View Article Online View Journal

Organic & Biomolecular Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: J. Yu and C. Cai, *Org. Biomol. Chem.*, 2017, DOI: 10.1039/C7OB02892J.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/obc

rganic & Biomolecular Chemistry Accepted Manuscript

Journal Name

ARTICLE

Received 00th January 20xx,

Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

YAL SOCIETY CHEMISTRY

Iodine(III)-Mediated Intramolecular Sulfeno- and Selenofunctionalization of β , y-unsaturated Tosyl Hydrazones and Oximes

Jing-miao Yu,^a Chun Cai*^a

www.rsc.org/

A cascade radical cyclization/sulfenvlation or selenvlation of β , y-unsaturated hydrazones and oximes was realized under mild conditions with phenyliodine(III) diacetate (PIDA) as the sole oxidant, leading to the construction of various diversely functionalized heteroatom-containing pyrazoline and isoxazoline derivatives. This metal-free radical process is suggested to encompass a sequential C-N/O and C-S/Se bond fomation.

Introduction

Pyrazolines¹ and isoxazolines² represent two classes of privileged heterocycles that widely exist in biologically active natural products and pharmaceuticals such as anti-amoebic, hypotensive, analgesic, anti-cancer, anti-bacterial, antidepressant and nonsteroidal anti-inflammatory agents. Consequently, a plethora of novel and elegant methodologies for construction of these five-membered heteroatomcontaining heterocycles have received extensive attention.

β, γ-unsaturated hydrazones and oximes have recently emerged as versatile synthons in a variety of transition-metalcatalyzed and transition-metal-free reactions, affording pyrazoline and isoxazoline derivatives. Representative transition-metal-catalyzed(e.g., cobalt³, copper⁴, palladium⁵, etc.) cyclizations of β ,y-unsaturated hydrazones and oximes are powerful approaches for the synthesis of diversely functionalized pyrazolines and isoxazolines(Scheme 1a). For instance, in 2014, Wang et al.4b reported Cu-catalyzed intramolecular oxytrifluoromethylthiolation of internal alkenes of unsaturated oximes by using AgSCF₃ as the SCF₃-souce. Recently, Huang et al.^{5c} reported Pd-catalyzed tandem aminomethylation/cyclization/aromatization reaction of β , yunsaturated hydrazones with aminals via C-N bond activation. However, the utility and applicability of the above reactions were limited by high cost or toxicity of the transition metals and/or harsh reaction conditions.

Apart from this, a visible-light-induced photocatalytic hydroamination and oxyamination of β , y-unsaturated hydrazones, pioneered by the work of Xiao and co-workers

Radical initiator This work PhI(OAc)₂ (1.5 equiv) DBU (1.5 equiv) (d) XH = NHTs. OH Y = S. Se Scheme 1. Strategies for cyclization of B. v-unsaturated hydrazones and oximes

demonstrated in 2014⁶, is a considerable elegant approach. Major progresses⁶⁻⁷ along this line have been mainly achieved focused on the photocatalytic hydrazonyl radical-mediated radical cascade reactions(Scheme 1b). Although visible light photoredox catalysis played very important role in the direct generation of hydrazonyl radicals from N-H bonds, the β , γ unsaturated oximes proved to be not suitable for this strategy, presumably by the higher redox potential of oximes relative to that of the photocatalyst. Meanwhile, the development of metal-free reactions initiated by radical initiators (e.g., TEMPO⁸, TBN⁹, TBHP¹⁰, hypervalent iodine¹¹, etc.) is crucial for solving this problem (Scheme 1c).

Hypervalent iodine reagents are well-known as nonexplosive and readily available oxidizing reagents for mediating organic reactions involving the formation of new carbon–carbon bond and carbon–heteroatom bond¹². Therefore, hypervalent iodine reagents have been employed to mediate the difunctionalization of unactivated alkenes¹³, which provides an alternative platform for this transformation. In 2015, Wang et al.^{11a} described the intramolecular oxy-

^{a.} Chemical Engineering College, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu, People's Republic of China. E-mail: c.cai@njust.edu.cn

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

ARTICLE

fluorination of alkenyl oximes by employing PhI(OPiv)₂ as the mediator and HF-pyridine as the F-source, and Xiao et al.^{11b} reported the PhI(OAc)₂-promoted radical cyclization of β , γ -unsaturated hydrazones and oximes. However, to our knowledge, there are no reports of iodine(III)-mediated intramolecular sulfeno- and selenofunctionalization of β , γ -unsaturated hydrazones and oximes.

Inspired by these mentioned facts, organosulfur and organoselenium chemistry¹⁴, we envisioned the direct generation of the N-centered radicals from N-H bonds or the O-centered radicals from O-H bonds mediated by hypervalent iodine reagent, followed by radical cyclization/sulfenylation or selenylation cascade reactions. Herein, we report the application of β , γ -unsaturated tosyl hydrazones and oximes in radical cyclization/sulfenylation or selenylation reactions catalyzed by hypervalent iodine reagent. During this reaction, benign PIDA(PhI(OAc)₂) was used as the oxidant and disulfides/ diselenides were employed as the S/Sesources(Scheme **1d**).

Results and discussion

Published on 18 December 2017. Downloaded by University of Reading on 19/12/2017 00:22:18.

The initial investigation was focused on the reaction of β , γ -unsaturated tosyl hydrazone **1a** with disulfide **2a** and various iodine(III) sources in the presence of DBU(2,3,4,6,7,8,9,10-octahydropyrimido[1,2-*a*]azepine) as the base (Table1, entries 1-3). Compare to other iodine(III) sources like PhIO and PIFA,

Table 1. Optimization of the Reaction Conditions ^a						
Ph	Ts NH	+ Ph Ph Ph	lodine(III) (1.5 ed Base (1.5 equiv Solvent, rt	quiv) N-N v) Ph	rs ≻S−Ph	
1a 2		2a		3a	3aa	
Entry	iodine	(111)	Base	Solvent	Yield 3a [₽]	
1	PhIO		DBU	THF	45	
2	PIDA		DBU	THF	67	
3	PIFA		DBU	THF	32	
4	PIDA		K ₂ CO ₃	THF	21	
5	PIDA		NaOH	THF	25	
6	PIDA		TBD	THF	43	
7	PIDA		TMG	THF	34	
8	PIDA		DBU	MeOH	Trace	
9	PIDA		DBU	DMF	11	
10	PIDA		DBU	PhMe	52	
11	PIDA		DBU	DCM	49	
12	PIDA		DBU	MeCN	82	
13 [°]	PIDA		DBU	MeCN	62	
14 ^d	PIDA		DBU	MeCN	87	
15 ^e	PIDA		DBU	MeCN	73	
16 ^f	PIDA		DBU	MeCN	83	
17	-		DBU	MeCN	0	
18	PIDA		-	MeCN	0	

^{*a*} Reaction conditions: β,γ-unsaturated tosyl hydrazone **1a** (0.2 mmol), disulfide **2a** (0.15 mmol), iodine(III) (0.3 mmol), base (0.3 mmol) and solvent (2.0 mL), Ar, at room temperature, stirred for 6h. ^{*b*} Isolated yield. ^{*c*} **1.2** equiv of PIDA. ^{*d*} 2 equiv of PIDA. ^{*e*} **1.2** equiv of DBU.

^{*a*} Reaction conditions: β,γ-unsaturated tosyl hydrazone **1a** (0.2 mmol), disulfides **2** (0.15 mmol), PIDA(1.5 equiv), DBU (1.5 equiv) in MeCN (2 mL) under an Ar atmosphere at room temperature for 6 h. ^{*b*} Isolated yield.

PIDA was approved to be the best choice to generate the target product **3aa** in 67% yield (Table 1, entry 2). Encouraged by this result, some other inorganic bases such as K_2CO_3 and NaOH and organic bases such as TBD and TMG were studied, which virtually did not lead to any significant improvement (Table 1, entries 4-7). Further investigation on different solvents revealed that other solvents such as MeOH, DMF, toluene and DCM either gave inferior results or completely hindered the reaction(Table 1, entries 8-11). To our gratification, an improved yield of target product **3aa** was achieved in MeCN (Table 1, entry 12). Varying the equivalents

Journal Name

of PIDA and DBU, and both 1.5 equivalents of PIDA and DBU were the best choices for production of the desired product (Table 1, entries 13-16). In addition, control experiments showed that no product was obtained in the absence of oxidant or base (Table 1, entries 17-18).

