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Since the isolation of the first disilene, a compound
containing a silicon ± silicon double bond, in 1981,[1] many
stable compounds with a double bond involving the Group 14
elements Si, Ge, and Sn have been synthesized.[2] In contrast,
compounds containing a triple bond to a Group 14 element
other than C remained unknown. Power[3] described recently
a lead analogue of an alkyne (ArPbPbAr) but more consistent
with a diplumbylene form. However, some compounds with
triple bonds to Si were identified by spectroscopy or by
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various other methods.[4] Germaisocyanides :Ge�NR have
only been detected by photoelectron spectroscopy,[5] whereas
in coordination chemistry, stable transition metal germylyne
complexes have been reported and structurally characterized
since 1996.[6] No triple bond to tin has yet been described.

Besides the difficulty in isolating such a triply bonded
compound and the possibility that more stable isomers exist,
the major obstacle remains to find a suitable synthetic
method. We considered a potential route to germynes
RGe�CR' from a germylene ± carbene structure (Scheme 1).

Scheme 1. Resonance forms: germylene ± carbene and germyne.

Coupling reactions between germylenes (or stannylenes) and
carbenes that provide convenient access to GeÿC and SnÿC
double bonds[7, 8] prompted us to extend such a methodology
to the formation of a germanium ± carbon triple bond from a
s-bonded germylene ± carbene compound. Generation of a
carbene moiety adjacent to a Group 14 element bearing both
a lone pair and a vacant p orbital[9] appears to be an attractive
method for the synthesis of a triply bonded metal ± carbon
species. Diazogermylenes RGeC(N2)R' may be convenient
precursors for the formation of such a unit by photolysis or
thermolysis. We describe here the synthesis and the structure
of diazogermylenes ArGeC(N2)SiMe3 and an initial study of
their photochemical behavior.

The 2,6-bis[(dialkylamino)methyl]phenyl groups (R1
2NCH2)2-

C6H3 (Ar) are suitable ligands because of their steric bulk and,
in particular, their stabilizing effect due to intramolecular
coordination of the nitrogen lone pair to empty orbitals on the
metal atom. The use of this kind of ligand has allowed the
preparation of sensitive derivatives of main group elements,
such as gallium and indium halides (R1�Me, Et)[10a±c] as well
as a chlorostannylene (R1�Me).[10d]

The diazogermylenes were obtained in good yields by one-
pot synthesis [Eq. (1)]. Compounds 1 and 2 are readily soluble

in hydrocarbon and ether solvents and have been fully
characterized. Whereas 1 is a yellow, viscous oil, 2 is
crystalline, and single crystals suitable for an X-ray structure
determination were grown from pentane at ÿ20 8C. The
structure analysis[11] showed 2 to be monomeric in the solid
state (Figure 1).

The Ar ligand is bound to germanium in a bidentate fashion
with a s bond to the ipso-carbon atom C5 and intramolecular
coordination of the N atom of a CH2NiPr2 side chain. The
Ge1ÿN3 distance of 2.35(9) � is, as expected, longer than the
a normal GeÿN s bond (1.92 �[12a]) but much shorter than the
sum of the van der Waals radii (3.74 �[12b]). The GeÿN4
distance (3.05(3) �) indicates a weak interaction between the
N atom of the other side chain and the metal atom. The
coordination sphere of germanium is completed by the
Ge1ÿC1 bond, which is oriented almost orthogonal (96.88)

Figure 1. Molecular structure of 2 in the solid state. Selected distances [�]
and angles [8]: Ge1-C5 2.006(5), Ge1-C1 2.02(1), Si1-C1 1.85(8), Ge1-N3
2.35(9), Ge1-N4 3.05(3), C1-N1 1.298(2), N1-N2 1.146(2); C5-Ge1-C1
96.84(7), C5-Ge1-N3 80.46(6), C1-Ge1-N3 98.94(6), N1-C1-Si1 115.55(12),
Ge1-C1-Si1 128.0(8), Ge1-C1-N1 116.33(11), N2-N1-C1 178.02(10).

to the plane of the aryl ligand. The Ge1ÿC1 (2.02(1) �) and
C1ÿSi1 (1.85(8) �) bond lengths are close to the normal
values for s bonds of 1.99 and 1.94 �, respectively.[12a] The
Ge1-C1-Si1 angle of 128.0(8)8 is consistent with sp2 hybrid-
ization of carbon atom C1 and a repulsive steric interaction
between germanium and the SiMe3 group.

When a solution of 2 in toluene was irradiated at ÿ50 8C
and l� 300 nm in the absence of a trapping agent, we
observed evolution of nitrogen and formation of polymeric
materials. Elemental analyses of these polymers are compat-
ible with a formula such as (ArGeCSiMe3)n. When the same
irradiation was carried out in the presence of an alcohol as a
trapping agent, 3 was obtained in nearly quantitative yield for
R2� tBu and in 40 % yield for R2�Me [Eq. (2)]. The

formation of 3 from the germylene ± carbene species ArGÈ eÿCÈ -
SiMe3 (I) formed by photolysis of 2 can be explained by three
possible mechanisms (Scheme 2): I can react as a carbene (1),
as a germylene (2), or as a germyne (3). All processes involve
the transient formation of germene ArGe(OR2)�CHSiMe3,
but routes 1 and 2 require rearrangement reactions.

