View Article Online View Journal

ChemComm

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: D. Gill, L. Male and A. M. Jones, *Chem. Commun.*, 2019, DOI: 10.1039/C9CC01057B.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/chemcomm

Chem Comm

Sulfation made simple: A strategy for synthesising sulfated molecules

Received 00th January 20xx, Accepted 00th January 20xx

Daniel M. Gill, ^a Louise Male^b and Alan M. Jones *^a

DOI: 10.1039/x0xx00000x

www.rsc.org/

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

pen Access Article. Published on 12 March 2019. Downloaded on 3/12/2019 5:28:37 PM.

The study of organosulfates is a burgeoning area in biology, yet there are significant challenges with their synthesis. We report the development of a tributylsulfoammonium betaine as a high yielding route to organosulfates. The optimised reaction conditions were interrogated with a range of diverse alcohols, including natural products and amino acids.

Organosulfates play a variety of important roles in biology from xenobiotic metabolism to the downstream signalling of steroidal sulfates in disease states.¹ Sulfate groups on glycosaminoglycans (GAGs) such as heparin, heparan sulfate and chondroitin sulfate, facilitate molecular interactions and protein ligand binding at the cellular surface,² an area of interest in drug discovery.³

Heparin (an anticoagulant)⁴, avibactam^{*} (a β -lactamase inhibitor)⁵, sotradecol (a treatment for varicose veins)⁶, the sulfate metabolite of paracetamol (an analgesic),⁷ and the glycomimetic **C3** (used to study atherosclerosis)⁸, contain organosulfate motifs (**Figure 1**). There are many other natural sources of bioactive sulfated compounds.⁹

The incorporation of polar hydrophilic organosulfate groups onto drug-like molecules is timely to facilitate research investigating GAGs as potential new therapies.¹⁰ However, the insertion and isolation of sulfate groups into target molecules remains a challenging aspect of their synthesis,¹¹ prompting recent advances into sulfate revealing pro-drugs.¹²

The presence of one or more sulfate group makes chemical synthesis and purification of (per)sulfated compounds challenging, primarily due to their poor solubility in organic solvents.¹³ Therefore the insertion of organosulfate groups is typically the final step in a synthetic method, limiting further chemical modifications.¹⁴ A variety of methods to prepare organosulfates are shown in **Chart 1**.

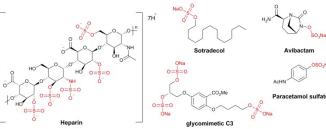
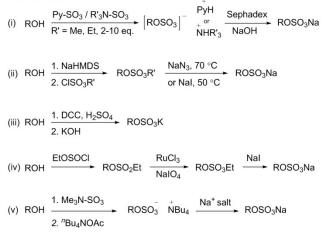
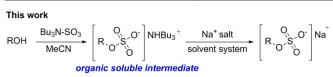
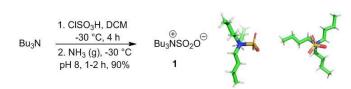




Figure 1 Examples of drug molecules containing organosulfates: *heparin, sotradecol** *and avibactam**; a chemical tool compound (C3) and a metabolite of paracetamol.

The preparation of organosulfate esters include a microwave assisted approach to the sulfation of alcohols, using Me_3N-SO_3 and $PySO_3$, **Chart 1** (i)).^{15,16} The addition of catalytic diaryl borinic acid can be used with Me_3NSO_3 to sulfate carbohydrates.¹⁷ The limitations with these reagents include the need for stoichiometric excess of reagent per alcohol group (up to 10 eq. per hydroxyl group) and difficulties with

Previous work

Chart 1. *Previous strategies* to the synthesis of sulfate esters: *This work:* Sulfate ester formation using tributylsulfoammonium betaine gives direct access to an organic soluble organosulfate intermediate that can be readily ion exchanged.