With the optimized reaction condition in hand, we proceeded to explore the scope of the reaction. We first examined the reaction between β ,y-unsaturated tosyl hydrazone 1a and various disulfides 2. In general, disulfides with different substituents on the para- or meta-position of the phenyl ring worked effectively. Substituents on substrates 2 have some effect on the reactions. For example, electrondonating group at the para-positions of the phenyl ring (1d-1g) performed well in the reaction with 1a to furnish the desired product 3ab in a 87% yield (Table 2, 3ab), while electrondeficient disulfides (2c-e) resulted in slightly lower yields(Table 2, 3ac-e). However, too strong electron-withdrawing group such as 4-nitro group led to a quite lower yield(42%) (Table 2, 3af). Substrates bearing methyl at different positions of the phenyl ring could reacted smoothly with 2a to furnish the products in fairly good yields(Table 2, 3ac and 3aj). Aliphatic and heterocyclic disulfides, such as dimethyl disulfide, di-npropyl disulfide and were also tolerated, and the yields of corresponding products ranged from 47% to 68% (Table 2, 3ah-j). Next, the substrate generality with respect to the alkenyl tosyl hydrazones 1 was investigated. The reactions proceeded smoothly for β , γ -unsaturated tosyl hydrazones with either electron-withdrawing or electron-donating substituents present on the aromatic ring (1b-i) to afford the desired products in moderate to high yields (Table 2, 3ba-ia). In general, the substituent groups or substitution patterns of the aromatic ring have no obvious effect on this reaction. As for a cyclic aliphatic- or 2-naphthyl-substitued tosyl hydrazone, the reaction proceeded fairly well under the optimized condition either, giving products 3ja-ka in moderate yields (Table 2, 3jaka).

Scheme 2. Selenofunctionalization of β , γ -unsaturated tosyl hydrazone. Reaction conditons: 1a (0.2 mmol), diselenides 4 (0.15 mmol) PIDA(1.5 equiv), DBU (1.5 equiv) in MeCN (2 mL) under an Ar atmosphere at room temperature for 6 h.

To further explore the influence of heteroatom and expand the scope of structures, we then simply examined the cascade cyclization/addition reaction of β , γ -unsaturated tosyl hydrazone **1a** with diselenides(as an alternative to disulfides)(Scheme **2**). In line with our expectation, diselenides also proved to be suitable for this transformation, and the desired products **5aa-c** were obtained in excellent yields, highlighting the efficiency of this synthetic methodology.

Table 3. Iodine(III)-mediated intramolecular sulfenofunctionalization of β , γ -unsaturated oximes with disulfides ^{a, b}

DOI: 10.1039/C7OB02892J

ARTICLE

^{*a*} Reaction conditions: β,γ-unsaturated oximes **1** (0.2 mmol), disulfides **2** (0.15 mmol), PIDA(1.5 equiv), DBU (1.5 equiv) in MeCN (2 mL) under an Ar atmosphere at room temperature for 6 h. ^{*b*} Isolated yield.

We next found that β , γ -unsaturated oximes **6** could be used as substrates (to replace hydrazones 1) under the same condition, affording suflur-containing isoxazolines as the products in a similar fashion. In all the studied examples, disulfides with electron-donating group or electronwithdrawing one at the phenyl ring could transform to the corresponding isoindolinones 7ab and 7ad smoothly in good yields (Table 3, 7ab and 7ad). Besides, dimethyl disulfide 2h was employed and gave product 7ah in 47% yield (Table 3, **7ah**). Similarly, β , γ -unsaturated oximes with electronwithdrawing or electron-donating substituents on the aromatic ring could convert to the desired products in good yields (Table 3, 7ba and 7ca). Alkyl-substitued oxime 6d was found to be accommodated, affording the desired product 7la in 67% yield (Table 3, 7da). Gratifyingly, diselenides also proceeded well to furnish the corresponding seleniumcontaining isoxazolines (Scheme 3).

Scheme 3. Selenofunctionalization of β , γ -unsaturated oxime. Reaction conditons: 6a (0.2 mmol), diselenides 4 (0.15 mmol) PIDA(1.5 equiv), DBU (1.5 equiv) in MeCN (2 mL) under an Ar atmosphere at room temperature for 6 h.

Finally, some control experiments were carried out in order to reveal the reaction pathway of this transformation (Scheme 4). TEMPO was added as radical scavenger under the standard reaction conditions, which resulted in the formation of **9a** and

DOI: 10.1039/C7OB02892J Journal Name

10a in 92% and 84% yield respectively (Scheme **4a**). This finding

Scheme 4. Control experiments. (a) Reaction condition: 1b or 6a (0.2 mmol), disulfide 2a (0.15 mmol), PIDA(1.5 equiv), DBU (1.5 equiv), TEMPO (2.0 equiv) in MeCN (2 mL) under an Ar atmosphere at room temperature for 6 h. (b) Reaction condition: 1a (0.2 mmol), disulfide 2a (0.15 mmol), diselenide 4a (0.15 mmol), PIDA(1.5 equiv), DBU (1.5 equiv), in MeCN (2 mL) under an Ar atmosphere at room temperature for 6 h.

suggests that the process does indeed involve C-centered radical intermediate C. One pot reaction of **1a**, **2a** and **4a** was tested for the the reactivity of **2a** and **4a** (Scheme **4b**). The result shows that the ratio of the corresponding product **3aa** and **7aa** is 1:19, indicating that the reactivity of **4a** is superior to **2a**.

On the basis of previous work and experimental observations⁸⁻¹¹, a plausible mechanism was proposed as illustrated in Scheme **5**. At the beginning, deprotonation of the

Scheme 5. Proposed mechanism

Conclusions

In conclusion, we have developed a novel and efficient iodine(III)-mediated intramolecular sulfeno- and selenofunctionalization of β , γ -unsaturated hydrazones and oximes using disulfides and diselenides as sulfur and selenium sources. This reaction provides a convenient and straightforward method to prepare a variety of useful heteroatom-containing pyrazoline and isoxazoline derivatives. In addition, this method features a broad substrate scope, wide group tolerance and chemoselectivity.

Experimental

General experimental method

All chemical reagents are obtained from commercial suppliers and used without further purification. All unknown compounds are characterized by ¹H NMR, ¹³C NMR, MS. Analytical thin-layer chromatography are performed on glass plates precoated with silica gel impregnated with a fluorescent indicator (254 nm), and the plates are visualized by exposure to ultraviolet light.¹H NMR and ¹³C NMR spectra are recorded on an AVANCE 500 Bruker spectrometer operating at 500 MHz and 125 MHz in CDCl₃, respectively, and chemical shifts are reported in ppm. Multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broad). Mass spectra are taken on a Waters UPLC H-class LC-MS instrument in the electrospray ionization (ESI) mode. Only molecular ions (M + 1) are given for the ESI-MS analysis.

A typical procedure for the synthesis of 3-phenyl-5-((phenylthio)methyl)-1-tosyl-4,5-dihydro-1*H*-pyrazole (3aa)

A 10 mL reaction vessel with a magnetic stirring bar was equipped with β , γ -unsaturated hydrazone (**1a**) (0.2 mmol), disulfide (**2a**) (0.15 mmol), PIDA (0.3 mmol), DBU (0.3 mmol) and MeCN (2 mL). The mixture was stirred under Ar atmosphere at r.t. for 6 h. The reaction solution was diluted with ethyl acetate, washed with water, dried over anhydrous Na₂SO₄. After the solvent had been removed under reduced pressure, the residue was purified by flash chromatography using PE-AcOEt (10:1-5:1, v/v) as the eluent to sulfer- containing pyrazoline (**3aa**).

The rest products were prepared by a similar procedure.

