ChemComm

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: J. Sansano, C. Najera and J. Mancebo, *Chem. Commun.*, 2013, DOI: 10.1039/C3CC47184E.

This is an *Accepted Manuscript*, which has been through the RSC Publishing peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This Accepted Manuscript will be replaced by the edited and formatted Advance Article as soon as this is available.

To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication.

More information about *Accepted Manuscripts* can be found in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard **Terms & Conditions** and the **ethical guidelines** that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these *Accepted Manuscript* manuscripts or any consequences arising from the use of any information contained in them.

RSCPublishing

www.rsc.org/chemcomm Registered Charity Number 207890 Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

COMMUNICATION

Multicomponent synthesis of unnatural pyrrolizidines using 1,3-dipolar cycloadditions of proline esters

Juan Mancebo-Aracil, Carmen Nájera* and José M. Sansano*

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

The synthesis of unnatural pyrrolizidines has been studied using a multicomponent-domino process involving proline or 4-hydroxyproline esters an aldehyde and a dipolarophile. The formation of the iminium salt promotes the 1,3-dipolar 10 cycloaddition affording highly substituted pyrrolizidines under mild conditions and high regio and diastereoselectivities.

Pyrrolizidine alkaloids are a group of naturally occurring alkaloids¹ produced by plants as defense mechanism against insect herbivores. The evolution of pyrrolizidine alkaloid biosynthesis 15 highly conserves the first steps of the pathway whilst the diversification of secondary derived pyrrolizidine alkaloids occurs.² This process ensures the appearance of new families of pyrrolizidines along time. Many of them are potent hepatotoxic, mutagenic and tumorigenic agents although some families of 20 pyrrolizidines posses interesting therapeutic and medicinal applications. The synthesis of these natural frameworks has been achieved, for example, employing different strategies such as chain elongation of proline derivatives, followed by cyclization,³ transanular iodoamination,⁴ using lactams,⁵ from other natural 25 products,⁶ etc. However, the most important and straightforward route is to employ a 1,3-dipolar cycloaddition (1,3-DC)^{7,8} using mainly nitrones9 or azomethine ylides.^{10,11} The characteristic regioand diastereoselective control of these cycloadditions contributes to the enhancement of the importance of this strategy for this 30 purpose. In particular, proline has been used as starting material for

the *in situ* generation of an azomethyne ylide ready to react with an electrophilic alkene.

³⁵

Published on 09 October 2013. Downloaded by University of South Carolina Libraries on 09/10/2013 17:30:00.

In these examples the generation of the reactive dipole proceeds after decarboxylation of the proline, which reduces the funtionalization of the resulting pyrrolizidine. The intermediate dipole, generated from 2,3-butanedione or ethyl pyruvate and 40 proline or (2S,4R)-4-hydroxyproline, has been trapped using β - nitrostyrene. Unexpectedly, the decarboxylation occurred at room temperature affording mixtures of pyrrolizidines **1** in good chemical yields (78-90%).¹² More recently, it has been described that the same proline underwent a domino iminium salt formation ⁴⁵ with β , γ -unsaturated α -keto esters followed by decarboxylation and cycloaddition with the named keto ester at 80 °C in DMSO as solvent.¹³

In this work we describe the multicomponent 1,3-DC between proline esters, aldehydes and dipolarophiles. The generation of the ⁵⁰ reactive azomethine ylide will be achieved through the iminium salt route7^b and the cycloaddition will be surveyed at room temperature in the presence or in the absence of silver salts as activating dipolarophile catalysts. The aim of this strategy is to maintain the original ester functional group of the proline in order

⁵⁵ to obtain modified pyrrolizidines with diverse functionalization at the 7a carbon atom of the named fused heterocycle. In this way the access to unnatural alkaloids with unknown biological properties would be ensured.¹⁴

The synthesis of pyrrolizidines 3 was initially tested at room 60 temperature employing a multicomponent process following the previous methodology developed by our group.¹⁵ On it, proline methyl ester hydrochloride was allowed to react with cinnamaldehyde and methyl acrylate using triethylamine (1 equiv). Despite toluene¹⁶ afforded a slower reaction (5 h) with methyl 65 acrylate (96% crude yield of pure 3a), it was selected as solvent because a higher diastereoselection (99:1) was obtained in this example (Scheme 2, Table 1). Two different processes run in THF (1 h) and DCM (1 h) afforded lower diastereoselectivity of compound 3a (88:12, and 85:15, respectively). Different 70 dipolarophiles such as allyl methacrylate, N-methylmaleimide β-nitrostyrene, (NMM). dimethvl fumarate, and 1.2bis(phenylsulfonyl)ethylene afforded the corresponding pyrrolizidines **3b-3f** in good yields and high dr (Table 1, entries 2-6). When the 1,3-DC was carried out in the presence of AgOAc (5 75 mol%) compound 3a was obtained after 10 h (Table 1, entry 1). Under identical reaction conditions AgTFA, AgOTf and Ag₂CO₃ afforded similar results for compound 3d. For these reasons the same reactions described above were also performed at rt in the presence of AgOAc (Table 1, entries 2-6).

