View Article Online View Journal

NJC Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: C. Liu, Z. Zhang, X. Zhai, X. Wang, J. Gui, C. Zhang, Y. Zhu and Y. Li, *New J. Chem.*, 2019, DOI: 10.1039/C8NJ05815F.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/njc

Page 1 of 32

1	
2	
3	
4	
5	
7	
, 8	
9	
10	
11	
12	
13	
14	
46 46	
लेंग्र	
98	
ឌ្មី9	
<u>3</u> 20	
⊇ <u>2</u> 1	
22	
⊒3	
.24 D5	
26	
<u>∽</u> 7	
Ž8	
శ్రీ9	
- 2 3 0	
31	
නු 2 කා 3	
නු J කි4	
35	
6	
3 7	
ਤੂੰ8	
- <u>3</u> 9	
ब 0	
41	
42	
44	
45	
46	
47	
48	
49	
5U 51	
57	
53	
54	
55	
56	
57	
-58	

	View Article Online Synargistic affect between conner and different metal oxides in the sport 10:1039/C8NJ05815F
1	Synergistic effect between copper and unrefent metal balles in the selective
2	hydrogenolysis of glucose
3	Chengwei Liu ¹ , Zhaonan Zhang ¹ , Xuefeng Zhai ¹ , Xianzhou Wang ^{2,3} , Jianzhou Gui ^{1,4} *,
4	Chenghua Zhang ^{2,5} *, Yulei Zhu ^{2,5} , and Yongwang Li ^{2,5}
5	¹ State Key Laboratory of Separation Membranes & Membrane Processes, College of
6	Environment and Chemical Engineering, Tianjin Polytechnic University, Tianjin
7	300387, China
8	² State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese
9	Academy of Sciences, Taiyuan 030001, People's Republic of China
10	³ University of Chinese Academy of Sciences, Beijing 100049, People's Republic of
11	China
12	⁴ School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin
13	300387, China
14	⁵ National Energy Center for Coal to Liquids, Synfuels China Technology Co., Ltd.,
15	Huairou District, Beijing 101407, People's Republic of China
16	*Corresponding authors
17	E-mail address: jzgui@hotmail.com. Tel.: +86-22-83955668 (J. Gui).
18	E-mail address: <u>zhangchh@sxicc.ac.cn</u> . Tel.: +86-10-69667802 (C. Zhang).
19	

ished where the second ៉ុំផ្ដាំ0 41

Abstract

View Article Online DOI: 10.1039/C8NJ05815F

Copper catalysts had been extensively applied in saccharide hydrogenolysis for their high selectivity to C-O bond cleavage. The hydrogenolysis of glucose contains many reaction procedures, which needs the synergistic effect of different active sites. A series of Cu catalysts supported on metal oxides with different surface physicochemical properties were prepared. The metal oxide supports not only influence the properties of Cu such as dispersion and electronic state, but also affect the activity of C-C and C-O bond cleavage in glucose. Furthermore, the coordination of a large amount of Lewis acid sites and hydrogenation sites on Cu/y-Al₂O₃ catalyst can promote the C-C and C-O bond cleavage, leading to the selective conversion of glucose to glycol (selectivity of 66.6%). The Cu/MgO catalyst with a large amount of basic sites and metal sites could accelerate the retro-aldol condensation and isomerization reactions simultaneously, resulting the main products of C₂, C₃, and C₄ polyols. The study of the synergistic effect between other transition metals and γ -Al₂O₃ showed that Pd had high activity for the central C-C bond cleavage in glucose. Ru provided an extremely strong activity for the C-C bond cleavage at the terminal of the carbon chain in glucose, with the main product of methane (selectivity of 66.4%).

 Keywords: glucose, hydrogenolysis, glycol, copper, acid/basic sites

1. Introduction

New Journal of Chemistry Accepted Manuscript

The depletion of the non-renewable fossil fuel resources, combined with the ongoing climate change, indicates the necessity of the shift of the feedstock base towards sustainable biorefinery approach.¹⁻⁵ Since cellulose is the most abundant renewable resource in nature and may not compete with the production of edible crops, the efficient conversion of cellulose and its derivatives has attracted much attention. D-glucose, as the only monomer of cellulose, is a particularly simple and promising platform molecule of biomass for better understanding the complex process occurring in the conversion of polysaccharides.⁶ Therefore, the catalytic conversion of glucose plays an important role in the production of a variety of valuable chemicals in the utilization of biomass resources. Furthermore, significant efforts have been devoted to the transformation of glucose by various catalytic processes involving hydrogenation, hydrogenolysis, dehydration, isomerization, oxidation and so on.⁷⁻¹¹ In this respect, the hydrogenation/hydrogenolysis of saccharides and polyols, by selectively breaking C-C and C-O bonds, provides an efficient and environmental benign process for the catalytic conversion of glucose to value-added chemicals and liquid hydrocarbons such as sorbitol, glycerol, propanediol (PDO), ethylene glycol (EG), hexane, etc.¹²⁻¹⁴

¹⁸ Copper catalysts were often used for sugar hydrogenolysis at 235-250 °C.^{15,16} They ¹⁹ were found to be excellent alternatives for sugar and sugar alcohol hydrogenolysis due ²⁰ to their relatively low activity for the hydrogenolysis of C-C bonds and high efficiency ²¹ for C-O bond cleavage.^{17,18} For example, the copper chromium oxide catalyst has been ²² used by Zartman and Alkins for the hydrogenolysis of glucose in supercritical ethanol,¹⁹

View Article Online with 60% yield of 1,2-PDO. Furthermore, copper catalysts were often selected for the hydrogenolysis of glycerol and sorbitol to PDO (1,2-PDO and 1,3-PDO).^{18,20,21} Typically, Chaminand obtained nearly 100% selectivity of 1,2-PDO at a low glycerol conversion on a Cu-ZnO catalyst.²² Guo²⁰ tested a series of Cu/y-Al₂O₃ catalysts with different amounts of copper, with 96.8% selectivity and 49.6% conversion achieved at 493 K and 1.5 MPa H₂ pressure. However, the coordination of copper and acid/basic sites has not been studied systematically.

With respect to the former researches on glucose hydrogenolysis, many disadvantages also exist which prevent the selective conversion of the promising feedstocks. Alkali additives such as NaOH and Ca(OH)2 had often been used to promote the C-C cleavage activity.^{23,24} However, the alkali existing in the reaction solution could cause the excessive degradation and product separation problem.²⁵ Obviously, many other drawbacks, such as the low selectivity, harsh conditions and environmental pollution also inhibit the effective conversion of glucose. In order to develop an economical and environmental benign process for glucose conversion, heterogeneous catalytic system was selected in this text.

As widely accepted that the bifunctional catalysts containing metal sites and acid/basic sites are most efficient for the hydrogenolysis of glucose, with the synergistic effect of different active sites. Furthermore, the elemental reactions of saccharide hydrogenolysis, occurring at the hydrogenation conditions with metal catalysts, mainly contain hydrogenation/dehydrogenation, isomerization, retro-aldol/aldol condensation, and dehydration reactions.^{1,2} The hydrogenation and dehydrogenation reactions are

/iew Article Online

New Journal of Chemistry Accepted Manuscript

conducted on the transition metal sites. The retro-aldol condensation reaction that leads to the cleavage of C-C bonds occurs on metal sites. The C-O bond cleavage of polyols can be catalyzed by the acid sites through dehydration.^{1,26} However, the transition metal sites could also catalyze the cleavage of C-C/C-O bonds through the direct hydrogenolysis reaction, which makes the reaction more complicated.^{23,24} For glucose transformation, the basic sites and the Lewis acid sites are also responsible for the isomerization between glucose and fructose. Based on the reaction pathway, the synergistic effect between metal and metal oxides with different acid/basic sites plays an important role in the product selectivity. For example, Wang studied the hydrogenolysis of sorbitol over MgO-supported Ni, Cu, and Co catalysts.^{25,27} C₂ and C₃ polyols such as glycerol, 1,2-PDO, and EG were the main products. Huang et al. have compared the activity and selectivity of Cu supported on SiO₂, Al₂O₃ MgO, ZrO₂, CeO₂, and ZnO for xylitol hydrogenolysis.²⁸ Cu-SiO₂ showed the highest selectivity for EG and PDO among the prepared catalysts. However, the coordination effects between copper and different metal oxides in the bifunctional catalysts for the selective conversion of glucose have not been studied yet.