^{a.} School of Pharmacy, University of Birmingham, Edgbaston, B15 2TT ^{b.} School of Chemistry, University of Birmingham, Edgbaston, B15 2TT

^{*}e-mail: <u>a.m.jones.2@bham.ac.uk;</u> +44(0)1214147288

Electronic Supplementary Information (ESI) available: Preparative routes, compound characterisation, copies of ¹H and ¹³C spectra and the cif file for the X-ray crystal structure of **1**.See DOI: 10.1039/x0xx00000x

COMMUNICATION

Journal Name

Scheme 1. (a) Synthesis of Bu₃NSO₃ (1); (b) Alternative views of the crystal structure of 1 obtained from small molecule single crystal X-ray diffraction.

purification. Poor solubility in organic solvents makes aqueous purification protocols and ion-exchange chromatography a standard procedure, limiting the practicality. An alkyl chlorosulfate ester with subsequent de-protection has proven a reliable method, but limitations include the need to use a strong base and a deprotection step leads to side products (Chart 1 (ii)). 18 A DCC/H_2SO_4-sulfate coupling has been demonstrated but is not amenable to acid sensitive substrates (Chart 1 (iii)).¹⁹ A sulfitylation-oxidation protocol (Chart 1 (iv)) involves the synthesis of a protected sulfite ester, oxidation to the protected sulfate ester and cleavage to the sodium sulfate salt.²⁰ However, the use of multiple steps and purification sequences is limiting. A process route to Avibactam²¹ (Figure 1 and Chart 1 (v) involved sulfation of the hydroxylamine intermediate using Me₃NSO₃, followed by cation exchange with tetrabutylammonium acetate, gave the organosulfate as its tetrabutylammonium salt. The sodium salt was obtained by precipitation in 77% yield over 2 steps on a multi-kg scale.

	∕он	R ₃ NSO MeCN			Y	0,5=0 0-\$+↑	Na-2-E EtOH/I		OSO ₃ N
2a				, L.		3a	-		4a
	Entry	amine-SO ₃	Eq.	T°C	t (h)	Additive	Conversion at 0.5 h (%)	Conversion at end (%)	Isolated yield (%)
	1	NBu ₃	1.1	90	8.0	3	48	83	41
	2	NBu ₃	1.5	90	4.0	-	26	69	62
	3	NBu ₃	2.0	90	1.0	-	90	>99	95
	4	NBu_3	4.0	90	0.5	-	>99	>99	95
	5	NBu ₃	2.0	70	6.0	-	22	>99	96
	6	NBu ₃	2.0	50	8.0	-	9	60	58
	7	NBu ₃	2.0	30	120	-	2	>99	96
	8	NBu ₃	2.0	20	18	-	1	9	а
	9	Ру	2.0	70	0.5	-	>99	>99	17 ^b
	10	Ру	2.0	70	0.5	Bu ₄ NI ^c	>99	>99	47
	11	Ру	2.0	70	0.5	Bu ₄ NOAc ^c	>99	>99	76
	12	NMe ₃	2.0	70	6.0	-	3	29	a
	13	NMe ₃	2.0	70	6.0	Bu ₄ NI	-	88	a
	14	NBu ₃	2.0	105 ^d	0.5	-	68	68	а
	15	NBu ₃	2.0	120 ^d	1.0	-	68	68	а
	16	NBu ₃	2.0	70	2.0	Na ₂ CO ₃	16	57	а
	17	NBu ₃	2.0	70	2.0	K ₂ CO ₃	8	8	a
	18	NBu ₃	2.0	70	2.0	Et ₃ N	15	34	а
	19	NBu ₃	2.0	70	6.0	Bu ₃ N	48	60	а
		-				100			

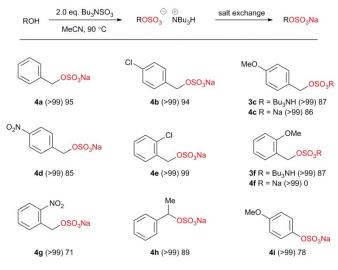
Chart 2. Optimisation of a model system. ^a not isolated; ^b isolated as the pyridinium salt; ^c additive used during work-up;^d microwave irradiation.