The reaction in the absence of silver salts is faster than the analogous silver-mediated processes furnishing the same dr (up to 99:1). However, higher diastereoselections were achieved in the presence of AgOAc when other aldehydes such as crotonaldehyde, benzaldehyde, isovaleraldehyde and ethyl glyoxylate were used as

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry [year]

iminium salt precursors (Table 1, entries 7-10). Moreover, the last two reactions did not proceed in the absence of silver acetate.

Scheme 2

Published on 09 October 2013. Downloaded by University of South Carolina Libraries on 09/10/2013 17:30:00

All diastereoisomers were separated by column chromatography and the relative configuration of these new compounds was established according to the X-ray diffraction analysis of molecules $3a^{17}$ and additional nOe experiments performed for other compounds.

¹⁰ Due to the existence of multiple hydroxy groups as substituents in natural pyrrolizidine alkaloids we surveyed the effect of a stereogenic centre at the 4 position of the heterocycle. Thus (2*S*,4*R*)-4-hydroxyproline and its *O*-TBDMS protected derivative were used as starting material in the titled 1,3-DC with acrylates ¹⁵ and NMM employing cinnamaldehyde as the iminium salt precursor (Scheme 3, and Table 2). The *O*-TBDMS protected proline ester furnished compound **4b** in lower diastereoselection than the corresponding reaction performed with (2*S*,4*R*)-4-

hydroxyproline methyl ester yielding cycloadduct **4a** (Table 2, ²⁰ entries 1 and 2). *tert*-Butyl acrylate gave product **4c** with higher diastereoselection (98:2) than methyl acrylate, specially in the presence of silver acetate (Table 2, entry 3). In the case of NMM products **4d** and **4d'** were obtained in a 4:1 diastereomeric ratio (Table 2, entry 4). All the diastereoisomers could be separated by ²⁵ column chromatography obtaining enantiomerically enriched compounds **4**. Pale yellow needles obtained from molecule **4a** were submitted to X-ray diffraction analysis and served for the determination of it absolute configuration.¹⁸ The relative configuration of the rest of products was assigned according to ³⁰ positive nOe experiments.

Scheme 3

We can conclude that a very simple multicomponent 1,3-DC from proline methyl esters, aldehydes and dipolarophiles is an ³⁵ appropriate methodology to prepare highly substituted unnatural pyrrolizidine alkaloids. The corresponding enantiomerically pure 1*H*-pyrrolizidin-2-ol skeleton was prepared from natural ($2S_{4}R$)-4-hydroxyproline methyl ester. The presence of AgOAc was crucial when aliphatic aldehydes and ethyl glyoxylate were ⁴⁰ employed because the reaction failed under standard conditions.

This work has been supported by the DGES of the Spanish Ministerio de Ciencia e Innovación (MICINN) (Consolider INGENIO 2010 CSD2007-00006, CTQ2007-62771/BQU, 45 CTQ2010-20387), FEDER Generalitat Valenciana (PROMETEO/ 2009/039), and by the University of Alicante.

Published on 09 October 2013. Downloaded by University of South Carolina Libraries on 09/10/2013 17:30:00.

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

COMMUNICATION

Table 1. Synthesis of pyrrolizidines 3 employing L-proline and aldehydes with several dipolarophiles.										
				With	nout AgOAc		With AgOAc			
Entry	Aldehyde	Dipolarophile	Product 3	t (h)	, Yield (%) ^a	dr	t (h)	, Yield (%)	^a dr	
1	Cinnamaldehyde	Methyl acrylate	MeO2C Ph N MeO2Ne N MeO2Ne Ph 3a	5,	(95) 80	99:1	10,	(94) 80	99:1	
2	Cinnamaldehyde	Allyl methacrylate	MeO_C	3,	(93) 82	99:1	8,	(93) 81	99:1	
3	Cinnamaldehyde	NMM	MeO ₂ C N ⁻ N ⁻ N ⁻ N ⁻ N ⁻ N ⁻ N ⁻ N ⁻	2,	(92) 80	85:15	10,	(92) 81	85:15	
4	Cinnamaldehyde	Dimethyl fumarate	MeO ₂ C MeO ₂ C N ⁻ , CO ₂ Me N ⁻ , CO ₂ Me	2,	(96) 83	85:15	6,	(96) 83	85:15	
5	Cinnamaldehyde	β-Nitrostyrene	Ph MeO ₂ C N N N Ph 3e	2,	(95) 79	85:15	10,	(94) 78	85:15	
6	Cinnamaldehyde	Disulfone	PhO ₂ S MeO ₂ C N N NO ₂ Ph MeO ₂ C N N NO ₂ Ph MeO ₂ C N N N N N N N N N N N N N N N N N N N	3,	(85) 62	62:19:19 ^b	9,	(90) 72	72:28	
7	Crotonaldehyde	Methyl acrylate	MeQ_C N	1,	(96) 85	90:10	9,	(96) 85	90:10	
8	Benzaldehyde	Methyl acrylate	MeO ₂ C N ⁻⁰ ₁ Ph 3h MeO ₂ C N ⁻⁰ ₁ Ph 3h 3h	5,	(85) 65	37:37:26 ^b	24,	(90) 75	80:20	
9	Isovaleraldehyde	Methyl acrylate	MeO_2C N N N 3i	3,	_	_	24,	(96) 80	80:20	
10	Ethyl glyoxylate	Methyl acrylate	MeO ₂ C MeO ₂ C	6,	_	_	24,	(88) 59	99:1	