3-phenyl-5-((phenylthio)methyl)-1-tosyl-4,5-dihydro-1*H***pyrazole (3aa)**, white solid. Yield: 69 mg, 82%. ¹H NMR (500 MHz, CDCl₃) δ 7.74 – 7.63 (m, 4H), 7.57 – 7.50 (m, 2H), 7.49 – 7.38 (m, 5H), 7.35 – 7.31 (m, 1H), 7.24 (d, *J* = 8.0 Hz, 2H), 4.07 (dd, *J* = 13.7, 3.2 Hz, 1H), 3.97 (tdd, *J* = 10.6, 9.2, 3.2 Hz, 1H), 3.27 (dd, *J* = 17.4,

 $[\]beta$, γ -unsaturated tosyl hydrazone **1a** or oxime **6a** affords the anionic intermediate **A** under basic conditions. Subsequently, a singleelectron oxidation of **A** by PIDA gives the N-centered or O-centered radical **B**. The formed hyadrazone or oxime radical **B** would undergo a radical intramolecular cyclization to produce the C-centered radical C. The C-centered radical **C** reacted with diphenyl disulfide **2a** to form the desired product **3aa** or **7aa** via a radical propagation and regenerate the sulfenyl radical which could recombine to diphenyl disulfide **2a**(Scheme **5**, Path I). The C-centered radical **C** rould also reacted with diphenyl diselenide **4a** to form the desired product **5aa** or **8aa** in a similar way(Scheme **5**, Path II).

Published on 18 December 2017. Downloaded by University of Reading on 19/12/2017 00:22:18.

10.8 Hz, 1H), 3.12 – 3.06 (m, 2H), 2.40 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 156.68, 143.35, 133.37, 130.64, 129.71, 128.79, 128.55, 128.25, 127.66, 125.96, 125.72, 60.06, 38.83, 37.62, 20.61. ESI-MS *m/z*: 423 [M+1]⁺. HRMS (ESI) Calcd for [C₂₃H₂₂N₂O₂S₂] requires [M+H]⁺ 423.1195, found 423.1194.

3-phenyl-5-((*p*-tolylthio)methyl)-1-tosyl-4,5-dihydro-1*H*-pyrazole (**3ab**), white solid. Yield: 76 mg, 87%. ¹H NMR (500 MHz, CDCl₃) δ 7.71 – 7.67 (m, 2H), 7.64 (d, *J* = 8.1 Hz, 2H), 7.48 – 7.39 (m, 5H), 7.23 (dd, *J* = 8.2, 3.0 Hz, 4H), 4.01 (dd, *J* = 13.6, 3.2 Hz, 1H), 3.93 (qd, *J* = 10.4, 3.2 Hz, 1H), 3.27 (dd, *J* = 17.4, 10.7 Hz, 1H), 3.11 – 3.02 (m, 2H), 2.43 (s, 3H), 2.40 (s, 3H). ¹³C NMR (125 Hz, CDCl₃) δ 156.70, 143.30, 135.92, 130.63, 129.69, 129.51, 128.99, 128.50, 127.65, 125.95, 60.16, 38.76, 38.19, 20.62, 20.13. ESI-MS *m/z*: 437 [M+1]⁺. HRMS (ESI) Calcd for [C₂₄H₂₄N₂O₂S₂] requires [M+H]⁺ 437.1352, found 437.1349.

5-(((4-fluorophenyl)thio)methyl)-3-phenyl-1-tosyl-4,5-dihydro-1*H*-**pyrazole (3ac)**, white solid. Yield: 69 mg, 78%. ¹H NMR (500 MHz, CDCI3) δ 7.72 – 7.67 (m, 2H), 7.63 (d, J = 8.3 Hz, 2H), 7.57 – 7.47 (m, 2H), 7.47 – 7.40 (m, 3H), 7.25 (d, J = 8.1 Hz, 2H), 7.14 (d, J = 8.7 Hz, 1H), 3.98 – 3.87 (m, 2H), 3.28 (dd, J = 17.3, 10.7 Hz, 1H), 3.12 – 3.06 (m, 2H), 2.41 (s, 3H). ¹⁹F NMR (470 MHz, CDCI3) δ -114.59. ¹³C NMR (125 MHz, CDCI3) δ 156.61, 143.43, 131.74, 131.68, 130.59, 129.74, 128.54, 128.28, 127.67, 127.59, 125.94, 115.44, 115.27, 60.01, 38.73, 20.60. ESI-MS m/z: 441 [M+1] ⁺. HRMS (ESI) Calcd for [C₂₃H₂₁FN₂O₂S₂] requires [M+H]⁺ 441.1101, found 441.1099.

5-(((4-chlorophenyl)thio)methyl)-3-phenyl-1-tosyl-4,5-dihydro-1H-pyrazole (3ad), white solid. Yield: 68 mg, 75%.¹H NMR (500 MHz, CDCl₃) δ 7.72 – 7.63 (m, 4H), 7.51 – 7.34 (m, 7H), 7.26 (d, *J* = 8.1 Hz, 2H), 3.99 (dd, *J* = 13.7, 3.1 Hz, 1H), 3.92 (qd, *J* = 10.3, 3.1 Hz, 1H), 3.27 (dd, *J* = 17.4, 10.8 Hz, 1H), 3.12 – 3.05 (m, 2H), 2.41 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 156.62, 143.49, 131.95, 130.60, 130.19, 129.77, 129.61, 128.60, 128.36, 127.68, 127.60, 125.96, 59.84, 38.76, 37.90, 20.63. ESI-MS *m/z*: 457 [M+1]⁺ HRMS (ESI) Calcd for $[C_{23}H_{21}CIN_2O_2S_2]$ requires $[M+H]^+$ 457.0806, found 457.0808.

5-(((4-bromophenyl)thio)methyl)-3-phenyl-1-tosyl-4,5-dihydro-1H-pyrazole (3ae), white solid. Yield: 80 mg, 80%. ¹H NMR (500 MHz, CDCl₃) δ 7.73 – 7.68 (m, 2H), 7.66 (d, *J* = 8.2 Hz, 2H), 7.54 (d, *J* = 8.5 Hz, 2H), 7.49 – 7.37 (m, 5H), 7.27 (d, *J* = 8.0 Hz, 2H), 4.00 (dd, *J* = 13.7, 3.1 Hz, 1H), 3.92 (tdd, *J* = 10.5, 9.3, 3.1 Hz, 1H), 3.28 (dd, *J* = 17.4, 10.8 Hz, 1H), 3.12 – 3.05 (m, 2H), 2.41 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 156.60, 143.50, 132.62, 131.28, 130.55, 130.34, 129.78, 129.59, 128.62, 127.68, 127.60, 125.95, 119.66, 59.79, 38.76, 37.71, 20.63. ESI-MS *m/z*: 501 [M+1]⁺. HRMS (ESI) Calcd for $[C_{23}H_{21}BrN_2O_2S_2]$ requires [M+H]⁺ 501.0301, found 501.0299.

5-(((4-nitrophenyl)thio)methyl)-3-phenyl-1-tosyl-4,5-dihydro-

1*H***-pyrazole (3af)**, white solid. Yield: 39 mg, 42%. ¹H NMR (500 MHz, CDCl₃) δ 8.19 – 8.15 (m, 2H), 7.70 (d, *J* = 8.2 Hz, 2H), 7.64 – 7.56 (m, 3H), 7.51 (d, *J* = 8.9 Hz, 2H), 7.42 – 7.32 (m, 3H), 7.21 (s, 1H), 4.09 – 3.96 (m, 2H), 3.27 – 3.15 (m, 2H), 3.04 (dd, *J* = 17.4, 8.6 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 156.55, 144.11, 143.75, 130.77, 129.92, 129.39, 128.74, 127.74, 127.55, 125.95, 125.44, 123.48, 123.22, 59.13, 38.78, 36.12, 20.62. ESI-MS *m/z*: 468 [M+1] ⁺. HRMS (ESI) Calcd for $[C_{23}H_{21}N_3O_4S_2]$ requires $[M+H]^+$ 468.1046, found 468.1043.