Mechanism 1 can be excluded since I does not behave as a
carbene; for example, it does not react with dienes such as 2,3-
dimethylbutadiene, which is well known to react with

Scheme 2. Possible mechanisms of the trapping reaction (2).
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carbenes.[13] Moreover, kinetic studies have shown that the
reactivity of alcohols towards carbenes is proportional to their
acidity and that the relative reactivity of tertiary alcohols such
as tBuOH is low.[14] As diazogermylene 2 does not react with
tBuOH at room temperature or with MeOH at low temper-
ature, it does not behave as a germylene, and this rules out
mechanism 2. The lack of typical carbene and germylene
reactivity of I suggests that it is reasonable to postulate
mechanism 3, in which the germyne is trapped by two
equivalents of alcohol.

In conclusion, diazogermylenes, in which a carbenoid
species is adjacent to a Group 14 atom bearing both a lone
pair and vacant orbitals, are promising precursors to germa-
nium ± carbon triple bonds. Our results, which constitute the
first chemical evidence for a germyne, contrast with ab initio
quantum mechanical calculations of Stogner and Grev on the
parent molecule HGe�CH, which indicated that the germa-
vinylidene isomer :Ge�CH2 is 7 kcal molÿ1 more stable than
trans-bent germyne, and 43 kcal molÿ1 more stable than the
linear germyne.[15] However, our results are in accordance
with the work of Apeloig and Karni in the field of silicon
chemistry, who predicted that bulky substituents are expected
to destabilize the vinylidene structure relative to the triple
bond.[16]

Experimental Section

All experiments were performed under a dry and oxygen-free argon
atmosphere. Solvents were dried by appropriate methods. Melting points
were determined in capillaries sealed under argon and are not corrected.

1: n-Butyllithium (4.2 mL, 1.6m in hexane) was added dropwise to ArBr
(2.0 g, 6.1 mmol) in THF (15 mL) atÿ78 8C, and the mixture was stirred for
20 min. A solution of GeCl2 ´ dioxane (1.4 g, 6.1 mmol) in THF (15 mL) was
then added at the same temperature, and the reaction mixture was stirred
for 30 min at room temperature. A solution of lithiotrimethylsilyldiazo-
methane (6.1 mmol) prepared from a solution of trimethylsilyldiazo-
methane (3.05 mL, 2m in hexane) and nBuLi (4.2 mL, 1.6m in hexane) in
THF (15 mL) was added dropwise to the above mixture at ÿ78 8C, and the
solution was stirred at room temperature for 30 min. Solvents were
removed in vacuum, and the residue was dissolved in pentane. The mixture
was filtered, the solvents evaporated, and 1 was obtained as viscous oil
(1.98 g, 75% yield). 1H NMR (400.1 MHz, C7D8, TMS): d� 0.55 (s, 9H,
Me3Si), 1.11 (t, 3J(H,H)� 6.7 Hz, 12 H, CH2CH3), 2.83 (q, 3J(H,H)�
6.7 Hz, 8 H, CH2CH3), 3.63, 3.75 (AB system, 2J(H,H)� 14.2 Hz, 4H,
CH2), 7.10 ± 7.30 (m, 3H); 13C NMR (100.6 MHz, C7D8, TMS): d� 0.40
(1J(13C,29Si)� 26.6 Hz, CH3Si), 9.84 (CH2CH3), 24.49 (CN2), 45.31
(CH2CH3), 59.77 (CH2), 124.54 (m-C), 127.69 (p-C), 145.21 (o-C), 156.85
(ipso-C); 14N NMR (28.9 MHz, C7D8, MeNO2): d�ÿ110 (14Na), 14Nb signal
too weak to be observed; 29Si NMR (39.8 MHz, C7D8, TMS): d�ÿ0.98
(Me3Si); EI-MS (70 eV): m/z (%): 434 (21) [M .�], 377 (2) [M .�ÿEtÿN2],
321 (100) [ArGe], 291 (42) [ArGeÿ 2Me], 220 (52) [ArGeÿNEt2ÿEt],
177 (35) [ArGeÿ 2NEt2]; IR (C6D6): nÄ � 1994 cmÿ1 (CN2).

2: The same procedure as for 1 was used for 2, which was recrystallized
from pentane at ÿ20 8C (40 % yield). M.p. 78 8C (decomp); 1H NMR
(400.1 MHz, C7D8, TMS): d� 0.37 (s, 9H, Me3Si), 1.02 (d, 3J(H,H)� 7.0 Hz,
12H, CH(CH3)2), 1.06 (d, 3J(H,H)� 7.0 Hz, 12H, CH(CH3)2), 3.27 (sept,
3J(H,H)� 7.0 Hz, 4 H, CH(CH3)2), 3.72 (s, 4 H, CH2), 7.08 ± 7.17 (m, 3H,
ArH); 13C NMR (100.6 MHz, C7D8, TMS): d� 0.04 (CH3Si), 20.63
(CH(CH3)2), 21.45 (CH(CH3)2), 30.15 (CN2), 51.20 (CH(CH3)2), 54.36
(CH2), 124.19 (m-C), 127.67 (p-C), 147.10 (o-C), 158.39 (ipso-C); 29Si NMR
(39.8 MHz, C7D8, TMS): d� 0.06 (Me3Si); EI-MS (70 eV): m/z (%): 490
(12) [M .�], 447 (4) [M .�ÿ iPr], 419 (5) [M .�ÿ iPrÿN2], 377 (100) [ArGe];
IR (C6D6): nÄ � 2001 cmÿ1 (CN2).
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