In this article, a series of metal oxides with different surface acid/basic properties were selected for copper catalysts. The relationships between the physicochemical properties and catalytic performance of copper catalysts were studied in detail. Furthermore, the synergistic effects between y-Al₂O₃ and different transition metals were also studied.

2. Material and Methods

23 Junuary 2018 Dawahoaded by Nowas State University on 1/28/2019 8:20025 AML 2 9 5 7 6 0 6 8 2 9 5 5 7 0 0 6 8 2 9 5 5 7 0 0 0 6 8 2 9 5 7 ished where the second <u>ā</u> 41

2.1. Catalysts preparation

ZrO₂ and TiO₂ were purchased from Nanjing Haitai nanometer material Co., Ltd. y-Al₂O₃ was from sinopharm chemical reagent Co., Ltd. MgO was prepared by a co-precipitation method using the 0.5 M magnesium nitrate aqueous solution and 0.5 M ammonia at pH 9. The precipitate was aged for 1 h, then separated with filtration and washed with deionized water until the filtrate was neutral. Then the precursor was dried at 120 °C overnight and calcined at 500 °C for 5 h. SiO₂ was prepared by colloidal silica aqueous solution (SiO₂, 30 wt%, Qingdao, Ocean Chemical Co., Ltd., China) dehydration at 60 °C followed by dried at 120 °C and calcined at 500 °C for 5 h. All the metal oxide supports were granted into size 20-40 mesh before used.

All the catalysts were prepared by an incipient wetness impregnation method. The contents of Cu and Ni were designed as 5 wt%, and Pd and Ru were 2 wt%. Take Cu/y- Al_2O_3 for example, 10 g y- Al_2O_3 was impregnated with 13 mL copper nitrate aqueous solution containing 1.9 g Cu(NO₃)₂·3H₂O. After impregnation, the sample was dried at 120 °C overnight and then calcined at 500 °C for 5 h.

2.2 Catalysts characterization

ICP optical emission spectroscopy (Optima2100DV, PerkinEler) was performed to measure the copper loading of the calcined copper catalysts.

The BET surface area of the calcined catalysts was measured on a micromeritics ASAP 2420 instrument. All the samples were degassed at 110 °C for 1 h and 350 °C for 8 h before the measurement.

Powder X ray diffraction (XRD) patterns were obtained on a D/max-RA X-ray

View Article Online DOI: 10.1039/C8NJ05815F

View Article Online diffractometer (Bruker, Germany), with Cu-K α radiation operating at 30 KV and 100^{9/C8NJ05815F} mA. The XRD patterns were recorded in 2 θ values ranging from 10° to 80°. DRIFTS spectra of CO adsorption were collected using an infrared spectrometer (VERTEX70, Bruker, Germany). The infrared cell with ZnSe windows was connected to a gas-feed system, which allowed the in situ measurement of the adsorption of CO. Prior to measurement, the catalysts were reduced in situ at 250 °C for 10 h in H₂ flow (20 mL/min). The sample was flushed with helium for 1 h at 250 °C. Then the system was cooled to 30 °C in helium flow for the CO-FTIR record. NH₃ temperature-programmed desorption (NH₃-TPD) measurements and CO₂ temperature-programmed desorption (CO₂-TPD) measurements were conducted on an AutoChem II 2920 equipment (Mircromeritics, USA). In a typical run, 200 mg catalyst was put into a u-shaped quartz tube. The sample was first pretreated in a helium flow at 500 °C for 1 h. After cooling to 100 °C in the helium flow, the sample was adsorbed with NH₃ or CO₂ until saturation, then flushed with helium for 1 h to remove the physical adsorption. The NH₃ or CO₂ desorption pattern was recorded using MS detectors from 100 °C to 500 °C at a heating rate of 10 °C/min.

New Journal of Chemistry Accepted Manuscript

The Py-FTIR spectra were obtained using a VERTEX70 Bruker FT-IR spectrometer. All the samples were pretreated by degassing to a pressure of 10⁻² MPa at 350 °C for 1 h. The Py-FTIR spectra were measured at 30 °C after evacuations at 30 °C, 200 °C, and 350 °C for 30 min.

Adsorptive decomposition of N₂O was conducted using the method reported previously.²⁹⁻³¹ The exposed copper surface area was calculated based on the assuming

View Article Online

23 Junuary 2018 Dawahoaded by Nowas State University on 1/28/2019 8:20025 AML 2 9 5 7 6 0 6 8 2 9 5 5 7 0 0 6 8 2 9 5 5 7 0 0 0 6 8 2 9 5 7 ished where the second ៉ុំផ្ទាំ0 41

spherical shape of the copper metal particles and 1.4×10¹⁹ copper atoms/m². For one²/C8NJ05815F
 measurement, the catalyst was reduced at 350 °C in a 10 vol% H₂/Ar flow for 15 min
 firstly. Then it was exposed to N₂O at 40 °C for 30 min. Finally, the H₂-TPR was
 recorded with the 10 vol% H₂/Ar flow after flushing with Ar (50 mL/min) for 30 min.

2.3. Catalytic reaction process

The catalytic tests were carried out in a tubular fixed-bed reactor (i.d. 12 mm, length 600 mm). For a typical run, 6 mL catalysts were packed at the flat-temperature zone and in situ reduced at 250 °C for 10 h with a stream of pure hydrogen. The reactant was introduced into the reactor with an HPLC pump along with a co-feed H₂ of gas flowing. The liquid products collected in the cold trap were analyzed by a high performance liquid chromatograph (HPLC) equipped with an RID detector. The gas products were analyzed in situ by gas chromatograph (GC) (models 6890N and 4890D; Agilent). Typical reaction conditions are as follows: 180 °C, 4 MPa H₂, 5 wt% glucose (sorbitol, fructose, glycerol) aqueous solution, ratio of H_2 to glucose = 161:1 (molar ratio), LHSV $= 0.2 h^{-1}$.

The total carbon (TC) balance was also measured. TC in feedstock and liquid products after reaction was detected by German elementar (Vario EL cube). Sulfanilamide was used as a standard sample which contains 41.81% of C. The carbon content in gas was calculated from concentration values obtained by GC chromatographic analysis. Then TC was calculated by the following equation:

$$TC(\%) = \frac{Carbon in liquid product + Carbon in gas product}{Carbon in feedstock} \times 100$$

The conversion of glucose and the selectivity of products were quantified by the

following equation:

Conversion (%) =
$$100 - \frac{\text{carbon mol of reactant after reaction}}{\text{carbon mol of reactant in feedstock}} \times 100$$

Selectivity (%) = $\frac{\text{carbon mol of each product}}{\text{sum of carbon mol for all products}} \times 100$

3. Results and discussion

3.1. Physicochemical properties of the prepared catalysts

Catalyst	Cu	Sbet	$\mathbf{S}_{\mathbf{Cu}}$	Acidity	Basicity
Cataryst	(mmol/gCat) ^a	$(m^{2}/g)^{b}$	(m ² /g) ^c	$(\mu mol/g)^d$	(µmol/g) ^e
Cu/SiO ₂	0.71	171.4	0.5	21.7	23.9
Cu/y-Al ₂ O ₃	0.73	171.1	44.8	88.8	40.0
Cu/MgO	0.73	53.0	11.2	16.7	45.0
Cu/TiO ₂	0.72	23.9	3.0	29.6	23.5
Cu/ZrO ₂	0.73	20.4	8.0	23.1	26.1

⁶ **Table 1.** Physicochemical properties of the prepared catalysts

^a ICP method. ^b BET method. ^c Copper metal surface area, determined by the N₂O-decomposition method. ^d Measured by NH₃-TPD. ^e Measured by CO₂-TPD.