Similarly, the use of a sulfate bis(tributylammonium) salt for

the preparation for nucleoside phophosulfates²²Viehighlighted that the solubility of organosulfate ester³Can¹be³ArdCalaCab Sy increasing the lipophilicity of the corresponding cation.

During a medicinal chemistry programme we encountered difficulties using the established sulfation methods to persulfate compounds due to the poor solubility of the organosulfate intermediates and their resulting purification. We sought to develop an all in one reagent, to improve the solubility of the intermediate organosulfate ester. Combining tributylamine (pKa, 10.89) with SO₃, we envisioned this would create a complex (Bu_3N -SO₃, **1**) for the persulfation of alcohols, with increased lipophilicity of the intermediate sulfate ester, improving the overall solubility of the organosulfates in organic solvents. We rationalised that 1 would retain similar activity to SO₃ complexes with Et₃N and Me₃N, due to their similar Lewis base strengths, pKa = 11.01 and 10.63, respectively. Overall, 1 may permit sequential chemical steps in organic solvents, with a simple purification method to the corresponding sodium salt, streamlining the synthesis of organosulfates.

The complexation of sulfur trioxide to nitrogen or oxygen containing molecules (such as pyridine, NMe₃, NEt₃, DMF, THF and dioxane) is well known,^{11,15} the use of an organic solubilising partner, tributylamine, is however not. To the best of our knowledge, the only literature report of the synthesis and physical study of **1** was by Moede in 1949.²³ It was not until 1976 that Parshikov and co-workers²⁴ studied **1** as a sulfating agent on simple aliphatic alcohols (without spectroscopic characterisation) and found that **1** reacts *via* an S_N² mechanism driven by the hydrogen-bonding propensity of the alcohol under study. However, to the best of our knowledge no further use or development of this reagent has been reported.


We synthesised **1** by reaction of tributylamine with chlorosulfonic acid, affording a 90% yield on a 60 g scale (**Scheme 1** (a)).²⁵ For the first time both NMR spectral data and the crystal structure of **1**, obtained from small molecule single crystal X-ray diffraction, was determined (**Scheme 1** (b)).²⁶ Bu₃NSO₃ (**1**) adopts a *Gauche* conformation within an asymmetric unit cell caused by hydrogen bonding between the methylene hydrogen atoms α to the nitrogen and the oxygens of SO₃. The measured N-S bond length in **1** is 1.886(3) Å, a comparable bond length to a single N-S bond (typically: 1.73-1.83 Å versus 2.06 Å for a donor-acceptor system),²⁷ suggesting that **1** exists as a betaine in the solid state which may have implications for the other unsolved amine-SO₃ complexes and their associated mechanisms.

Benzyl alcohol (**2a**) was selected for the optimisation study (**Chart 2**) due to a distinct down-field shift (+ 0.35 ppm) of the benzylic signal after sulfation (by ¹H-NMR spectroscopy).

We examined the sulfation of **2a** with varying equivalents of **1** (entries 1 to 4). It was found that 2.0 equivalents of **1** was optimal for high conversions (>99%) and isolated yields (95%, entry 3). Less than 2.0 equivalents of **1** (entries 1 and 2) gave incomplete conversion to **3a**. We next surveyed the effect of temperature (entries 5-8 vs entry 3). 90 °C and 2.0 equivalents of **1** gave complete conversion to **3a** within 2h. Notably,

Journal Name

Chart 3. Application of methodology to benzylic and phenolic alcohols. (Parentheses indicates reaction conversion as measured by ¹H NMR spectroscopy).