3-phenyl-5-((m-tolylthio)methyl)-1-tosyl-4,5-dihydro-1H-

pyrazole (3ag), white solid. Yield: 61 mg, 70%. ¹H NMR (500 MHz,

View Article Online DOI: 10.1039/C7OB02892J ARTICLE

CDCl₃) δ 7.76 - 7.59 (m, 4H), 7.48 - 7.39 (m, 3H), 7.35 - 7.29 (m, 3H), 7.24 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 6.7 Hz, 1H), 4.07 (dd, J = 13.7, 3.2 Hz, 1H), 3.98 (tdd, J = 10.7, 9.2, 3.2 Hz, 1H), 3.27 (dd, J = 17.4, 10.8 Hz, 1H), 3.12 - 3.03 (m, 2H), 2.44 (s, 3H), 2.40 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 156.65, 143.28, 138.09, 130.74, 129.69, 129.08, 128.51, 128.06, 127.63, 126.47, 125.95, 125.57, 60.03, 38.83, 37.44, 20.59. ESI-MS m/z: 437 [M+1]⁺. HRMS (ESI) Calcd for [C₂₄H₂₄N₂O₂S₂] requires [M+H]⁺ 437.1352, found 437.1349. **5-((methylthio)methyl)-3-phenyl-1-tosyl-4,5-dihydro-1H-pyrazole (3ah)**, white solid. Yield: 48 mg, 67%. ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, J = 8.3 Hz, 2H), 7.74 - 7.69 (m, 2H), 7.49 - 7.40 (m, 3H), 7.33 (d, J = 8.1 Hz, 2H), 4.12 (dtd, J = 10.6, 9.0, 3.2 Hz, 1H), 3.30

(dd, J = 13.6, 3.2 Hz, 1H), 3.26 – 3.16 (m, 2H), 3.01 (dd, J = 13.5, 8.9 Hz, 1H), 2.44 (s, 3H), 2.31 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 156.85, 143.40, 131.10, 129.67, 128.63, 127.64, 125.98, 60.44, 38.46, 38.32, 20.63, 15.24. ESI-MS m/z: 361 [M+1]⁺. HRMS (ESI) Calcd for [C₁₈H₂₀N₂O₂S₂] requires [M+H]⁺ 361.1039, found 361.1041.

3-phenyl-5-((propylthio)methyl)-1-tosyl-4,5-dihydro-1*H***-pyrazole (3ai)**, colorless oil. Yield: 52 mg, 68%. ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, *J* = 8.4 Hz, 2H), 7.74 – 7.69 (m, 2H), 7.47 – 7.40 (m, 3H), 7.33 (d, *J* = 8.0 Hz, 2H), 4.08 (dtd, *J* = 10.7, 9.2, 3.3 Hz, 1H), 3.34 (dd, *J* = 13.4, 3.3 Hz, 1H), 3.25 (dd, *J* = 17.3, 10.7 Hz, 1H), 3.16 (dd, *J* = 17.3, 9.1 Hz, 1H), 2.98 (dd, *J* = 13.4, 9.3 Hz, 1H), 2.69 (t, *J* = 7.3 Hz, 2H), 2.44 (s, 3H), 1.74 (dt, *J* = 14.6, 7.3 Hz, 2H), 1.07 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 156.81, 143.37, 131.11, 129.80, 129.65, 128.61, 127.64, 125.98, 60.73, 38.44, 36.30, 33.75, 22.12, 20.63, 12.43. ESI-MS *m/z*: 389 [M+1]^{*}. HRMS (ESI) Calcd for [C₂₀H₂₄N₂O₂S₂] requires [M+H]^{*} 389.1352, found 389.1353.

2-(((3-phenyl-1-tosyl-4,5-dihydro-1H-pyrazol-5-

yl)methyl)thio)benzo[d]thiazole (3aj), white solid. Yield: 45 mg, 47%. ¹H NMR (500 MHz, CDCl₃) δ 8.00 – 7.94 (m, 1H), 7.94 – 7.89 (m, 2H), 7.87 – 7.79 (m, 1H), 7.71 – 7.66 (m, 2H), 7.51 (ddd, *J* = 8.4, 7.3, 1.2 Hz, 1H), 7.47 – 7.36 (m, 4H), 7.30 (d, *J* = 8.0 Hz, 2H), 4.50 – 4.39 (m, 2H), 3.72 – 3.65 (m, 1H), 3.28 (dd, *J* = 9.9, 2.9 Hz, 2H), 2.42 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 164.47, 156.81, 152.06, 143.48, 134.65, 130.79, 129.72, 129.61, 128.61, 127.84, 127.64, 125.99, 125.23, 123.57, 120.60, 120.17, 60.30, 38.23, 36.65, 20.63. ESI-MS *m/z*: 480 [M+1] ⁺. HRMS (ESI) Calcd for [C₂₄H₂₁N₃O₂S₃] requires [M+H]⁺ 480.0869, found 480.0867.

3-(4-methoxyphenyl)-5-((phenylthio)methyl)-1-tosyl-4,5-

dihydro-1*H***-pyrazole (3ba)**, white solid. Yield: 71 mg, 79%. ¹H NMR (500 MHz, CDCl₃) δ 7.69 – 7.60 (m, 4H), 7.56 – 7.50 (m, 2H), 7.42 (dd, *J* = 8.4, 7.0 Hz, 2H), 7.35 – 7.30 (m, 1H), 7.23 (d, *J* = 8.1 Hz, 2H), 6.95 – 6.90 (m, 2H), 4.06 (dd, *J* = 13.7, 3.2 Hz, 1H), 3.93 (tdd, *J* = 10.6, 9.1, 3.2 Hz, 1H), 3.87 (d, *J* = 0.6 Hz, 3H), 3.23 (dd, *J* = 17.3, 10.7 Hz, 1H), 3.10 – 3.02 (m, 2H), 2.39 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 160.63, 156.45, 143.22, 133.41, 130.57, 128.70, 128.48, 128.22, 127.67, 127.60, 125.65, 122.31, 113.05, 59.87, 54.42, 38.90, 37.59, 20.59. ESI-MS *m/z*: 453 [M+1]⁺. HRMS (ESI) Calcd for [C₂₄H₂₄N₂O₃S₂] requires [M+H]⁺ 453.1301, found 453.1299.

3-(4-fluorophenyl)-5-((phenylthio)methyl)-1-tosyl-4,5-dihydro-1*H***-pyrazole (3ca)**, light yellow oil. Yield: 77 mg, 88%. ¹H NMR (500 MHz, CDCl₃) δ 7.71 – 7.62 (m, 4H), 7.56 – 7.50 (m, 2H), 7.42 (dd, *J* = 8.5, 6.9 Hz, 2H), 7.35 – 7.31 (m, 1H), 7.24 (d, *J* = 8.1 Hz, 2H), 7.15 – 7.06 (m, 2H), 4.06 (dd, *J* = 13.7, 3.2 Hz, 1H), 3.97 (tdd, *J* = 10.6, 9.3, 3.2 Hz, 1H), 3.25 (dd, *J* = 17.4, 10.8 Hz, 1H), 3.11 – 3.04 (m, 2H), 2.40 (s, 3H). ¹⁹F NMR (470 MHz, CDCl₃) δ -108.76. ¹³C NMR (125 MHz,

ARTICLE

CDCl₃) δ 164.19, 162.19, 155.62, 143.40, 133.28, 130.60, 128.79, 128.54, 128.24, 128.00, 127.93, 127.63, 125.96, 125.75, 114.92, 114.75, 60.12, 38.85, 37.56, 20.61. ESI-MS *m/z*: 441 [M+1]⁺. HRMS (ESI) Calcd for [C₂₃H₂₁FN₂O₂S₂] requires [M+H]⁺ 441.1101, found 441.1099.

3-(4-chlorophenyl)-5-((phenylthio)methyl)-1-tosyl-4,5-dihydro-1*H***-pyrazole (3da)**, yellow oil. Yield: 78 mg, 86%. ¹H NMR (500 MHz, CDCl₃) δ 7.58 (dd, *J* = 16.2, 8.0 Hz, 4H), 7.47 (d, *J* = 7.7 Hz, 2H), 7.39 – 7.31 (m, 4H), 7.28 (d, *J* = 7.4 Hz, 1H), 7.19 (d, *J* = 7.9 Hz, 2H), 4.00 (dd, *J* = 13.7, 3.1 Hz, 1H), 3.92 (qd, *J* = 10.4, 3.2 Hz, 1H), 3.19 (dd, *J* = 17.4, 10.8 Hz, 1H), 3.07 – 2.96 (m, 2H), 2.35 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 155.58, 143.47, 135.80, 133.24, 130.55, 128.80, 128.58, 128.26, 127.96, 127.61, 127.16, 125.77, 60.20, 38.70, 37.54, 20.62. ESI-MS (C₂₃H₂₁ClN₂O₂S₂) *m/z*: 457 [M+1]⁺. HRMS (ESI) Calcd for [C₂₃H₂₁ClN₂O₂S₂] requires [M+H]⁺ 457.0806, found 457.0808.

