|----|-------|--------------------|-------|-------|-------|--|
|    | Comp. | 1 µM               | 10 µM | 20 µM | 50 µM |  |
| 1  | 5a    | 58.1               | 61.1  | 74.5  | 68.3  |  |
| 2  | 5b    | 59.6               | 64.2  | 66.3  | 66.9  |  |
| 3  | 5c    | 64.6               | 69.3  | 77.9  | 65.5  |  |
| 4  | 5d    | 62.8               | 65.8  | 68.9  | 71.1  |  |
| 5  | 5e    | 65.0               | 71.9  | 71.3  | 77.7  |  |
| 6  | 5f    | 66.0               | 65.7  | 64.4  | 70.5  |  |
| 7  | 5g    | 63.1               | 66.2  | 72.1  | 63.3  |  |
| 8  | 5h    | 62.8               | 66.0  | 69.9  | 61.7  |  |
| 9  | 5i    | 63.3               | 59.5  | 59.0  | 54.8  |  |
| 10 | 5j    | 63.7               | 55.4  | 57.1  | 55.2  |  |
| 11 | 5k    | 63.3               | 62.9  | 64.7  | 57.1  |  |
| 12 | 51    | 62.6               | 59.6  | 57.1  | 53.8  |  |
| 13 | NaHS  | 58.6               | 67.0  | 68.5  | 69.6  |  |
| 14 | DATS  | 60.3               | 67.5  | 71.7  | 70.8  |  |
| 15 | DADS  | 59.6               | 64.8  | 71.2  | 69.6  |  |
| 16 | Model | 51.9               |       |       |       |  |

 $^{a}$ Values are expressed as means from three independent experiments, the bar graph expressed as mean  $\pm$  SD was included in Supporting Information Fig. S4.

Cell viability is most often defined based on the integrity of the cell membrane. A common method for detecting cell viability is based on measuring the activity of cytoplasmic enzymes released by damaged cells, such as lactate dehydrogenase (LDH), which is a stable cytoplasmic enzyme found in all cells.<sup>[18]</sup> Thus, in this study, the contents of LDH in medium were measured to indicate the extent of cellular injury. As shown in Figure 3, the exposure of H9c2 cells to  $H_2O_2$  (400  $\mu$ M, 1 h) caused the damage of cell membrane, leading to the release of LDH to the medium. The LDH release was significantly reduced when cells were pretreated with different concentrations (10, 20, and 50  $\mu$ M) of donors for 5 h in the presence of Cys (10 equiv), indicating the protective effects of these compounds. Among these donors, **5e** exhibited the most potent cardioprotective effect. Changes in the mitochondrial membrane potential ( $\Delta \psi m$ , MMP) have been postulated to be early events in H<sub>2</sub>O<sub>2</sub>-induced apoptosis signaling pathway.<sup>[19]</sup> Thus, fluorescent probe JC-1 was used to measure the changes of  $\Delta \psi m$  of cells treated with **5e**. As shown in Figure S5, normal H9c2 cells had bright red fluorescence, and cells treated with  $H_2O_2$  appeared green fluorescence, indicating that  $H_2O_2$ caused severe damage to cells and reduced  $\Delta \psi m$ . The pre-incubation of cells with 20 or 50  $\mu$ M of **5e** greatly impeded this  $\Delta \psi$ m loss, as indicated by a decrease in green emission and an increase in red emission. These findings further confirmed that these H<sub>2</sub>S donors exhibited potent cellular protection against oxidative injury.



**Figure 3.** LDH assay of compounds **5a-g** on H9c2 cells. Cell viability was analyzed by LDH assay from culture media of indicated cells which were pretreated with different concentrations (10, 20, and 50  $\mu$ M) of compounds for 5 h or NaHS (100  $\mu$ M, 1 h). The data are expressed as percentages of H<sub>2</sub>O<sub>2</sub>-stimulated cells (model group).



S, as red nors UDH erent N. The UDH S The S

Figure 4. Isolated hearts from mice treated with different concentrations of 5e (15 mg/kg/day, 30 mg/kg/day) were sliced into 2 mm sections and stained with TTC to determine the infarction size. (n=6 for each group). \*p<0.05 versus model group, \*\*p<0.01 versus model group.