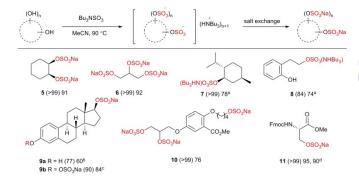
reaction completion was achieved, even at 30 °C (with increased reaction time) demonstrating that **1** could be a suitable reagent for temperature sensitive substrates such as proteins.¹³

We compared the use of two commercially available amine-SO₃ complexes, namely pyridine and trimethylamine (entries 9 and 12, respectively). Py-SO₃ was more reactive than $\mathbf{1}$, giving complete conversion to 3a in 0.5 h but only a 17% isolated yield of the pyridinium species. As a control experiment, the sequential exchange of the pyridinium salt with different Bu₄N cations afforded the isolation of 4a in 47% (Bu₄NI) and 76% (Bu₄NOAc) yield, respectively (entries 10 and 11). The use of Me₃N-SO₃ gave poor results (0% isolated yield of 4a from a 29% conversion to 3a). The addition of Bu₄NI to the reaction mixture significantly improved the reaction, affording an 88% conversion to 3a, potentially via the in situ formation of 1 (entry 13). Unfortunately, a more complex reaction mixture was detrimental to the isolation of 4a. These results demonstrate the isolation benefits associated with the protocol developed with 1.

We observed that **1** can achieve high conversions of **2a** to **3a/4a** without microwave irradiation (entries 1-7 vs 14-15) unlike other reported sulfating agents. The addition of a hetero or homogenous base (entries 16-19) was investigated and in all cases this led to a decrease in conversion to **3a**. Most notably, the addition of tributylamine (entry 19) initially increased the rate conversion to **3a**, but reduced the overall conversion contradicting the original report.²⁴ We rationalised that Et₃N (with a higher pKa value than Bu₃N) competes in the reaction, forming Et₃NSO₃ *in situ*. This SO₃ exchange has also been observed in the reaction of Et₃N with PySO₃.²¹ We applied the optimal conditions to the synthesis of a range of sulfate esters (**Chart 3**).

In all examples (**Chart 3**) we observed a near-quantitative conversion to the corresponding sulfate ester as the tributylammonium salt, independent of both electronic and

steric factors. Differences occurred when converting the intermediate into a crystalline sodium Salt10these are most likely due to the variability of precipitation of the sodium salt. Therefore differences of electron-withdrawing and electrondonating factors are difficult to draw with certainty. Steric bulk adjacent to the reacting centre was accommodated with ease (**4h**) and the reaction could also be applied to phenolic alcohols (**4i**).


Driving an organosulfate ester reaction to completion, by sulfating all possible hydroxyl sites in a structure remains a synthetic challenge. This is influenced by anionic crowding, making per-sulfation progressively more difficult.¹⁶ Therefore we applied the conditions to examples of compounds requiring two or more sulfation events, including natural products, and compounds containing different hydroxyl moieties within the same structure to probe the selectivity profile (**Chart 4**).

Cyclohexane-1,2-diol afforded the disulfate in high conversion and isolated yield, likewise with glycerol, the tri-sulfated analogue was prepared with ease (5 and 6, respectively). The reaction of 1 with menthol (7) delivered the NHBu₃ salt with ease.

To probe the alcohol selectivity profile, a primary alcohol was functionalised in preference to a phenol in **8**. Therefore, β -estradiol afforded 17- β -estradiol sulfate²⁸ over the more common metabolite 3- β -esteradiol in 60% isolated yield (**9a**) using 1.5 eq. **1**. Using 5.0 eq. of **1** both the 17- and 3-positions were sulfated in 84% isolated yield (**9b**).

We then applied the methodology to the original medicinal chemistry challenge, the sodium salt of glycomimetic **C3** (**10**).⁸ High conversion and an isolated yield of 76% on a 500 mg scale was achieved. The methodology was applied to the amino acid, serine, resulting in excellent yields (95% under normal conditions) and 90% at a non-denaturing temperature (**11**) both using 4.0 eq. of **1**. Importantly, no loss in enantiomeric ratio was observed upon sulfation (>99:1).