The supports such as γ-Al₂O₃, MgO, ZrO₂, TiO₂, and SiO₂ with special surface properties were tested. γ-Al₂O₃, with the large amount of acid sites, is extensively used in industrial processes.³² The amphoteric properties of ZrO₂ and TiO₂ are favorable for saccharide conversion which needs the synergetic catalysis of different active sites.³³ MgO also plays a good performance on polyols conversion to glycerol and glycol.²⁵ SiO₂ has been widely researched for glycerol conversion, with a high selectivity of PDO obtained.³⁴

The physicochemical properties of the copper-based catalysts are listed in Table 1. The small discrepancy of Cu loadings could be due to the loss in preparation procedure. The surface areas of the calcined copper catalysts decreased with the order: Cu/SiO₂ ~ **New Journal of Chemistry Accepted Manuscript**

View Article Online DOI: 10.1039/C8NJ05815F

 Cu/γ -Al₂O₃ > Cu/MgO > Cu/TiO₂ > Cu/ZrO₂.

Figure 1. XRD patterns of the calcined catalysts.

The X ray diffraction patterns were obtained to detect the dispersion of copper Δ (Figure 1). Most of the catalysts showed the CuO peaks at $2\theta = 35.5^{\circ}$ and 38.7° (JCPDS 48-1548) except Cu/γ -Al₂O₃. It indicates that CuO particles were dispersed very well on the large surface of y-Al₂O₃. The N₂O adsorptive decomposition method is reliable to character the copper surface area. The results showed that Cu/y-Al₂O₃ had the highest copper surface area (44.8 m^2/g), which was consistent with the XRD results. However, copper surface areas showed a great discrepancy with the catalyst surface areas, which suggested that the copper surface area not only depended on the physical dispersion of the supports, but also had correlation with the metal-support interaction. The lowest dispersion of Cu on SiO_2 depends strongly on the preparation method of the catalysts, which can cause the weak metal-support interaction.³⁵ For example, the high calcination of SiO₂ and the catalyst precursor could decrease the surface silanol concentration, which is disadvantage to the dispersion of copper nanoparticles.^{36,37} The dispersion of copper on different supports decreased with the following order: Cu/γ -Al₂O₃ >

uonpankilanda

 $Cu/MgO > Cu/ZrO_2 > Cu/TiO_2 > Cu/SiO_2$.

Figure 2. CO-DRIFT patterns of the reduced catalysts.

CO is used as a probe molecule to study the metal-support interaction, as shown in Figure 2. The bands of CO adsorption on the reduced catalysts changed along with the chemical environment of the metal. Generally, the bands at 2110 cm⁻¹ and below are ascribed to CO on zero-valent copper metal particles. The bands between 2110 cm⁻¹ and 2135 cm⁻¹ are assigned to CO irreversibly adsorbed on cuprous ions.³⁸ The pattern of Cu/TiO₂ shows a broad band with the peak at 2123 cm⁻¹ after purging helium for half a minute, which shifted to a lower band at 2115 cm⁻¹ after purging helium for 15 min. This indicates that there are at least two different sites on the Cu/TiO₂ surface. Therefore, it's reasonable to spite the band into two peaks at 2123 cm⁻¹ and 2115 cm⁻¹. The band at 2115 cm⁻¹ is ascribed to CO adsorbed on imperfect sites, such as step and edge sites. The band at 2123 cm⁻¹ could be assigned to CO adsorbed on isolated Cu atoms and/or small 2D Cu particles on the TiO2 surface. Small 2D Cu particles in Cu/TiO2 are partially electropositive as a result of interactions with oxygen atoms on the surface of the support, as reported by Boccuzzi et al.^{39,40} The Cu/SiO₂ catalyst showed the band at

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
ୟ6 ମୁନ
ពី/
38 30
60 000
⊗ <u>4</u> 0 S)1
- <u>-</u>
., , , , , , , , , , , ,
213 3√2
25
<u>s</u> 27
28
Ž9
- 30 20
ភ្នំ1
<u>ක</u> ්2
<u>ನ</u> 33
જુ4 ડ્રે
1 3 15
<u>3</u> 6
୍ଞ ଅ
38
-39 -39
<u>ਬ</u> ਾਹ ਹੈ11
41
42 //2
43 44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
27

1

1

1

14

1	2119 cm ⁻¹ , which was easily removed after purging helium for a short time. Ferulio and
2	Castellani have assigned this band to CO adsorbed on electropositive copper linked to
3	a Si-O* site when the peak is reversible. ⁴¹ The band of CO adsorbed on Cu/ZrO ₂ was
4	stable at 2115 cm ⁻¹ , which could be ascribed to CO adsorbed on Cu ⁺ sites. ⁴² The bands
5	of CO adsorbed on Cu/MgO and Cu/ γ -Al ₂ O ₃ were at 2110 cm ⁻¹ and 2113 cm ⁻¹ , which
6	almost disappeared after purging helium for 15 min. It is suggested that the bands could
7	be assigned to CO-Cu ⁰ sites. ^{38,43} Therefore, as a result of the interaction between metal
8	oxides and copper, copper species with different valences existed on the catalyst surface.
9	In summary, CuO was easily reduced on MgO and γ -Al ₂ O ₃ , resulting in the main species
0	of Cu ⁰ on the catalyst surface. CuO was difficult to be reduced on TiO ₂ and ZrO ₂ , which
1	could be due to the strong interaction between Cu and the metal oxides. CuO was also
2	not easy to be reduced on the SiO ₂ support, which is due to the large particle size of
3	CuO.

ticle Online NJ05815F

uonpankilanda

View Article Online DOI: 10.1039/C8NJ05815F

Figure 3. NH₃-TPD (A) and CO₂-TPD (B) patterns of the calcined copper

catalysts.

NH₃-TPD and CO₂-TPD were performed to identify the acidity and basicity of the catalysts respectively. The amounts of acid and basic sites, as listed in Table 1, were calculated by the integrating curves and calibrated by standard NH₃ and CO₂ gases. The amounts of acid sites on the catalyst surface decreased in the following order: Cu/y- $Al_2O_3 > Cu/TiO_2 > Cu/ZrO_2 > Cu/SiO_2 > Cu/MgO$ (Table 1). As shown in Figure 3A, Cu/γ -Al₂O₃ had a main peak at 172 °C with a shoulder peak at around 258 °C, indicating that there were weak and medium acid sites on the surface of Cu/γ -Al₂O₃. In the case of Cu/TiO₂, Cu/ZrO₂, Cu/SiO₂, and Cu/MgO catalysts, only one peak at about 150 °C was observed, which can be ascribed to the weak acid sites. The amounts of the basic sites in the copper catalysts decreased with the following order: $Cu/MgO > Cu/\gamma - Al_2O_3 >$ $Cu/ZrO_2 > Cu/SiO_2 \sim Cu/TiO_2$. Figure 3B shows the CO₂-TPD profiles of the copper catalysts. For the Cu/y-Al₂O₃, Cu/ZrO₂, Cu/SiO₂, and Cu/TiO₂ catalysts, only a broad peak at 150 °C was observed, which is corresponding to the weak basic sites on the

catalysts surface. However, a new shoulder peak at about 212 °C was observed on
Cu/MgO, which could be attributed to the medium basic sites on the catalyst surface.
The results indicate that there were large amounts of weak and medium acid sites and
weak basic sites on the surface of the Cu/γ -Al ₂ O ₃ catalysts, with the acid/basic sites mol
ratio of 2.2. The surface properties of γ -Al ₂ O ₃ are changeable with the processing
method. For example, the calcination process could cause the remove of the hydroxyl
group on γ -Al ₂ O ₃ surface, which could bring new Lewis acid sites by the electron
deficient aluminium ions. Many researchers have also detected the surface acid and
base properties using CO ₂ -TPD and NH ₃ -TPD. ⁴⁴⁻⁴⁷ For example, Kumar et al.
performed the CO ₂ -TPD and NH ₃ -TPD of two kinds of commercial Al ₂ O ₃ . ⁴⁷ The results
turned out that one Al ₂ O ₃ sample showed nearly the same desorption amounts of CO ₂
and NH ₃ , with the values of 56.6 μ mol g ⁻¹ and 55.6 μ mol g ⁻¹ , respectively. Both the
Cu/ZrO_2 and Cu/TiO_2 catalysts had small amounts of acid and basic sites on the catalyst
surface. Relatively low amounts of acid and basic sites are present on the Cu/SiO_2
catalysts surface. The Cu/MgO catalyst displayed the largest amounts of weak and

Py-FTIR spectra were obtained to identify the nature of acid sites on the different supported catalysts, as illustrated in Figure 4. For the spectra of pyridine adsorbed on Cu/γ -Al₂O₃ when outgassing at 30 °C, the bands at 1577 cm⁻¹ and 1593 cm⁻¹ represent physically adsorbed pyridine and hydrogen-bonded pyridine respectively,48 considering their disappearance after evacuation at higher temperature. The band at 1448 cm⁻¹, 1489 cm⁻¹, and 1610 cm⁻¹ were ascribed to the coordination of Py molecules to Lewis acid

medium basic sites and the lowest amount of acid sites.