^a Isolated yields of the mixture of diastereoisomers (in brackets crude pure yield). ^b The third isomer was not characterized.

Table 2. Synthesis of pyrrolizidines 4 employing (2S,4R)-4-hydroxyproline and cinnamaldehyde with several dipolarophiles.

				Without AgOAc			With AgOAc		
Entry	R	Dipolarophile	Product 4	t (h)	Yield (%) ^a	dr	t (h),	Yield (%) ^a	dr
1	Н	Methyl acrylate	$\begin{array}{c} MeO_2C\\ HO^{''} \\ HO^{''} \\ \end{array} \begin{array}{c} MeO_2C\\ \\ HO^{''} \\ \end{array} \begin{array}{c} MeO_2C\\ \\ HO^{''} \\ \end{array} \begin{array}{c} MeO_2C\\ \\ HO^{''} \\ \end{array} \begin{array}{c} CO_2Me\\ \\ HO^{''} \\ \end{array} \begin{array}{c} HO^{''} \\ \end{array} \begin{array}{c} HO^{''} \\ \end{array} \begin{array}{c} HO^{''} \\ \end{array} \begin{array}{c} HO^{''} \\ HO^{''} \\ HO^{''} \\ \end{array} \begin{array}{c} HO^{''} \\ HO^$	4,	(93) 85	80:20	6,	(92) 85	87:13
2	TBDMS	Methyl Acrylate	MeO ₂ C Me MeO ₂ C Me MeO ₂ C Me TBDMSO ^W Ph 4b Ph 4b'	4,	(91) 80	78:18	6,	(92) 79	80:20
3	Н	t-Butyl Acrylate	MeO ₂ C HO ^{VI} N HO ² /Bu MeO ₂ C HO ^{VI} N HO ^{VI} (Ph 4c Ph 4c	3,	(92) 80	90:10	6,	(92) 82	98:2
4	Н	NMM	MeQ.C HOW N IN HOW N	3,	(91) 80	75:25	6,	(94) 81	75:25
			HOW HOW Ph 4d'						

^a Isolated yields of the mixture of diastereoisomers (in brackets crude pure yield).

This journal is © The Royal Society of Chemistry [year]

Journal Name

www.rsc.org/xxxxx

Notes and references

Published on 09 October 2013. Downloaded by University of South Carolina Libraries on 09/10/2013 17:30:00

COMMUNICATION

18 CCDC number of molecule 4a: 961570.

Departamento de Química Orgánica e Instituto de Síntesis Orgánica, Universidad de Alicante, E-03080-Alicante. Fax: +34-965903549; Tel: +34-965903549; E-mail: cnajera@ua.es; jmsansano@ua.es