In summary, we have reported the first scalable preparation and reaction scoping study of **1** as a mild, bench-stable, and chromatography-free method to access organic sulfate esters as their ammonium or sodium salts. The reaction holds promise with the ability to install up to three sulfate groups on

Chart 4. Reaction scope on diverse alcohols (2.0 eq. of **1** per OH group except where indicated). ^a isolated as NBu₃H salt; ^b **1**.5 eq of **1**; ^c 5.0 eq. of **1**; ^d reaction performed at 38 °C using 4.0 eq. of **1** in DMF. (Parentheses indicate reaction conversion as measured by ¹H NMR spectroscopy).

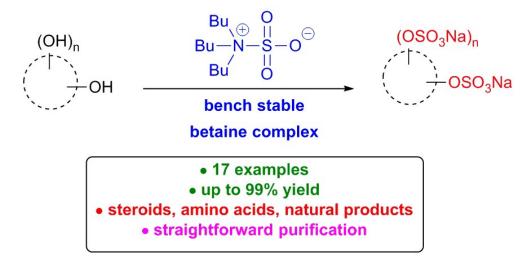
complex scaffolds including examples where sterics would

COMMUNICATION

limit other methods. Further work to elucidate the scope of the reaction on human sulfate metabolites is ongoing.

The authors thank Dr Chi Tsang and the Centre for Chemical and Materials Analysis in the School of Chemistry, University of Birmingham for analytical support. D.M.G. thanks the University of Birmingham for a PhD scholarship. The authors thank Dr J. W. Mueller, Dr K. A. Roper, and Ms. Anna M. Benedetti for helpful discussions.

Conflicts of interest


There are no conflicts to declare.