New Journal of Chemistry

1	view Article Online sites and consequent formation of LPy species. Moreover, the decrease of the intensity
2	and the increase in the frequency of the peak after evacuation at subsequent higher
3	temperatures obviously indicated that there were both weak and medium Lewis acid
4	sites on the surface of Cu/ γ -Al ₂ O ₃ . ^{1,49,50} The bands around 1445, 1489, 1574, and 1604
5	$cm^{\text{-1}}$ in the spectrum of Cu/TiO_2 and Cu/ZrO_2 at 30 °C showed the strong features of
6	the formation of LPy species. ⁴⁹ However, the peak of the LPy species was very weak
7	and almost disappeared after evacuation at 200 °C, suggesting that there were only small
8	amounts of weak Lewis acid sites on the surface of Cu/TiO_2 and Cu/ZrO_2 . The peak of
9	pyridine adsorbed on Cu/SiO2 at 30 °C dramatically decreased at 200 °C, which
10	indicated there was only weak acid sites on the catalyst surface. The bands at 1439,
11	1485, and 1597 cm ⁻¹ in the spectrum of the Cu/MgO catalyst after evacuation at 30 $^{\circ}$ C
12	represent hydrogen-bonded pyridine. The peaks totally disappeared as expected.
13	In this context, only a weak shoulder band at around 1540 cm ⁻¹ was found for the
14	Cu/γ -Al ₂ O ₃ catalyst. The results were consistent with Chen's report, which also showed

New Journal of Chemistry Accepted Manuscript

that only a negligible amount of Brønsted acid existed on the Al₂O₃ surface.⁵¹ However, no band at 1540 cm⁻¹ was found for the other catalysts, indicating the absence of Brønsted acid sites. For the Cu/ γ -Al₂O₃ catalyst, there were weak and medium Lewis acid sites. There were only weak Lewis acid sites on the surface of Cu/SiO₂, Cu/TiO₂, and Cu/ZrO₂ catalysts. The Cu/MgO catalyst was lack of acid sites. These were consistent with the NH₃-TPD results.

uonpankilanda

Figure 4. Py-FTIR spectra of the calcined catalysts after adsorption of pyridine and subsequent evacuation at different temperatures for 30 min: (a) Cu/ZrO₂, (b) Cu/MgO, (c) Cu/TiO₂, (d) Cu/SiO₂, (e) Cu/γ-Al₂O₃.

3.2. The catalytic performance of copper-based catalysts in glucose hydrogenolysis

The results of glucose hydrogenolysis over different supported Cu catalysts were shown in Table 2. Significant efforts had been devoted to the qualitative/quantitative measurements of the product distributions using the HPLC and GC/GC-MS methods. Glucose was almost totally converted over the prepared catalysts. CO₂, CH₄ or other carbon containing gas products were not detected in the tail gas. The products in liquid phase mainly included sorbitol, glycerol, EG, and PDO. Small amounts of other products such as methanol, ethanol, propanol, butanol, 1,2-butanediol, 1,4-butanediol, erythritol, and xylitol were also detected in the liquid phase. Soluble polymeric byproducts were detected in the liquid after reaction. The carbon balance was generally better than 88% over most of the catalysts except Cu/TiO₂, with only 28.8%. Most of

View Article Online DOI: 10.1039/C8NJ05815F

the glucose feedstock was transformed into insoluble humins.

New Journal of Chemistry Accepted Manuscript

 Cu/γ -Al₂O₃ showed high selectivity for EG and PDO, with a combined selectivity of 66.6% (8.6% for EG and 58.0% for PDO) at 99.4% conversion of glucose. Including glycerol, the selectivity to the sum of these polyols (EG, PDO, and glycerol) reached 77.7%, which was much higher than those on the other supported catalysts. Cu/MgO and Cu/ZrO_2 also showed relatively high glycol selectivity (55.0% and 40.0%) respectively). However, it is interesting to note that, the selectivity of EG and glycerol on Cu/MgO, with 14.0% and 20.0% respectively, was higher than those on other catalysts. The total selectivity of these polyols (EG, PDO, and glycerol) on Cu/TiO₂ catalysts was only 4.2%. Furthermore, the aqueous soluble polymers were the major products in the liquid. The results of Cu/SiO₂ showed that the hydrogenation reaction was dominating, leading to the highest sorbitol selectivity of 82.4%. In contrast, only a small amount of the lower hydrogenolysis products were present in the liquid. The selectivity of glycol was only 5.0%.

The catalytic conversion of glucose to the desired product needs the selective cleavage of C-C and C-O bonds. Therefore, the integral C-C and C-O bond cleavage ratios were summarized in Table 2. By assuming that the soluble polymer and the insoluble humins were regarded as the products with no C-C and C-O bond cleavage,

¹⁹ the detail definition is as follows:

²⁰ C - O (%) =
$$\left(1 - \frac{C - 0 \text{ bond mol of product}}{C - 0 \text{ bond mol of converted glucoses}}\right) \times 100$$
 (1)

²¹ C - C (%) =
$$(1 - \frac{C - C \text{ bond mol of product}}{C - C \text{ bond mol of converted glucoses}}) \times 100$$
 (2)

		Selectivity (on a contant basis $9/$)							C-C/C-O bond cleavage ratio		tio	
Catalyst	Conv. (%)	Selectivity	Selectivity (on a carbon basis, %)				C ₃ (mol%)	$C_2 + C_4 \pmod{6}$	(%)		TC (%)	
		Sorbitol	EG	Glycerol	PDO	Glycol ^b	Others ^c	_		C-C	C-0	
Cu/y-Al ₂ O ₃	99.4	3.5	8.6	11.1	58.0	66.6	18.8	70.6	19.0	21.2	37.8	100
Cu/MgO	99.6	3.4	14.0	20.0	41.0	55.0	21.6	61.9	24.9	19.2	31.5	95.8
Cu/ZrO ₂	99.2	7.0	5.4	9.5	34.6	40.0	43.5	47.6	22.7	14.5	32.1	80.3
Cu/SiO ₂	96.3	82.4	0.5	1.4	4.5	5.0	11.2	6.2	5.8	6.3	18.3	100
Cu/TiO ₂	97.2	0.9	0.5	0.5	3.2	3.7	94.9	5.7	5.4	13.8	8.8	28.8
Ni/y-Al ₂ O ₃	99.0	2.4	3.4	2.5	28.8	32.2	62.9	31.8	13.9	11.2	34.3	53.8
Pd/y-Al ₂ O ₃	99.4	2.5	6.4	4.3	50.4	56.8	36.4	62.8	43.3	24.7	43.6	100
Ru/y-Al2O3	95.3	0.0	0.0	0.0	0.9	0.9	99.1 ^d	9.1	10.9	70.2	84.5	92.6

Table 2. The activities and selectivities of glucose hydrogenolysis on the prepared catalysts^a

methanol, ethanol, propanol, butanol, etc. d Include 84.6% selectivity of alkanes from C1 to C6, with 66.4% methane.