3-(4-bromophenyl)-5-((phenylthio)methyl)-1-tosyl-4,5-dihydro-1H-pyrazole (3ea), yellow oil. Yield: 77 mg, 77%. ¹H NMR (500 MHz, CDCl₃) δ 7.59 (d, *J* = 8.2 Hz, 2H), 7.52 – 7.44 (m, 6H), 7.37 (t, *J* = 7.7 Hz, 2H), 7.29 (d, *J* = 7.4 Hz, 1H), 7.19 (d, *J* = 8.1 Hz, 2H), 4.01 (dd, *J* = 13.8, 3.2 Hz, 1H), 3.92 (tdd, *J* = 10.7, 9.3, 3.2 Hz, 1H), 3.20 (dd, *J* = 17.4, 10.8 Hz, 1H), 3.08 – 2.96 (m, 2H), 2.35 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 155.65, 143.48, 133.23, 130.92, 130.55, 128.80, 128.58, 128.26, 127.60, 127.35, 125.77, 124.20, 60.22, 38.65, 37.54, 20.62. ESI-MS *m/z*: 501 [M+1] ⁺. HRMS (ESI) Calcd for [C₂₃H₂₁BrN₂O₂S₂] requires [M+H]⁺ 501.0301, found 501.0299.

5-((phenylthio)methyl)-1-tosyl-3-(4-(trifluoromethyl)phenyl)-4,5-dihydro-1*H***-pyrazole (3fa)**, colorless oil. Yield: 73 mg, 75%. ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, *J* = 8.3 Hz, 2H), 7.66 (dd, *J* = 8.1, 5.7 Hz, 4H), 7.58 – 7.49 (m, 2H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.37 – 7.32 (m, 1H), 7.25 (d, *J* = 8.0 Hz, 2H), 4.10 – 3.97 (m, 2H), 3.30 (dd, *J* = 17.5, 10.7 Hz, 1H), 3.15 – 3.06 (m, 2H), 2.40 (s, 3H). ¹⁹F NMR (470 MHz, CDCl₃) δ -62.92. ¹³C NMR (125 MHz, CDCl₃) δ 155.14, 143.59, 133.18, 130.62, 128.88, 128.64, 128.29, 127.58, 126.16, 125.85, 124.65, 60.40, 38.63, 37.57, 20.62. ESI-MS *m/z*: 491 [M+1]⁺. HRMS (ESI) Calcd for [C₂₄H₂₁F₃N₂O₂S₂] requires [M+H]⁺ 491.1069, found 491.1068.

3-(3,4-dimethoxyphenyl)-5-((phenylthio)methyl)-1-tosyl-4,5-

dihydro-1*H***-pyrazole (3ga)**, white solid. Yield: 67 mg, 69%. ¹H NMR (500 MHz, CDCl₃) δ 7.70 – 7.62 (m, 2H), 7.57 – 7.50 (m, 2H), 7.45 – 7.36 (m, 3H), 7.35 – 7.30 (m, 1H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.07 (dd, *J* = 8.3, 2.0 Hz, 1H), 6.85 (d, *J* = 8.3 Hz, 1H), 4.05 (dd, *J* = 13.7, 3.2 Hz, 1H), 3.98 (s, 3H), 3.94 (s, 4H), 3.24 (dd, *J* = 17.3, 10.7 Hz, 1H), 3.10 – 3.01 (m, 2H), 2.39 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 156.61, 150.48, 148.17, 143.28, 133.36, 130.53, 128.71, 128.49, 128.23, 127.65, 125.67, 122.58, 119.86, 109.46, 108.02, 59.91, 55.20, 55.00, 38.86, 37.61, 20.59. ESI-MS *m/z*: 483 [M+1]⁺. HRMS (ESI) Calcd for [C₂₅H₂₆N₂O₄S₂] requires [M+H]⁺ 483.1407, found 483.1406.

3-(3-methoxyphenyl)-5-((phenylthio)methyl)-1-tosyl-4,5-

dihydro-1*H***-pyrazole (3ha)**, white solid. Yield: 61 mg, 67%. ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, *J* = 8.3 Hz, 2H), 7.52 – 7.45 (m, 2H), 7.38 (dd, *J* = 8.5, 6.9 Hz, 2H), 7.31 – 7.26 (m, 2H), 7.19 (d, *J* = 8.1 Hz, 2H), 7.16 (dt, *J* = 7.6, 1.2 Hz, 1H), 6.96 (ddd, *J* = 8.2, 2.6, 1.0 Hz, 1H), 4.01 (dd, *J* = 13.7, 3.2 Hz, 1H), 3.95 – 3.88 (m, 1H), 3.83 (s, 3H), 3.21 (dd, *J* = 17.4, 10.8 Hz, 1H), 3.06 – 3.00 (m, 2H), 2.35 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 158.72, 156.69, 143.38, 133.33, 130.97, 130.53, 128.78, 128.66, 128.55, 128.24, 127.61, 125.71, 118.64, 115.88, 110.70, 60.06, 54.50, 38.89, 37.60, 20.61. ESI-MS *m/z*: 453 [M+1]⁺.

HRMS (ESI) Calcd for $[C_{24}H_{24}N_2O_3S_2]$ requires $[M+H]^+$ 453.1301, found 453.1299.

3-(2-chlorophenyl)-5-((phenylthio)methyl)-1-tosyl-4,5-dihydro-1*H*-**pyrazole (3ia)**, light yellow oil. Yield: 45 mg, 49%. ¹H NMR (500 MHz, CDCl₃) δ 7.71 – 7.60 (m, 2H), 7.56 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.52 – 7.44 (m, 2H), 7.40 – 7.32 (m, 3H), 7.32 – 7.21 (m, 5H), 4.07 – 3.87 (m, 2H), 3.35 (dd, *J* = 17.9, 10.4 Hz, 1H), 3.24 (dd, *J* = 17.9, 9.7 Hz, 1H), 3.10 (dd, *J* = 13.7, 10.3 Hz, 1H), 2.40 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 156.83, 143.50, 133.45, 131.88, 130.64, 130.15, 129.61, 129.53, 129.18, 128.95, 128.56, 128.23, 127.75, 125.89, 125.75, 60.72, 41.81, 37.58, 20.64. ESI-MS *m/z*: 457 [M+1] ⁺. HRMS (ESI) Calcd for [C₂₃H₂₁ClN₂O₂S₂] requires [M+H]⁺ 457.0806, found 457.0808.

3-cyclopentyl-5-((phenylthio)methyl)-1-tosyl-4,5-dihydro-1*H***pyrazole (3ja)**, colorless oil. Yield: 66 mg, 80%. ¹H NMR (500 MHz, CDCl₃) δ 7.66 – 7.56 (m, 2H), 7.48 (d, *J* = 7.6 Hz, 2H), 7.40 (t, *J* = 7.7 Hz, 2H), 7.33 – 7.29 (m, 1H), 7.26 (d, *J* = 8.0 Hz, 2H), 3.95 (dd, *J* = 13.7, 3.2 Hz, 1H), 3.77 (tdd, *J* = 10.7, 9.0, 3.2 Hz, 1H), 2.98 (dd, *J* = 13.7, 10.6 Hz, 1H), 2.75 (td, *J* = 17.1, 16.4, 9.3 Hz, 2H), 2.64 (dd, *J* = 17.8, 9.1 Hz, 1H), 2.44 (s, 3H), 1.80 (ddd, *J* = 12.3, 8.1, 5.1 Hz, 2H), 1.71 – 1.60 (m, 4H), 1.50 (dtd, *J* = 24.7, 7.5, 4.2 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 165.34, 143.14, 133.54, 130.35, 128.42, 128.27, 128.17, 127.77, 125.51, 59.28, 39.71, 39.40, 37.50, 29.33, 24.35, 20.62. ESI-MS *m/z*: 415 [M+1]⁺. HRMS (ESI) Calcd for [C₂₂H₂₆N₂O₂S₂] requires [M+H]⁺ 415.1508, found 415.1507.