JOMM ACCEDTED

#### Journal Name

View Article Online

#### ARTICLE

The cardioprotective effects of 5e were further verified in vivo in the MI mice model.<sup>[20]</sup> Mice treated with 5e for 7 days were subjected to coronary occlusion and the hearts were harvested 72 h post MI. Infarct size was assessed with TTC staining (2,3,5triphenyltetrazolium chloride), this white compound was enzymatically reduced to red TPF (1,3,5-triphenylformazan) in living tissues, while it remains as white TTC in areas of infarction since these enzymes have been degraded due to apoptosis. For this reason, healthy viable heart muscle will be stained in deep red, while areas of potential infarctions will be more pale. Infarction size was calculated as the ratio of scar average circumferences to left ventricular average inner circumferences. The results showed that infarct size was significantly larger in post MI mice (Model group) than that in sham-operated mice (Normal group) (Figure 4a). Remarkably, donor 5e treatment relived myocardial infarction in a dose-dependent manner. Low (15 mg/kg/day) and high (30 mg/kg/day) dose of 5e reduce infarction size to 74.75% and 63.97% of the model group, respectively (Figures 4b-c).

H&E staining was then applied to evaluate histological feature of infarcted hearts. As shown in Figure 5b, in peri-infarct heart, myofilaments condensed, leaving damaged gap junction with infiltrated nucleus from necrotic and apoptotic cells. However, donor 5e significantly restrained the damage within epimyocardium and alleviated the morphological damage of cardiomyocytes (Figure 5c). Furthermore, TUNEL staining was used to determine apoptosis of cardiomyocytes in peri-infarction area. As shown in Figure S6, TUNEL positive staining cells were hardly found in Sham operated mice, while massive red fluorescent dots indicating fragments of DNA were found in heart section of model group. Donor 5e displayed an obvious benefit in reducing the number of TUNEL-positive cells.



Figure 5. H&E staining was performed using heart sections to determine the morphological changes. (a) Normal group; (b) Model group; (c) Treated with  $\mathbf{5e},\,30$ mg/kg/day. Scale bar: 10  $\mu$ m.

In summary, a series of thioester-based H<sub>2</sub>S donors were developed. These donors are stable in aqueous solution, and release significant amounts of H<sub>2</sub>S in a slow and controllable manner in the presence of Cys. The most potent donor 5e exhibited promising cardioprotective activity against H<sub>2</sub>O<sub>2</sub>-induced oxidative stress by decreasing the mitochondrial membrane potential loss and lactate dehydrogenase release in H9c2 cells. More importantly, donor 5e also exhibited potent cardioprotective effects in an in vivo myocardial infarction mice model by reducing myocardial infarct size and cardiomyoblasts apoptosis. Taken together, our study demonstrated that the new allyl thioesters may have potential as cardioprotective agents by releasing H<sub>2</sub>S.

### Acknowledgements

We gratefully acknowledge financial support from the National Natural Science Foundation of China (81673306, 81703348), and "Double First-Class" University project CPU2018GY04, CPU2018GY35, China Pharmaceutical University.