2. 3. January 2018. Downloaded by Jowas State University on 1/28/2019. 8:202.35 AML 2. 9. 5. 4. 6. 7. 1. 0. 6. 8. 2. 9. 5. 4. 6. 7. 1. 0. 6. 8. 2. 9. 5. 1. 0. 1. 0. 5. 9. 5. 5. 5. 5. 5. 5. 5. 5. 5

uonpansikanda. 1000 millionen de la construcción de

View Article Online DOI: 10.1039/C8NJ05815F

Figure 5. The correlation between Cu surface area and the C-C/C-O bond cleavage

percent.

The results of C-C and C-O bond cleavage ratios of glucose showed that there was even no cleavage of C-O and C-C bonds occurring on Cu/SiO₂. The highest selectivity of sorbitol is considered to be related with the nearly neutral surface of the catalyst and the agglomerated Cu particles, which provide weak dehydration and retro-aldol condensation reaction activity. In contrast, Cu/TiO₂ showed very low copper surface area and hydrogenation activity, resulting in the main products of soluble and insoluble polymer after reaction. Cu/y-Al₂O₃, with the highest copper surface area and acid amounts, showed the highest C-O and C-C bond cleavage activity. It suggests that the coordination of acid/basic sites and the copper sites could not only promote the cleavage of C-C/C-O bonds but also the efficient hydrogenation of the intermediate fragments. The correlation between Cu surface area and the C-C/C-O bond cleavage percent has been drawn and provided in Figure 5. The results showed that the C-C bond cleavage percent of glucose displayed a similar decrease tendency with the decreasing of Cu

1
2
3
4
5
6
7
8
a
10
10
11
12
13
14
15 Z
₹16 \$2
ମ୍ମ7
8
ମ୍ମ ୨
Ž0
S⊇1
ହି2
÷23
.≣ 24
÷25
S ₽7
38
20
30
721
a Mar
ළි∠ බා
010 20
∩94 ລິ⊊
and Con
_ತ್ರರ ೧೯೯೯
୍ଷ/ କ
38
- 3 9
<u>ब</u> ्र
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
50 50
55

1	View Article Online surface areas of the supported Cu catalysts. It indicates that the dispersion of Cu played
2	a significant role in C-C bond cleavage. However, it is known that Cu has lower activity
3	for C-C bond cleavage through the straightforward hydrogenolysis. Furthermore, many
4	researchers have also conducted the retro-aldol condensation reaction on metal catalysts,
5	indicating that the metallic sites are the active site. ^{13,26,52,53} Accordingly, the retro-aldol
6	condensation reaction can be performed at acid, basic or even neutral conditions. For
7	example, Torresi has studied the conversion of diols on copper-silica catalysts. They
8	pointed out that retro aldol-like reactions occurred on metallic Cu sites. ⁵³ Considering
9	the carbon balance and the Cu active sites for the retro-aldol condensation reaction, it
10	suggests that the well dispersed Cu sites could not only inhibit the polymerization of
11	glucose and the unsaturated intermediates by promoting their
12	hydrogenation/dehydrogenation reactions, but also promote the retro-aldol
13	condensation reaction efficiently. The retro-aldol condensation mechanism of the
14	hydrogenolytic cleavage of polyols was proposed in the 1980s by the group of
15	Montassier, which has been widely accepted. ^{1,54-56} They postulated that C-C bond
16	cleavage of polyols was catalyzed by adsorbed hydroxyl species on the metal catalyst
17	surface. Therefore, we speculated that Cu could promote the retro-aldol condensation
18	reaction by the adsorbed hydroxyl groups on the Cu^0 sites. However, the variation trend
19	of the percent of C-O bond cleavage was not strictly followed that of Cu surface area.
20	The discrepancy could be due to the effect of acidic sites on the catalyst surface. The
21	overall C_3 and $C_2 + C_4$ product selectivities were also summarized. Cu/γ -Al ₂ O ₃ showed
22	the highest C ₃ product selectivity. It is related with the promoting effect of Lewis acid

Page 21 of 32

New Journal of Chemistry Accepted Manuscript

- hydrogenolysis of glucose to C_3 product. Moreover, Cu/MgO showed the highest C_2 +
- C₄ product selectivity compared with other catalysts.

3.3. The effect of different transition metals in glucose conversion

The above text showed that the hydrogenation activity played an important role on the product selectivity. Furthermore, the transition metal also has the direct hydrogenolysis activity towards the C-C/C-O bonds, which will make the reactions and products of glucose hydrogenolysis more complicated. For example, Ru and Pt supported on activated carbon were used for glucose hydrogenolysis at 180 °C.⁵⁷ The Pt/AC catalysts displayed high selectivity toward sorbitol. On the other hand, the Ru/AC catalysts showed higher selectivity toward C₃-C₆ polyols, with sorbitol selectivity of only 55-90%. Therefore, the coordination effect between γ -Al₂O₃ and different transition metals with various hydrogenolysis activities have been studied. The hydrogenolysis of glucose over Ni/y-Al₂O₃, Pd/y-Al₂O₃, and Ru/y-Al₂O₃ were compared. The product distribution over different metal catalysts varied widely. The glycol product selectivity was very low on Ni/y-Al₂O₃. A considerable amount of xylitol, erythritol, and 1,2-butanediol existed in the liquid products. A small amount of methane was also detected in the gas phase. This result is similar with the report of Ye.⁵⁸ CH₄ was also formed in the hydrogenolysis of sorbitol on the Ni/y-Al₂O₃ catalyst, with the selectivity of 8.3%. It displays that Ni has activity to break C-C bond at the terminal of the carbon chain of glucose, with the total C-C and C-O bond cleavage ratios of 11.2% and 34.3% respectively. Pd/γ -Al₂O₃ showed very high selectivity for PDO (50.4%). The

2. 3. January 2018. Downloaded by Jowas State University on 1/28/2019. 8:202.35 AML 2. 9. 5. 4. 6. 7. 1. 0. 6. 8. 2. 9. 5. 4. 6. 7. 1. 0. 6. 8. 2. 9. 5. 1. 0. 1. 0. 5. 9. 5. 5. 5. 5. 5. 5. 5. 5. 5 ished on 8 ៉្មីឆ្នាំ0 41

/iew Article Online total C-C and C-O bond cleavage ratios were 24.7% and 43.6% respectively, suggesting that Pd has high activity for the cleavage of the central C-C bonds of glucose. Ru/y-Al₂O₃ had very low selectivity to polyols, with the total selectivity below 10%. In contrast, the alkane selectivity was up to 84.6%, with 66.4% selectivity of methane. It suggests that Ru has the highest activity for C-C and C-O bond cleavage, with the C-C and C-O bond cleavage ratios of 70.2% and 84.5% respectively. Furthermore, the C-C bond cleavage mainly occurs at the terminal of the carbon chain of glucose.⁵⁹

3.4. The function of supports in glucose conversion

Table 3. The conversion of glucose on different supports^a

Cetalant	Conversion		Se	lectivi	ty (%)			TC
Catalyst	(%)	Fructose	Glycerol	EG	PDO	HMF	Others ^b	(%)
Blank	33.1	37.4	0.8	0.0	14.0	24.1	25.1	97.2
γ-Al ₂ O ₃	90.8	2.8	0.0	0.8	2.8	4.3	89.3	33.0
ZrO ₂	94.7	1.9	0.0	0.7	1.2	3.9	89.9	29.4
^a Reaction	n condition: 5 v	vt% glucos	e aqueous s	olutio	n, 4 MF	P a, 180 ^o	C, H2-gluo	cose =
161:1 (mol ratio), LHSV = 0.2 h ⁻¹ . ^b Others include small amounts of methanol,								
ethanol, propanol, 1.2-butanediol, etc.								