3-(naphthalen-2-yl)-5-((phenylthio)methyl)-1-tosyl-4,5-dihydro-1*H*-**pyrazole (3ka)**, white solid. Yield: 74 mg, 78%. ¹H NMR (500 MHz, CDCl₃) δ 8.02 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.91 (d, *J* = 1.6 Hz, 1H), 7.87 (ddd, *J* = 8.1, 4.0, 2.0 Hz, 3H), 7.69 (d, *J* = 8.3 Hz, 2H), 7.60 – 7.53 (m, 4H), 7.44 (t, *J* = 7.8 Hz, 2H), 7.36 – 7.32 (m, 1H), 7.23 (d, *J* = 8.1 Hz, 2H), 4.10 (dd, *J* = 13.7, 3.2 Hz, 1H), 4.01 (tdd, *J* = 10.6, 9.2, 3.2 Hz, 1H), 3.41 (dd, *J* = 17.3, 10.8 Hz, 1H), 3.21 (dd, *J* = 17.3, 9.2 Hz, 1H), 3.12 (dd, *J* = 13.7, 10.6 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 156.71, 143.34, 133.36, 131.84, 130.70, 128.80, 128.53, 128.25, 127.66, 127.49, 127.27, 126.86, 126.52, 125.81, 125.72, 122.53, 60.14, 38.78, 37.66, 20.57. ESI-MS *m/z*: 473 [M+1]⁺. HRMS (ESI) Calcd for [C₂₇H₂₄N₂O₂S₂] requires [M+H]⁺ 473.1352, found 473.1353.

3-phenyl-5-((phenylselanyl)methyl)-1-tosyl-4,5-dihydro-1*H***pyrazole (5aa)**, yellow oil. Yield: 75 mg, 80%. ¹H NMR (500 MHz, CDCl₃) δ 7.62 (td, *J* = 7.2, 6.6, 1.8 Hz, 4H), 7.59 – 7.54 (m, 2H), 7.42 – 7.33 (m, 6H), 7.18 (d, *J* = 8.1 Hz, 2H), 3.95 – 3.85 (m, 2H), 3.25 (dd, *J* = 17.4, 10.7 Hz, 1H), 3.07 (dd, *J* = 13.0, 11.0 Hz, 1H), 2.98 (dd, *J* = 17.3, 9.6 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 156.33, 143.25, 132.11, 130.60, 129.66, 128.49, 128.41, 127.64, 126.49, 125.93, 61.09, 39.43, 31.26, 20.61. ESI-MS *m/z*: 471 [M+1]⁺. HRMS (ESI) Calcd for [C₂₃H₂₂N₂O₂SSe] requires [M+H]⁺ 471.0640, found 471.0642.

5-((benzylselanyl)methyl)-3-phenyl-1-tosyl-4,5-dihydro-1*H***-pyrazole (5ab)**, white solid. Yield: 90 mg, 93%. ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, *J* = 8.3 Hz, 2H), 7.68 – 7.65 (m, 2H), 7.43 (dddd, *J* = 14.2, 8.4, 5.9, 2.3 Hz, 5H), 7.37 (dd, *J* = 8.5, 6.8 Hz, 2H), 7.33 – 7.28 (m, 3H), 4.11 – 4.05 (m, 1H), 3.97 (s, 2H), 3.31 (dd, *J* = 12.7, 3.3 Hz, 1H), 3.16 – 3.05 (m, 2H), 2.92 (dd, *J* = 17.3, 8.8 Hz, 1H), 2.43 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 156.67, 143.36, 138.46, 131.17, 129.66, 128.61, 128.02, 127.70, 127.62, 125.98, 60.99, 39.18, 28.62, 27.30, 20.65. ESI-MS *m/z*: 485 [M+1] ⁺. HRMS (ESI) Calcd for [C₂₄H₂₄N₂O₂SSe] requires [M+H]^{*} 485.0796, found 485.0797.

DOI: 10.1039/C7OB02892J

Journal Name

5-((methylselanyl)methyl)-3-phenyl-1-tosyl-4,5-dihydro-1H-

pyrazole (5ac), white solid. Yield: 72 mg, 88%. ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, *J* = 8.3 Hz, 2H), 7.74 – 7.70 (m, 2H), 7.47 – 7.41 (m, 3H), 7.33 (d, *J* = 8.1 Hz, 2H), 4.15 (dtd, *J* = 10.7, 9.1, 3.1 Hz, 1H), 3.33 – 3.25 (m, 2H), 3.14 – 3.04 (m, 2H), 2.44 (s, 3H), 2.20 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 156.55, 143.38, 131.11, 129.79, 129.65, 128.62, 127.63, 125.95, 61.06, 39.19, 29.69, 20.63, 4.18. ESI-MS *m/z*: 409 [M+1]⁺. HRMS (ESI) Calcd for [C₁₈H₂₀N₂O₂SSe] requires [M+H]⁺ 409.0483, found 409.0481.

3-phenyl-5-((phenylthio)methyl)-4,5-dihydroisoxazole (7aa), light yellow solid. Yield: 34 mg, 64%. ¹H NMR (500 MHz, CDCl₃) δ 7.68 – 7.64 (m, 2H), 7.47 – 7.38 (m, 5H), 7.32 (dd, J = 8.4, 6.8 Hz, 2H), 7.27 – 7.21 (m, 1H), 4.88 (dddd, J = 10.8, 9.1, 6.6, 4.5 Hz, 1H), 3.48 – 3.42 (m, 1H), 3.38 (dd, J = 13.6, 4.5 Hz, 1H), 3.28 (dd, J = 16.8, 6.6 Hz, 1H), 2.99 (dd, J = 13.6, 8.9 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 155.30, 133.75, 129.21, 128.40, 128.21, 127.77, 125.90, 125.77, 78.58, 38.59, 36.82. ESI-MS *m/z*: 270 [M+1]⁺. HRMS (ESI) Calcd for [C₁₆H₁₅NOS] requires [M+H]⁺ 270.0947, found 270.0945.

3-phenyl-5-((*p***-tolylthio)methyl)-4,5-dihydroisoxazole (7ab)**, yellow oil. Yield: 42 mg, 75%. ¹H NMR (500 MHz, CDCl₃) δ 7.70 – 7.65 (m, 2H), 7.41 (dd, *J* = 5.2, 2.1 Hz, 3H), 7.34 (d, *J* = 8.2 Hz, 2H), 7.13 (d, *J* = 7.9 Hz, 2H), 4.85 (dddd, *J* = 10.8, 9.0, 6.6, 4.6 Hz, 1H), 3.47 – 3.41 (m, 1H), 3.38 – 3.23 (m, 2H), 2.94 (dd, *J* = 13.5, 8.9 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 155.29, 136.20, 129.99, 129.21, 129.00, 128.46, 127.76, 125.78, 78.69, 38.55, 37.45, 20.10. ESI-MS *m/z*: 284 [M+1]⁺. HRMS (ESI) Calcd for [C₁₇H₁₇NOS] requires [M+H]⁺ 284.1104, found 284.1103.

5-(((4-chlorophenyl)thio)methyl)-3-phenyl-4,5-dihydroisoxazole (7ad), white solid. Yield: 37 mg, 61%. ¹H NMR (500 MHz, CDCl₃) δ 7.71 – 7.63 (m, 2H), 7.47 – 7.39 (m, 3H), 7.39 – 7.32 (m, 2H), 7.31 – 7.27 (m, 2H), 4.88 (dddd, *J* = 10.2, 8.4, 6.6, 4.7 Hz, 1H), 3.46 (dd, *J* = 16.8, 10.3 Hz, 1H), 3.33 (dd, *J* = 13.7, 4.7 Hz, 1H), 3.27 (dd, *J* = 16.8, 6.6 Hz, 1H), 3.01 (dd, *J* = 13.7, 8.4 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 155.29, 132.40, 132.00, 130.52, 129.32, 128.35, 127.81, 125.79, 78.41, 38.62, 37.17. ESI-MS *m/z*: 304 [M+1]⁺. HRMS (ESI) Calcd for [C₁₆H₁₄CINOS] requires [M+H]⁺ 304.0557, found 304.0558.