#### Notes and references

- DOI: 10.1039/C9CC02 a) J.L. Wallace, R. Wang, Nat. Rev. Drug Discov. 2015, 14, 329-1 345; b) Y. Zhao, T. D. Biggs, M. Xian, Chem. Commun. 2014, 50, 11788-11805.
- 2 a) J.L. Greaney, J.L. Kutz, S.W.Shank, S. Jandu, L. Santhanam, L.M. Alexander, Hypertension 2017, 69, 902-909; b) N.L. Kanagy, C. Szabo, A. Papapetropoulos, Am. J. Physiol. Cell. Physio. 2017, 312, C537-C549.
- 3 D. Yoo, R.C. Jupiter, E.A. Pankey, V.G. Reddy, J.A. Edward, K.W. Swan, T.C. Reak, R. Mostany, P.J. Kadowitz, Am. J. Physiol. Heart Circ. Physiol. 2015, 309, 605-614.
- 4 M.D. Hartle, M.D. Pluth, Chem. Soc. Rev. 2016, 45, 6108-6117.
- a) C.Y. Tsai, S.Y. Wen, M.A. Shibu, Y.C. Yang, H. Peng, B. Wang, 5 Y.M. Wei, H.Y. Chang, C.Y. Lee, C.Y. Huang, W.W. Kuo, Int. J. Cardiol. 2015, 195. 300-310; b) M. Lv, Y. Liu, T.H. Xiao, W. Jiang, B.W. Lin, X.M. Zhang, Y.M. Lin, Z.S. Xu, Am. J. Transl. Res. 2017, 9, 1183-1192; c) U. Hasegawa, A.J. van der Vlies, Bioconjugate Chem. 2014, 25, 1290-1300; d) Y. Zhao, J.M. Kang, C.M. Park, P.E. Bagdon, B. Peng, M. Xian, Org. Lett. 2014, 16, 4536-4539.
- a) Y. Zhao, S.G. Bolton, M.D. Pluth, Org. Lett. 2017, 19, 2278-6 2281; b) J.M. Kang, Z. Li, C. L. Organ, C. M. Park, C. T. Yang, A. Pacheco, D. F. Wang, D. J. Lefer, M. Xian, J. Am. Chem. Soc. 2016, 138, 6336-6339; c) Y. Zhao, M.D. Pluth, Angew. Chem. Int. Ed. 2016, 55, 14638-14642; d) Y. Zhao; A.K. Steiger, M.D. Pluth, Angew. Chem. Int. Ed. 2018, 57, 1-6; e) Y. Zhao. A.K. Steiger, M.D. Pluth, Chem. Commun. 2018, 54, 4951-4954.
- Y. Zhao, A. Pacheco, M. Xian, Exp. Pharmacol. 2015, 230, 365-7 388.
- D. Liang, H.X. Wu, M.W. Wong, D.J. Huang, Org. Lett. 2015, 17, 8 4196-4199.
- a) Y. Zheng, B. Yu, L.K. De La Cruz, M. Roy Choudhury, A. Anifowose, B. Wang, Med. Res. Rev. 2018, 38, 57-100; b) S. Feng, Y. Zhao, M. Xian, Q. Wang, Acta Biomater. 2015, 27, 205-213.
- 10 Y.D. Bai, Y.R. Yang, X.P. Mu, G. Lin, Y.P. Wang, S. Jin, Y. Chen, M.J. Wang, Y.C. Zhu, Oxid. Med. Cell. Longev. 2018, 2018, 3402809.
- 11 C.A. Papaharalambus, K.K. Griendling, Trends Cardiovasc. Med. 2007, **17**, 48-54.
- 12 a) M. Jereb, D. Dolenc, RSC Adv. 2015, 5, 58292-58306; b) V. Kesavan, D. Bonnet-Delpon, J. Bégué, Synthesis 2000, 2, 223-225.
- 13 a) Y. Zhao, H. Wang, M. Xian, J. Am. Chem. Soc. 2011, 133, 15-17; b) X.F. Yang, Q. Huang, Y. Zhong, Z. Li, H. Li, M. Lowry, J.O. Escobedo, R. M. Strongin, Chem. Sci. 2014, 5, 2177-2183.
- 14 Z.G. Li, Methods Enzymol. 2015, 554, 101-110.
- 15 a) K.V. Ruddraraju, Z.D. Parsons, C.D. Lewis, K.S. Gates, J. Org. Chem. 2017, 82, 776-780; b) G.A. Benavides, G.L. Squadrito, R.W. Mills, R.P. Patel, V.M. Darley-Usmar, J.E. Doeller, D.W. Kraus, T.S. Isbell, T.P. Patel, Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 17977-17982.
- 16 a) Z. Zhang, S. Jin, X. Teng, X. Duan, Y. Chen, Y. Wu, Nitric Oxide. 2017, 67, 10-25; b) S.Y. Wen, C.Y. Tsai, P.Y. Pai, Y.W. Chen, Y.C. Yang, R. Aneja, C.Y. Huang, W.W. Kuo, Environ. Toxicol. 2018, 33, 93-103.
- 17 B. Peng, W. Chen, C. Liu, E.W. Rosser, A. Pacheco, Y. Zhao, H.C. Aguilar, M. Xian, Chem-Eur. J. 2014, 20, 1010-1016.
- 18 N. Uchide, K. Ohyama, T. Bessho, H. Toyoda, Intervirology 2009, **52**,164-173.
- 19 L. Wang, H. Huang, Y. Fan, B. Kong, H. Hu, K. Hu, J. Guo, Y. Mei, W. L. Liu, Oxid. Med. Cell. Longev. 2014, 2014, 960362.
- 20 S.S. Luo, X.F. Gu, F.F. Ma, C.H. Liu, Y.Q. Shen, R.W. Ge, Y.Z. Zhu, Rree Radic. Biol. Med. 2016, 92, 1-14.

4 | J. Name., 2012, 00, 1-3



199x98mm (300 x 300 DPI)