- 5 † Electronic Supplementary Information (ESI) available: [CCDC: 961250 and 961270, and experimental data]. See DOI: 10.1039/b000000x/.
- J. R. Liddell, Nat. Prod. Rep. 2002, 19, 773.
- (a) D. Ober, E. Kaltenegger, Phytochem. 2009, 70, 1687; (b) D. Langel, D. 2 Ober, P. B. Pelser, Phytochem. Rev. 2011, 10, 3.
- (a) T. J. Donohoe, R. E. Thomas, M. D. Cheeseman, C. L. Rigby, G Bhalay, I. D. Linney, Org. Lett. 2008, 10, 3615; (b) A. C. Breman, J. Dijkink, J. H. van Maarseveen, S. S. Kinderman, H. Hiemstra, J. Org. Chem. 2009, 74, 6327; (c) T. Ponpandian, S. Muthusubramanian, Tetrahedron 2013, 69, 527. (d) X. Garrabou, L. Gómez, J. Joglar, S. Gil, T. Parella, J. Bujons, P. Clapes, Chem. Eur. J. 2010, 16, 10691; (e) I. Izquierdo, M. T. Plaza, J. A. Tamayo, F. Franco, F. Sanchez-Cantalejo, Tetrahedron 2010, 66, 3788; (f) D. Muroni, M. Mucedda, A. Saba, Tetrahedron Lett. 2008, 49, 2373; (g) A. Iza, L. Carrillo, J. L. Vicario, D. Badía, E. Reyes, J. L. Martínez, Org. Biomol. Chem. 2010, 8, 2238
- 4 E. A. Brock, S. G. Davies, J. A. Lee, P. M. Roberts, J. E. Thomson, Org. Lett. 2011, 13, 1594
- P. V. Reddy, J. Smith, A. Kamath, H. Jamet, A. Veyron, P. Koos, C. Philouze, A. E. Greene, P. Delair, J. Org. Chem. 2013, 78, 4840.
- 6 R. Lahiri, A. A. Ansanri, Y. D. Vankar, Chem. Soc. Rev. 2013, 42, 5102.
- For general reviews dealing with general 1,3-DC, see: (a) Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Towards Heterocycles and Natural Products, A. Padwa, W. H. Pearson, Eds. John Wiley & Sons, New Jersey, 2003; (b) C. Nájera, J. M. Sansano, Curr. Org. Chem. 2003, 7, 1105; (c) W. Eberbach, Sci. Synth. 2004, 27, chp. 11, 441; (d) I. Coldham, R. Hufton, Chem. Rev. 2005, 105, 2765; (e) V. Nair, T. D. Suja, Tetrahedron 2007, 63, 12247; (f) A. Padwa, S. K.Bur, Tetrahedron 2007, 63, 5341.
- For recent reviews of asymmetric 1,3-DC, see: (a) H. Pellissier, Tetrahedron 2007, 63, 3235-3285; (b) C. Nájera, J. M. Sansano in Topics in Heterocyclic Chemistry, vol. 12 (Ed.: A. Hassner), Springer-Verlag: Berlin-Heidelberg, 2008, pp. 117; (c) L. M. Stanley, M. P. Sibi, Chem. Rev. 2008, 108, 2887; (d) M. Álvarez-Corral, M. Muñoz-Dorado, I. Rodríguez-García, Chem. Rev. 2008, 108, 3174; (e) M. Naodovic, H. Yamamoto, Chem. Rev. 2008, 108, 3132; (f) C. Nájera, J. M. Sansano, M.Yus, J. Braz. Chem. Soc. 2010, 21, 377; (g) M. Kissane, A. R. Maguire, Chem. Soc. Rev. 2010, 39, 845; (h) J. Adrio, J. C. Carretero, Chem. Commun. 2011, 47, 6784.
- 9 (a) S. Stecko, M. Jurczak, Z. Urbanczyk-Lipkowska, J. Solecka, M. Chmielewski, Carbohyd. Res. 2008, 343, 2215; (b) A. Brandi, F. Cardona, S. Cicchi, F. M. Cordero, A. Goti, Chem. Eur. J. 2009, 15, 7808.
- (a) R, Grigg, M. Jordan, J. F. Malone, Tetrahedron Lett. 1979, 20, 3877; 10 (b) L. Faraji, H. Arvinnezhad, N. Alikami, K. Jadidi, Lett. Org. Chem. 2010, 7, 472; (c) R. M. Gorman, M. A. Little, J. A. Morris, V. Sridharan, Chem. Commun. 2012, 48, 9537.
- 11 In some examples proline itself has been generated from a previous 1,3-DC. For selected examples of racemic and non-racemic processes, see: (a) P. Cui, L. Xu, Z. Shi, L. Gan, J. Org. Chem. 2011, 76, 4210; (b) J. A. Codelli, A. L. A. Puchlopek, S. E. Reisman, J. Am. Chem. Soc. 2012, 134, 1930; (c) Q. Lu, G. Song, J. P. Jasinski, A. C. Keeley, W. Zhang, Green Chem. 2012, 14, 3010-3012; (d) A. D. Lim, J. A. Codelli, S. E. Reisman, Chem. Sci. 2013, 4, 650.
- 12 F. Felluga, C. Forzato, P. Nitti, G. Pitacco, E. Valentin, E. Zangrando, J. Heterocyclic Chem. 2010, 47, 664.
- T.-R. Kang, Y. Cheng, L. He, J. Ye, Q.-Z. Liu, Tetrahedron Lett. 2012, 53 13
- 14 During the submission of this work we were aware of an online ASAP Chem. Comm. communication: DOI: 10.1039/c3cc45820b (16/SEP/13)
- J. Mancebo-Aracil, C. Nájera, J. M. Sansano Org. Biomol. Chem. 2013, 15 11.662
- Since the industrial point of view toluene is preferred, rather than DCM, 16 THF of ether.
- 17 CCDC number of molecule 3a: 961250.

This journal is © The Royal Society of Chemistry [year]