5-((methylthio)methyl)-3-phenyl-4,5-dihydroisoxazole (7ah), colorless liquid. Yield: 19 mg, 47%. ¹H NMR (500 MHz, CDCl₃) δ 7.71 – 7.64 (m, 2H), 7.45 – 7.37 (m, 3H), 5.00 – 4.92 (m, 1H), 3.47 (dd, *J* = 16.7, 10.3 Hz, 1H), 3.29 (dd, *J* = 16.7, 7.0 Hz, 1H), 2.86 (dd, *J* = 13.8, 4.9 Hz, 1H), 2.72 (dd, *J* = 13.7, 7.6 Hz, 1H), 2.22 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 155.44, 131.23, 129.19, 127.76, 125.76, 79.43, 38.63, 37.09, 15.28. ESI-MS *m/z*: 208 [M+1]⁺. HRMS (ESI) Calcd for $[C_{11}H_{13}NOS]$ requires [M+H]⁺ 208.0791, found 208.0789.

3-(4-methoxyphenyl)-5-((phenylthio)methyl)-4,5-

dihydroisoxazole (7ba), white solid. Yield: 47 mg, 78%. ¹H NMR (500 MHz, CDCl₃) δ 7.64 – 7.54 (m, 2H), 7.45 – 7.36 (m, 2H), 7.30 (dd, J = 8.4, 6.8 Hz, 2H), 7.25 – 7.19 (m, 1H), 6.97 – 6.87 (m, 2H), 4.83 (dddd, J = 10.1, 8.9, 6.5, 4.5 Hz, 1H), 3.83 (s, 3H), 3.47 – 3.32 (m, 2H), 3.23 (dd, J = 16.7, 6.5 Hz, 1H), 2.97 (dd, J = 13.5, 8.9 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 160.18, 154.86, 133.86, 129.12, 128.20, 127.31, 125.84, 120.97, 113.18, 78.29, 54.41, 38.84, 36.79. ESI-MS m/z: 300 [M+1] ⁺. HRMS (ESI) Calcd for [C₁₇H₁₇NO₂S] requires [M+H]⁺ 300.1053, found 300.1052.

3-(4-fluorophenyl)-5-((phenylthio)methyl)-4,5-dihydroisoxazole (7ca), white solid. Yield: 40 mg, 70%. ¹H NMR (500 MHz, CDCl₃) δ 7.68 – 7.56 (m, 2H), 7.48 – 7.36 (m, 2H), 7.31 (dd, *J* = 8.4, 6.8 Hz, 2H), 7.25 – 7.18 (m, 1H), 7.13 – 7.01 (m, 2H), 4.87 (dddd, *J* = 10.8, 9.0, 6.6, 4.5 Hz, 1H), 3.46 – 3.33 (m, 2H), 3.24 (dd, *J* = 16.8, 6.7 Hz, 1H), 2.98 (dd, J = 13.6, 8.9 Hz, 1H). ¹⁹F NMR (470 MHz, CDCl₃) δ -109.72. ¹³C NMR (125 MHz, CDCl₃) δ 163.84, 161.84, 154.32, 133.71, 129.20, 128.22, 127.74, 127.67, 125.93, 124.70, 115.00, 114.83, 78.72, 38.63, 36.80. ESI-MS m/z: 288 [M+1] ⁺. HRMS (ESI) Calcd for [C₁₆H₁₄FNOS] requires [M+H]⁺ 288.0853, found 288.0851.

3-(*tert*-butyl)-5-((phenylthio)methyl)-4,5-dihydroisoxazole (7da), colorless oil. Yield: 33 mg, 67%. ¹H NMR (500 MHz, CDCl₃) δ 7.43 (dt, J = 8.1, 1.4 Hz, 2H), 7.34 (td, J = 7.7, 1.6 Hz, 2H), 7.26 (td, J = 7.2, 1.4 Hz, 1H), 4.78 – 4.65 (m, 1H), 3.31 (ddd, J = 13.5, 4.5, 1.5 Hz, 1H), 3.10 (ddd, J = 17.0, 10.1, 1.5 Hz, 1H), 2.96 – 2.87 (m, 2H), 1.23 (d, J = 1.6 Hz, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 164.72, 134.03, 128.99, 128.14, 125.72, 77.60, 37.93, 36.64, 32.05, 27.11. ESI-MS *m/z*: 250 [M+1]⁺. HRMS (ESI) Calcd for [C₁₄H₁₉NOS] requires [M+H]⁺ 250.1260, found 250.1258.

3-phenyl-5-((phenylselanyl)methyl)-4,5-dihydroisoxazole (8aa), white solid. Yield: 46 mg, 72%. ¹H NMR (500 MHz, CDCl₃) δ 7.67 – 7.62 (m, 2H), 7.57 (dd, *J* = 6.5, 3.1 Hz, 2H), 7.41 (dd, *J* = 5.3, 2.0 Hz, 3H), 7.33 – 7.27 (m, 3H), 4.91 (dddd, *J* = 11.0, 9.3, 6.8, 4.5 Hz, 1H), 3.45 (dd, *J* = 16.8, 10.2 Hz, 1H), 3.32 (dd, *J* = 12.6, 4.6 Hz, 1H), 3.21 (dd, *J* = 16.8, 6.8 Hz, 1H), 3.01 (dd, *J* = 12.6, 9.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 155.23, 132.30, 129.20, 128.38, 127.76, 126.62, 125.75, 79.43, 39.12, 30.47. ESI-MS *m/z*: 318 [M+1]⁺. HRMS (ESI) Calcd for [C₁₆H₁₅NOSe] requires [M+H]⁺ 318.0392, found 318.0391.

5-((benzylselanyl)methyl)-3-phenyl-4,5-dihydroisoxazole (8ab), colorless liquid. Yield: 50 mg, 76%. ¹H NMR (500 MHz, CDCl₃) δ 7.65 (dd, J = 6.7, 3.0 Hz, 2H), 7.41 (dd, J = 5.1, 2.0 Hz, 3H), 7.36 – 7.25 (m, 4H), 7.25 – 7.18 (m, 1H), 4.88 (dtd, J = 10.3, 7.4, 4.8 Hz, 1H), 3.92 – 3.88 (m, 2H), 3.39 (dd, J = 16.7, 10.3 Hz, 1H), 3.11 (dd, J = 16.7, 7.2 Hz, 1H), 2.84 (dd, J = 12.9, 4.9 Hz, 1H), 2.73 (dd, J = 12.9, 7.6 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 155.38, 138.03, 129.12, 128.54, 128.03, 127.72, 127.63, 125.98, 125.74, 79.90, 39.38, 26.90, 26.49. ESI-MS m/z: 332 [M+1] ⁺. HRMS (ESI) Calcd for [C₁₇H₁₇NOSe] requires [M+H]⁺ 332.0548, found 332.0547.

Conflicts of interest

There are no conflicts to declare.