As mentioned above, the supports can provide not only a surface to disperse the active component, but also acid/basic sites to promote the isomerization, dehydration, and retro-aldol condensation reactions. In order to confirm the catalytic effect of the supports, two supports such as y-Al₂O₃ and ZrO₂ with different acidity and basicity were tested. The results are displayed in Table 3. The conversion of glucose without

New Journal of Chemistry

1	any catalysts was only 33.1%. A certain amount of fructose and 5-
2	hydroxymethylfurfural (HMF) were detected, with the selectivities of 37.4% and 24.1%,
3	respectively. It suggested that the isomerization and dehydration reactions could be
4	conducted in the hydrothermal condition without any catalyst in the H ₂ atmosphere.
5	These results are consistent with the report of Sasaki et al. ⁶⁰ They conducted the
6	transformation of glucose with none catalyst in supercritical water. Products from the
7	retro-aldol condensation, isomerization, and dehydration reaction of glucose were
8	obtained. When the catalytic transformation of glucose was conducted on γ -Al ₂ O ₃ and
9	ZrO ₂ , the conversion of glucose increased significantly. However, the selectivities of
10	fructose, PDO, and HMF had decreased. Glucose was mainly converted to both
11	insoluble humins and soluble polymeric byproducts. This could be attributed to the
12	oligomerization reaction of glucose and/or the unsaturated intermediates, which can be
13	carried out in the presence of an acid and basic catalyst through dehydration and aldol
14	condensation. ^{61,62}

New Journal of Chemistry Accepted Manuscript

3.5. The catalytic conversion of Cu/γ-Al₂O₃ for other polyols

Matarial	Conv. (%)	Selectivity (%)							TC	
Material		Glucose	Sorbitol	Mannitol	Glycerol	EG	PDO	Glycol ^b	Others	(%)
Glucose	99.4	-	3.5	0.0	11.1	8.6	58.0	66.6	18.8	100
Fructose	100	1.0	0.0	5.3	9.4	5.3	47.2	52.5	31.8	81.6
Sorbitol	33.0	-	-	0	36.6	14.7	39.5	54.2	9.2	100
Glycerol	46.0	-	-	-	-	11.7	86.9	98.6	1.4	100
^a Reaction	condition: 5	wt% glucos	e aqueous s	solution, 4 N	1Pa, 180 °C,	H2-glu	cose = 1	161:1 (mol	ratio); LF	ISV =
0.2 h ⁻¹ . ^b I	0.2 h ⁻¹ . ^b EG and PDO									

Table 4. The hydrogenolysis of different materials on Cu/γ -Al₂O₃^a

In order to study the synergistic effect of metal sites and the acid/basic sites on the

¹⁸ intermediate products of glucose hydrogenolysis, the catalytic conversion of fructose,