Notes and references

- 1 (a) Mueller, J. W., Gilligan, L. C., Idkowiak, J., Arlt, W., Foster, P. A., *Endocr. Rev.* **2015**, *36*, 526-563; (b) Foster, P. A., Mueller, J. W., *J. Mol. Endocrinol.* **2018**, *61*, T271-T283.
- 2 Tollefsen, D. M., *Prog. Mol. Biol. Transl. Sci.*, Zhang, L., Ed. Academic Press: **2010**; Vol. 93, pp 351-372.
- 3 B. Ernst, J. L. Magnani, *Nat. Rev. Drug Discov.*, **2009**, *8*, 661-677.
- 4 R. J. Linhardt, J. Med. Chem., 2003, 46, 2551–2564.
- T. Stachyra, P. Levasseur, M.-C. Péchereau, A.-M. Girard, M. Claudon, C. Miossec, M. T. Black, *J. Antimicrob. Chemother.* 2009, *64*, 326-329.
- 6 M. P. Goldman, R. G. Bennett, J. Am. Acad. Dermat., **1987**, 17, 167-182.
- 7 G. M. Pacifici, K. Allegaert, Curr. Ther. Res., 2015, 77, 24-30.
- A. M. Mahmoud, F. L. Wilkinson, A. M. Jones, J. A. Wilkinson, M. Romero, J. Duarte, M. Y. Alexander, *BBA Gen. Subj.* 2017, 1861, 3311-3322.
- 9 F. Carvalhal, M. Correira-da-Silva, E. Sousa, M. Pinto, A. Kijjoa, *J. Mol. Endocrin.* **2018**, *61*, T211-T231.
- 10 D. C. Blakemore, L. Castro, I. Churcher, D. C. Rees, A. W. Thomas, D. M. Wilson, A. Wood, *Nat. Chem.* **2018**, *10*, 383-394.
- 11 R. A. Al-Horani, U. R. Desai, *Tetrahedron* **2010**, *66*, 2907-2918.
- 12 E. M. Gordon, M. A. J. Duncton, M. A. Gallop, *J. Med. Chem.* **2018**, *61*, 10340-10344.
- 13 S. Hemmerich, D. Verdugo, V. L. Rath, Drug Discov. Today 2004, 9, 967-975.
- 14 M. Rawat, C. I. Gama, J. B. Matson, L. C. Hsieh-Wilson, J. Am. Chem. Soc. 2008, 130, 2959-2961.
- E. E. Gilbert, *Chem. Rev.* **1962**, *62*, 549-589.
 A. Raghuraman, M. Riaz, M. Hindle, U. R. Desai, U. R.,
- Tetrahedron Lett. **2007,** 48, 6754-6758. 17 D. Gorelik, Y. C. Lin, A. L. Briceno-Strocchia, M. S. Taylo
- D. Gorelik, Y. C. Lin, A. L. Briceno-Strocchia, M. S. Taylor, J. Org. Chem. 2019, 84, 900-908.
 J. S. Simpson, T. S. Widlenshi, J. Am. Cham. Soc. 2005, 120
- 18 L. S. Simpson, T. S. Widlanski, *J. Am. Chem. Soc.* **2006**, *128*, 1605-1610.
- 19 R. O. Mumma, *Lipids* **1966**, *1*, 221-223.
- 20 M. Huibers, Á. Manuzi, F. P. J. T. Rutjes, F. L. van Delft, *J. Org. Chem.* **2006**, *71*, 7473-7476.
- 21 M. Ball, A. Boyd, G. J. Ensor, M. Evans, M. Golden, S. R. Linke, D. Milne, R. Murphy, A. Telford, Y. Kalyan, G. R. Lawton, S. Racha, M. Ronsheim, S. H. Zhou, *Org. Proc. Res. Dev.* 2016, 20, 1799-1805.
- 22 J. Kowalska, A. Osowniak, J. Zuberek, J. Jemielity, *Bioorg. Med. Chem. Lett.* **2012**, *22*, 3661-3664.
- 23 J. A. Moede, C. Curran, J. Am. Chem. Soc. 1949, 71, 852-858.
- 24 (a) B. Passet, V. Parshikov, Organic Reactivity (Tartu), 1976, 13, 555-560; (b) V. Parshikov, B. Passet, N. Kopeina, Organic Reactivity (Tartu), 1976, 13, 310-314.

- 25 The original report of 1^{23} used the reaction of NBu₃ with liquid SO₃ in CCl₄ but no isolated yield <u>or characterisation</u> 057B data (apart from the melting point) is available.
- 26 CCDC 1894165 (1) contains the supplementary crystallographic data for this paper. Crystal Data for 1: C₁₂H₂₇NO₃S (*M* =265.40 g/mol): trigonal, space group R3c (no. 161), *a* = 14.3352(2) Å, *c* = 12.2455(2) Å, *V* = 2179.28(8) Å³, *Z* = 6, *T* = 100.01(10) K, μ(CuKα) = 1.969 mm⁻¹, *Dcalc* = 1.213 g/cm³, 8776 reflections measured (16.14° ≤ 20 ≤ 147.692°), 977 unique (*R*_{int} = 0.0273, R_{sigma} = 0.0115) which were used in all calculations. The final *R*₁ was 0.0209 (I > 2σ(I)) and *wR*₂ was 0.0570 (all data).
- 27 (a) F. A. Kanda, A. J. King, J. Am. Chem. Soc. 1951, 73, 2315-2319; (b) G. J. Kubas, A. C. Larson, R. R. Ryan, J. Org. Chem. 1979, 44, 3867-3871.
- 28 The only other report to the preparation of **12a** involved a protection-deprotection cascade: H. Fex, K. E. Lundvall, A. Olsson, *Acta. Chem. Scand.* **1968**, *22*, 254-264.
- 29 We thank reviewer 2 for this suggestion and the insight it provided. Chiral HPLC traces are provided in the ESI.

4 | *J. Name.*, 2012, **00**, 1-3

75x38mm (300 x 300 DPI)