Notes and references

- (a) C. H. Kuchenthal and W. Maison, *Synthesis-stuttgart*, 2010, 2010, 719; (b) L. M. Blair and J. Sperry, *J. Nat. Prod.*, 2013, 76, 794; (c) C. G. Wermuth, *MedChemComm*, 2011, 2, 935; (d) J. M. Alex and R. J. Kumar, *J. Enzyme Inhib. Med. Chem.*, 2014, 29, 427; (e) B. N. Acharya, D. Saraswat, M. Tiwari, A. K. Shrivastava, R. Ghorpade, S. Bapna and M. P. Kaushik, *Eur. J. Med. Chem.*, 2010, 45, 430; (f) D. Dardic, G. Lauro, G. Bifulco, P. Laboudie, P. Sakhaii, A. Bauer, A. Vilcinskas, P. E. Hammann and A. Plaza, *J. Org. Chem.*, 2017, 82, 6032.
- (a) S. Castellano, D. Kuck, M. Viviano, J. Yoo, F. López-Vallejo, P. Conti, L. Tamborini, A. Pinto, J. L. Medina-Franco and G. J. Sbardella, *J. Med. Chem.*, 2011, **54**, 7663; (b) P. K. Poutiainen, T. A. Venäläinen, M. Peräkylä, J. M. Matilainen, S. Väisänen, P. Honkakoski, R. Laatikainen and J. T. Pulkkinen, *Bioorg. Med. Chem.*, 2010, **18**, 3437; (c) A. P. Kozikowski, *Acc. Chem. Res.*, 1984, **17**, 410; (d) D. Jiang, J. Peng and Y. Chen, *Org. Lett.*, 2008, **10**, 1695; (e) M. K. Zhu, J. F. Zhao and T. P. Loh, *J. Am. Chem. Soc.*, 2010, **132**, 6284; (f) Y. H. He, L. H. Li, Y. F. Yang, Y. Q. Wang, J. Y. Luo, X. Y. Liu and Y. M. Liang, *Chem. Commun.*, 2013, **49**,

Published on 18 December 2017. Downloaded by University of Reading on 19/12/2017 00:22:18.

5687; (g) C. B. Tripathi and S. Mukherjee, *Angew. Chem., Int. Ed.*, 2013, **52**, 8450.

- 3. W. Li, P. Jia, B. Han, D. Li and W. Yu, *Tetrahedron*, 2013, **69**, 3274.
- (a) R. H. Liu, D. Wei, B. Han and W. Yu, ACS catal., 2016, 6, 6525;
 (b) L. Zhu, G. Wang, Q. Guo, Z. Xu, D. Zhang and R. Wang, Org. Lett., 2014, 16, 5390;
 (c) L. Zhu, H. Yu, Z. Xu, X. Jiang, L. Lin and R. Wang, Org. Lett., 2014, 16, 1562;
 (d) W. Zhang, Y. Su, K. H. Wang, L. Wu, B. Chang, Y. Shi, D. Huang and Y. Hu, Org. Lett., 2017, 19, 376;
 (e) Y. T. He, L. H. Li, Y. F. Yang, Y. Q. Wang, J. Y. Luo, X. Y. Liu and Y. M. Liang, Chem. Commun., 2013, 49, 5687;
 (f) F. Punner, Y. Sohtome and M. Sodeoka, Chem. Commun., 2016, 52, 14093;
 (g) D.-F. Jiang, J.-Y. Hu, W.-J. Hao, S.-L. Wang, S.-J. Tu and B. Jiang, Org. Chem. Front., 2018, DOI: 10.1039/c7q000743d.
- (a) M. K. Zhu, J. F. Zhao and T. P. Loh, *J. Am. Chem. Soc.*, 2010, 132, 6284; (b) D. Jiang, J. Peng and Y. Chen, *Org. Lett.*, 2008, 10, 1695; (c) L. Li, P. Liu, Y. Su and H. Huang, *Org. Lett.*, 2016, 18, 5736; (d) M. N. Yang, D. M. Yan, Q. Q. Zhao, J. R. Chen and W. J. Xiao, *Org. Lett.*, 2017, 19, 5208.
- X. Q. Hu, J. R. Chen, Q. Wei, F. L. Liu, Q. H. Deng, A. M. Beauchemin and W. J. Xiao, *Angew. Chem., Int. Ed.*, 2014, 53, 12163.
- (a) Q. Wei, J. R. Chen, X. Q. Hu, X. C. Yang, B. Lu and W. J. Xiao, Org. Lett., 2015, **17**, 4464; (b) X. Q. Hu, X. Qi, J. R. Chen, Q. Q. Zhao, Q. Wei, Y. Lan and W. J. Xiao, Nat. Commun., 2016, **7**, 11188; (c) X. Q. Hu, J. Chen, J. R. Chen, D. M. Yan and W. J. Xiao, Chem. -Eur. J., 2016, **22**, 14141; (d) Q. Q. Zhao, J. Chen, D. M. Yan, J. R. Chen and W. J. Xiao, Org. Lett., 2017, **19**, 3620.
- (a) F. Chen, X. L. Yang, Z. W. Wu and B. Han, *J. Org. Chem.*, 2016, 81, 3042; (b) X. Y. Duan, X. L. Yang, R. Fang, X. X. Peng, W. Yu and B. Han, *J. Org. Chem.*, 2013, 78, 10692.
- X. X. Peng, Y. J. Deng, X. L. Yang, L. Zhang, W. Yu and B. Han, Org. Lett., 2014, 16, 4650.
- 10. X. L. Yang, F. Chen, N. N. Zhou, W. Yu and B. Han, *Org. Lett.*, 2014, **16**, 6476.
- (a) W. Kong, Q. Guo, Z. Xu, G. Wang, X. Jiang and R. Wang, *Org. Lett.*, 2015, **17**, 3686; (b) X. Q. Hu, G. Feng, J. R. Chen, D. M. Yan, Q. Q. Zhao, Q. Wei and W. J. Xiao, *Org. Biomol. Chem.*, 2015, **13**, 3457.
- (a) T. Wirth, Angew Chem Int Ed Engl, 2005, 44, 3656; (b) R. D. Richardson and T. Wirth, Angew. Chem., Int. Ed., 2006, 45, 4402; (c) V. V. Zhdankin and P. J. Stang, Chem. Rev., 2008, 108, 5299; (d) G. Q. Liu and Y. M. Li, J. Org. Chem., 2014, 79, 10094; (e) R. Wang, H. Zou, Y. Xiong, N. Yi, W. Deng and J. Xiang, Org. Biomol. Chem., 2017, 15, 3964.
- (a) U. Farid and T. Wirth, Angew. Chem., Int. Ed., 2012, 51, 3462; (b) C. Roben, J. A. Souto, Y. Gonzalez, A. Lishchynskyi and K. Muniz, Angew. Chem., Int. Ed., 2011, 50, 9478; (c) H. M. Lovick and F. E. Michael, J. Am. Chem. Soc., 2010, 132, 1249; (d) Q. Wang, W. Zhong, X. Wei, M. Ning, X. Meng and Z. Li, Org. Biomol. Chem., 2012, 10, 8566; (e) W. Kong, P. Feige, T. de Haro and C. Nevado, Angew. Chem., Int. Ed., 2013, 52, 2469.
- (a) C. Dai, X. Sun, X. Tu, L. Wu, D. Zhan and Q. Zeng, *Chem. Commun.*, 2012, **48**, 5367; (b) Y. Zhang, Z. R. Wong, X. Wu, S. J. Lauw, X. Huang, R. D. Webster and Y. R. Chi, *Chem. Commun.*, 2016, **53**, 184; (c) C. J. Nalbandian, E. M. Miller, S. T. Toenjes and J. L. Gustafson, *Chem. Commun.*, 2017, **53**, 1494; (d) W.-C. Gao, T. Liu, B. Zhang, X. Li, W.-L. Wei, Q. Liu, J. Tian and H.-H. Chang, *J. Org. Chem.*, 2016, **81**, 11297; (e) X. R. Wang and F. Chen, *Tetrahedron*, 2011, **67**, 4547; (f) H. Y. Tu, B. L. Hu, C. L. Deng and X. G. Zhang, *Chem. Commun.*, 2015, **51**, 15558; (g) T. Taniguchi,

A. Murata, M. Takeda, T. Mizuno, A. Nomoto and A. Ogawa, *Eur. J. Org. Chem.*, 2017, **2017**, 4928.

Published on 18 December 2017. Downloaded by University of Reading on 19/12/2017 00:22:18.

Iodine(III)-Mediated Intramolecular Sulfeno- and Selenofunctionalization of β, γ-unsaturated Hydrazones and Oximes

Jing-miao Yu,^a Chun Cai*^a

A cascade radical cyclization/sulfenylation or selenylation of β , γ -unsaturated hydrazones and oximes was realized under mild conditions with phenyliodine(III) diacetate (PIDA) as the sole oxidant, leading to the construction of various diversely functionalized heteroatom-containing pyrazoline and isoxazoline derivatives. This metal-free radical process is suggested to encompass a sequential C-N/O and C-S/Se bond fomation.