2	
3	
Δ	
5	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
.15	
¥6	
517	
SI /	
38	
ମ୍ମ ୨	
Ž20	
21	
້ອ້າ	
ž2	
.Z3	
.224	
⊋5	
₫6	
S P	
.≶_′	
N ² 0	
39	
- <u>3</u> 30	
3 1	
ໍ້ລ2	
 ~~~~	
5 <u>1</u> 01	
~34 ≧-	
aj 5	
.මූි6	
37	
ଞ୍ଚିନ	
о С С	
-Set	
<u>ब</u> ै0	
41	
42	
43	
44	
15	
45	
46	
47	
48	
49	
50	
50 51	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
59	

sorbitol, and glycerol were also performed on $Cu/\gamma$ -Al ₂ O ₃ at 180 °C and 4 MPa. The
results are displayed in Table 4. The product species of glucose and fructose
hydrogenolysis were similar. All the products identified in glucose conversion were
detected in fructose conversion. However, the carbon balance and the product
selectivity were lower than that of glucose conversion. It suggested that humins was
easier formed in fructose conversion than in glucose conversion. Glucose was also
detected in the products of fructose conversion. It displayed that fructose could also
isomerized to glucose in this reaction condition. Sorbitol was difficult to be degraded
in the hydrogenation environment with $Cu/\gamma$ -Al ₂ O ₃ catalyst, with only 33.0%
conversion obtained. Glycerol and glycol were the main products in the liquid phase,
with the yields of 36.6 and 54.2% respectively. It has been identified that sorbitol was
not the intermediate of producing glycerol and glycol in the hydrogenolysis of
glucose. ⁶³ Many reports also proved that the selective hydrogenation of glucose to
sorbitol was the main undesirable competitive pathway for glycol producing. ^{64,65} The
conversion of glycerol was similar with that of sorbitol (46.0%). Although the
conversion was not very high, the selectivity of PDO reached 86.9%. Considering the
hydrogenolysis performance of glucose and glycerol, PDO may be generated from the
hydrogenolysis of glycerol or the intermediates of fructose conversion. Furthermore, it
turned out that PDO was easier obtained from glucose than from glycerol in the reaction
condition.

3.6. The synergistic effect between metal and metal oxide on the product distribution of glucose hydrogenolysis

#### New Journal of Chemistry

View Article Online

**New Journal of Chemistry Accepted Manuscript** 

As illustrated above, the product distribution of glucose hydrogenolysis depended on the type and the relative catalytic activity of active sites. Only products from the dehydration and polymerization of glucose and the unsaturated intermediates were detected with only metal oxide catalysts. The neutral Cu/SiO₂ catalyst could mainly promote the hydrogenation of glucose to sorbitol. However, the synergistic effect between well dispersed Cu sites and the basic/Lewis acid sites could promote the hydrogenolysis of glucose to lower polyols. Furthermore, Lewis acid sites on  $\gamma$ -Al₂O₃ could promote the isomerization of glucose to fructose, which could be transformed to the C₃ product through retro-aldol condensation reaction on the well dispersed Cu sites. The unsaturated C₃ products then undergo the dehydration and hydrogenation reactions on Lewis acid sites and well dispersed Cu sites respectively, resulting the highest PDO selectivity on y-Al₂O₃. Cu/MgO showed the highest C₂ selectivity compared with other catalysts. Furthermore, it has been suggested that glucose can be directly converted to C₂ and C₄ products through retro-aldol condensation.⁶⁰ It turned out that the Cu/MgO catalyst could accelerate the retro-aldol condensation and the isomerization reaction rates simultaneously, which is disadvantageous for the enhancement of product selectivity. 

#### 

#### 3.7. The role of support, Cu dispersion and Cu states

The NH₃-TPD and CO₂-TPD results showed that the oxide supports could provide Lewis acid and basic sites. Glucose and the unsaturated intermediates could form polymers on the acid and basic sites without efficient hydrogenation sites. However, in the hydrogen atmosphere, the basic sites could facilitate the isomerization and retro-

aldol condensation reaction. Furthermore, the Lewis acid sites could promote the promote the sites could promote the sites cou

Liu et al. has studied the synergistic effect of Ru and WO_x on the bifunctional Ru-W/SiO₂ catalysts for the hydrogenolysis of glucose.⁶⁶ They suggested that the retro-aldol condensation reaction of glucose or fructose was conducted on  $WO_x$  acid sites. Pang et al. have performed the selective conversion of concentrated glucose to 1,2-propylene glycol and ethylene glycol on RuSn/AC catalysts.⁶⁷ They proposed that both RuSn alloy and the highly dispersed Sn⁴⁺ species could promote the retro-aldol condensation of glucose to form C₂ and C₃ intermediates. Holm and co-workers found that the Lewis acid sites on the zeotype catalysts, such as Ti-, Sn-, and Zr-Beta, could catalyze the retro aldol condensation reaction of the glucose and fructose.⁶⁸ Therefore, we proposed that the Lewis acid sites on the catalysts we prepared could also promote the retro-aldol condensation reaction. 

The hydrogenation and retro-aldol condensation reactions could be conducted on the Cu sites. Therefore, more Cu active sites could promote the hydrogenation and retroaldol condensation reactions.

¹⁷ The CO-DRIFTS suggested that CuO cannot be completely reduced on the Cu/SiO₂, ¹⁸ Cu/ZrO₂ and Cu/TiO₂ catalysts, with some oxidized Cu^{$\delta$ +} species existing. As suggested ¹⁹ by the Py-FTIR spectra, only Lewis acid sites existed on the catalyst surface. Therefore, ²⁰ the Cu^{$\delta$ +} species may also act as Lewis acid sites on the catalysts and promote the ²¹ isomerization, retro-aldol condensation, and the dehydration reactions.^{31,69,70}

**4.** Conclusion

#### New Journal of Chemistry

View Article Online

**New Journal of Chemistry Accepted Manuscript** 

The synergistic effect between transition metal and metal oxides on the on the hydrogenolysis of glucose was studied. The product selectivities were strongly influenced by the coordination of hydrogenation metal sites and acid/basic sites. The neutral Cu/SiO₂ catalyst could mainly promote the hydrogenation of glucose. The metal oxides with acid and basic sites could promote the oligomerization reactions of glucose and the unsaturated intermediates without hydrogenation sites. The coordination of high dispersed copper sites and the large amounts of weak and middle Lewis acid sites could tune the isomerization, retro-aldol condensation, and hydrogenation reactions rates, resulting the main product of C₃ polyols. The synergy between the high dispersed copper sites with basic sites could accelerate retro-aldol condensation and isomerization reactions rates simultaneously, resulting the main products of C₂, C₃, and C₄ polyols.

The direct hydrogenolysis of transition metals could also affects the product selectivity. Pd has high selectivity for the central C-C bond cleavage of glucose. However, Ru and Ni have excess hydrogenolysis activity for the terminal of the carbon chain of glucose, with 84.6% alkane selectivity on Ru/y-Al₂O₃. 

Glucose and Fructose, with the unsaturated C=O bond, has higher C-C/C-O cleavage activity than the saturated polyols (such as sorbitol and glycerol) in hydrogenation condition. Furthermore, this paper provides a design method of catalyst for the efficient conversion of the saccharides and polyols.

Acknowledgement 

This work was financially supported by the Major State Basic Research Development Program of China (973 Program) (No. 2012CB215305), the Natural

2		
З		
4		
4		
5		
6		
7		
, ,		
8		
9		
1	ი	
1	1	
1	1	
1	2	
1	3	
1	Δ	
1	-	
₹	5	
₫	6	
9	7	
ä	0	
ż	•	
1	9	
Ź	0	
Ĩ	1	
ų	' `	
2	2	
Z	3	
₿	4	
E	E	
te N	2	
Š	6	
Ż	7	
ŝ	8	
2	2	
3	9	
Ž	0	
3	1	
š	י ר	
షె	2	
23	3	
3	4	
<b>S</b>	5	
'nď	c	
<u>a</u>	0	
3	7	
ෂි	8	
g	Ô	
3	2	
ब्रै	0	
4	1	
Δ	2	
т Л	2	
4	5	
4	4	
4	5	
Δ	6	
-т л	-	
4	1	
4	8	
4	9	
5	ĥ	
2	0	
5	1	
5	2	
5	٦	
7	ر ۸	
5	4	
5	5	
5	6	
5	- 7	
2	1	
5	8	
5	9	
6	ი	
J	J	

1

#### /iew Article Online

- Science Foundation of Tianjin (No. 18JCQNJC06600) and the Science & Technology
- Development Fund of Tianjin Education Commission for Higher Education (No. 2
- 2018KJ203). This work was also supported by Synfuels China Co., Ltd. 3

#### References 4

- 1 A. M. Ruppert, K. Weinberg, R. Palkovits, Angew. Chem. Int. Ed., 2012, 51, 2564-2601. 5
- 2 J. N.Chheda, G. W. Huber, J. A. Dumesic, Angew. Chem. Int. Ed., 2007, 46, 7164-7183. 6
- 3 Y. Zheng, X. Chen, Y. Shen, Chem. Rev., 2008, 108, 5253-5277. 7
- 4 D. M. Alonso, S. G. Wettstein, J. A. Dumesic, Chem. Soc. Rev., 2012, 41, 8075-8098.
- 5 M. Patel, A. Kumar, Renew. Sust. Energ. Rev., 2016, 58, 1293-1307. 9
- 6 A. Yepez, A. Pineda, A. Garcia, A. A. Romero, R. Luque, Phys. Chem. Chem. Phys., 2013, 15, 10 12165-12172. 11
- 7 P. Gallezot, N. Nicolaus, G. Flèche, P. Fuertes, A. Perrard, J. Catal., 1998, 180, 51-55. 12
- 8 H. Li, W. Wang, J. Deng, J. Catal., 2000, 191, 257-260. 13
- 9 G. Zhao, M. Zheng, J. Zhang, A. Wang, T. Zhang, Ind. Eng. Chem. Res., 2013, 52, 9566-9572. 14
- 10 W. R. Gunther, Y. Wang, Y. Ji, V. K. Michaelis, S. T. Hunt, R. G. Griffin, Y. Román-Leshkov, 15
- Nature Commun., 2012, 3: 1109, 1-8. 16
- 11 C. Baatz, U. Prüße, J. Catal., 2007, 249, 34-40. 17
- 12 H. Liu, Z. Huang, H. Kang, X. Li, C. Xia, J. Chen, H. Liu, Appl. Catal. B: Environ., 2018, 220, 18 251-263. 19
- 13 N. Li, G. A. Tompsett, T. Zhang, J. Shi, C. E. Wyman, G. W. Huber, Green Chem., 2011, 13, 20 91-101. 21
- 14 G. W. Huber, R. D. Cortright, J. A. Dumesic, Angew. Chem., 2004, 116, 1575-1577. 22
- 15 C. W. Lenth, R. N. Du Puis, British Patent, 1939, 499,417. 23
- 16 C. W. Lenth, R. N. Du Puis, U. S. Patent, 1940, 2,201,235. 24
- 17 Z. Huang, F. Cui, J. Xue, J. Zuo, J. Chen, C. Xia Catal. Today, 2012, 183, 42-51. 25
- 18 B. Blanc, A. Bourrel, P. Gallezot, T. Haas, P. Taylor, *Green Chem.*, 2000, 2, 89-91. 26
- 19 W. H. Zartman, H. Adkins, J. Am. Chem. Soc., 1933, 55, 4559-4563. 27
  - 20 L. Guo, J. Zhou, J. Mao, X. Guo, S. Zhang, Appl. Catal. A-Gen., 2009, 367, 93-98. 28

1	21 I. Gandarias, P. L. Arias, J. Requies, M. E. Doukkali, M. B. Güemez, J. Catal., 2011, 282, 237 View Article Online DOP. 10.1039/C8NJ05815F
2	247.
3	22 J. Chaminand, L. Djakovitch, P. Gallezot, P. Marion, C. Pinel, C. Rosier, Green Chem., 2004, 6,
4	359-361.
5	23 M. A. Andrews, S. A. Klaeren, J. Am. Chem. Soc., 1989, 111, 4131-4133.
6	24 J. Sun, H. Liu, Green Chem., 2011, 13, 135-142.
7	25 X. Chen, X. Wang, S. Yao, X. Mu, Catal. Commun., 2013, 39, 86-89.
8	26 Y. T. Kim, J. A. Dumesic, G. W. Huber, J. Catal., 2013, 304, 72-85.
9	27. X. Wang, X. Liu, Y. Xu, G. Peng, Q. Cao, X. Mu, Chinese J. Catal., 2015, 36, 1614-1622.
10	28. Z. Huang, J. Chen, Y. Jia, H. Liu, C. Xia, H. Liu, Appl. Catal. B: Environ., 2014, 147, 377-
11	386.
12	39 G. C. Bond, S. N. Namijo, J. Catal., 1989, 118, 507-510.
13	30 C. J. G. Van Der Grift, A. F. H. Wielers, B. P. J. Jogh, J. Van Beunum, M. De Boer, M.
14	Versluijs-Helder, W. Geus, J. Catal., 1991, 131, 178-189.
15	31 B. Zhang, Y. Zhu, G. Ding, H. Zheng, Y. Li, Appl. Catal. A-Gen., 2012, 443-444, 191-201.
16	32 S. Zhu, Y. Zhu, S. Hao, H. Zheng, T. Mo, Y. Li, Green Chem., 2012, 14, 2607-2616.
17	33 M. Watanabe, Y. Aizawa, Torulida, R. Nishimura, H. Inomata. Appl. Catal. A-Gen., 2005, 295,
18	150-156.
19	34 S. Zhu, X. Gao, Y. Zhu, Y. Zhu, H. Zheng, Y. Li, J. Catal., 2013, 303, 70-79.
20	35 E. P. Maris, W. C. Ketchie, V. Oleshko, R. J. Davis, J. Phys. Chem. B, 2006, 110, 7869-7876.
21	36 C. Gu, G. Li, Y. Hu, S. Qing, X. Hou, Z. Gao, J. Fuel Chem. Technol., 2012, 40 (11), 1328-
22	1335.
23	37 Z. Yan, H. Yang, J. Ouyang, A. Tang, Chem. Eng. J., 2017, 316, 1035-1046.
24	38 A. Dandekar, M. A. Vannice, J. Catal., 1998, 178, 621-639.
25	39 C. S. Chen, J. H. You, J. H. Lin, Y. Y. Chen, Catal. Commun., 2008, 9, 2381-2385.
26	40 F. Boccuzzi, A. Chiorino, G. Martra, M. Gargano, N. Ravasio, B. Carrozzini, J. Catal., 1997,
27	<b>165</b> , 129-139.
28	41 R. M. Ferullo. N. J. Castellani, J. Mol. Catal. A-Chem., 2005, 234, 121-127.
29	42 C. Morterra, E. Giamello, G. Cerrato, G. Centi, and S. Per athoner, J. Catal., 1998, 179, 111-

4	1
5 6	2
7 8	3
9 10	4
11 12	5
13 14	6
_15 ₩₹6	7
517 0018	8
8 9 5 0 10 5 0	9
321 52	10
-123 -123 -24	11
	12
<u>පි</u> ව මූ7 මූ	13
20 29 30	14
ະ ເອີ້ອງ ເຊິ່ງ ເຊິ່ງ ເຊິ່ງ ເຊິ່ງ ເຊິ່ງ ເຊິ່ງ ເຊິ່ງ ເຊິ່ງ ເຊິ່ງ ເຊິ່ງ ເຊິ່ງ ເຊິ່ງ ເຊິ່ງ ເຊິ່ງ ເຊິ່ງ ເຊິ່ງ ເຊິ່ງ ເຊິ່ງ ເຊິ່ງ ເຊິ່ງ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ ເຫຼົາ เป็น เปิน เปิน เปิน เปิน เปิน เปิน เปิน เปิ	15
ୟ ମୁ ଅ ଅ ଅ ଅ ଅ	16
SAMONUM	17
337 17	18
alishedo 0	19
雪0 41 42	20
42 43	21
44 45	22
40 47	23
48 49	24
50 51	25
52 53	26
54 55	20
56 57	27
58 59	28
60	29

1 2 3

View Article Online DOI: 10.1039/C8NJ05815F

- 43 T. Venkov, M. Dimitrov, K. Hadjiivanov, J. Mol. Catal. A-Chem., 2006, 243, 8-16.
- ³ 44 M. Mihet, M. D. Lazar, *Catal. Today*, 2018, **306**, 294-299.
- 45 Ahmed Al-Fatesh, *JKSUES*, 2015, **27**, 101-107.
- ⁵ 46 M. Nagai, K. Koizumi, S. Omi, *Catal. Today*, 1997, **35**, 393-405.
- ⁶ 47 V. S. Kumar, B. M. Nagaraja, V. Shashikala, P. Seetharamulu, A. H. Padmasri, B. D. Raju, K. S.
- 7 R. Rao, J. Mol. Catal. A-Chem., 2004, 223, 283-288.
- ⁸ 48 E. P. Parry, J. Catal., 1963, **2**, 371-379.
- ⁹ 49 M. I. ZaKi, M. A. Hasan, F. A. Al-Sagheer, L. Pasupulety, *Colloid. Surface. A*, 2001, **190**, 261 ¹⁰ 274.
- 50 P. Concepción, M. T. Navarro, T. Blasco, J. M. López Nieto, B. Panzacchi, F. Rey, Catal.
- ¹² *Today*, 2004, 96, 179-186.
- ¹³ 51 X. Chen, G. Clet, K. Thomas, M. Houalla, J. Catal., 2010, 273, 236-244.
- ¹⁴ 52 N. Li, G. W. Huber, J. Catal., 2010, **270**, 48-59.
- ¹⁵ 53 P. A. Torresi, V. K. Díez, P. J. Luggren, J. I. Di Cosimo, *Appl. Catal. A: Gen.*, 2013, **458**, 119-
- ¹⁶ 129.

128.

- ¹⁷ 54 C. Montassier, J. C. Ménézo, L. C. Hoang, C. Renaud, J. Barbier, J. Mol. Catal., 1991, 70, 99-
- ¹⁸ 110.
- 55 D. K. Sohounloue, C. Montassier, J. Barbier, React. Kinet. Catal. Lett., 1983, 29, 391-397.
- ²⁰ 56 K. Wang, M. C. Hawley, T. D. Furney, *Ind. Eng. Chem. Res.*, 1995, **34**, 3766-3770.
- ²¹ 57 P. A. Lazaridis, S. Karakoulia, A. Delimitis, S. M. Coman, V. I. Parvulescu, K. S.
- ²² Triantafyllidis, *Catal. Today*, 2015, **257**, 281-290.
- ²³ 58 L. Ye, X. Duan, H. Lin, Y. Yuan, *Catal. Today*, 2012, **183**, 65-71.
- ²⁴ 59 C. Liu, C. Zhang, K. Liu, Y. Wang, G. Fan, S. Sun, J. Xu, Y. Zhu, Y. Li, *Biomass & Bioenergy*,
  ²⁵ 2015, **72**, 189-199.
- ²⁶ 60 M. Sasaki, K. Goto, K. Tajima, T. Adschiri and K. Arai, *Green Chem.*, 2002, **4**, 285-287.
- 61 C. J. Barrett, J. N. Chheda, G. W. Huber, J. A. Dumesic, Appl. Catal. B-Environ., 2006, 66,
- ²⁸ 111-118.
- ²⁹ 62 G. W. Huber, J. N. Chheda, C. J. Barrett, J. A. Dumesic, *Science*, 2005, **308**, 1446-1450.

3
4
5
6
7
/
8
9
10
11
12
13
14
15
40 217
ពី /
<b>3</b> 8
ମ୍ମ ୨
<b>2</b> 0
S≥1
ົຈ22
23
I⊃Z4
.27 D
CZ
3 <u>7</u> 6
27
- <u>2</u> 8
Ź9
-30
- 331
32
21- 21-2
201¢
າ 294 ເລີ
Bang 5
<u>ತ</u> 76
37
<u>3</u> 8
39
211
42
42 12
45
44
45
46
47
48
49
50
51
52
52 52
55
54
55
56
57
58

- 63 C. Liu, C. Zhang, S. Hao, S. Sun, K. Liu, J. Xu, Y. Zhu, Y. Li, *Catal. Today*, 2016, **261**, 116. View Article Online
  - ² 127.
  - ³ 64 Y. Kanie, K. Akiyama, M. Iwamoto, *Catal. Today*, 2011, **178**, 58-63.
  - ⁴ 65 P. Ooms, M. Dusselier, J. A. Geboers, B. O. Beeck, R. Verhaeven, E. Gobechiya, J. A. Martens,
- ⁵ A. Redl, B. F. Sels, *Green Chem.*, 2014, **16**, 695-707.
- ⁶ 66 Y. Liu, Y. Liu, Y. Zhang, Appl. Catal. B: Environ., 2019, 242, 100-108.
- ⁷ 67 J. Pang, M. Zheng, X. Li, Y. Jiang, Y. Zhao, A. Wang, J. Wang, X. Wang, T. Zhang, *Appl.*
- ⁸ *Catal. B: Environ.*, 2018, **239**, 300-308.
- ⁹ 68 M. S. Holm, S. Saravanamurugan, E. Taarning, *Science*, 2010, **328**, 602-605.
- ¹⁰ 69 A. Yin, X. Guo, W. L. Dai, K. Fan, J. Phys. Chem. C, 2009, **113**, 11003-11013.
- ¹¹ 70 B. Z. Sun, W. K. Chen, X. Wang, C. H. Lu, *Appl. Surf. Sci.*, 2007, **253**, 7501-7505.

View Article Online DOI: 10.1039/C8NJ05815F



#### The coordination of copper and different acid/basic sites could promote the selective

hydrogenolysis of glucose to polyols.