

PAPER View Article Online

Cite this: DOI: 10.1039/c5nj00405e

An efficient synthesis of 2,4,7-trisubstituted pyrimido[1,2-a][1,3,5]triazin-6-ones†

Nikhil Sachdeva,*^{ab} Anton V. Dolzhenko,^{cd} Seow Joo Lim,^a Wee Ling Ong^a and Wai Keung Chui^a

A method for the preparation of novel pyrimido[1,2-a][1,3,5]triazin-6-one derivatives functionalized in positions 2, 4, and 7 of the ring was developed. Diversity in the derivatization of the pyrimido[1,2-a][1,3,5]triazin-6-one scaffold was successfully achieved by the introduction of substituents into positions 2 and 7 *via* two complementary approaches for the synthesis of key intermediates *viz*. pyrimidinylguanidines. Variations in position 4 of the pyrimido[1,2-a][1,3,5]triazine ring were made available by the regioselective introduction of various substituents *via* the triazine ring closure with corresponding aldehydes. The scope of the method was illustrated by the preparation of a library of 66 pyrimido[1,2-a][1,3,5]triazin-6-ones, which was demonstrated to be a source for new selective anticancer agents. Tautomeric preferences and anticancer properties were also explored for the prepared compounds.

Received (in Montpellier, France) 15th February 2015, Accepted 9th April 2015

DOI: 10.1039/c5nj00405e

www.rsc.org/njc

Introduction

1,3,5-Triazine has been a very popular heterocycle in medicinal chemistry allowing the construction of structurally diverse molecules with various biological activities. In the last decade, fused 1,3,5-triazine derivatives have been the focus of medicinal chemists' investigations and the derivatives have been recognized as privileged scaffolds in drug design.² However, pyrimido[1,2-a]triazines have not been explored extensively due to the limited number of effective methods available for their synthesis that allow the generation of a diversely substituted library of potentially bioactive compounds with this heterocyclic system.³ Some pyrimido[1,2-a][1,3,5]triazines and their benzofused analogues (1,3,5-triazino[2,1-b]quinazolines) were reported to be useful as agricultural herbicides⁴ and fungicides.⁵ The compounds constructed using this scaffold were found to possess antibacterial activity against Klebsiella pneumonia and antifungal activity against Microsporum canis;6 they were also identified as ligands for 5-HT receptors⁶ and potential anticancer agents.7

In our previous work⁸ on exploration of the synthetic utility of pyrimidinylguanidines for the synthesis of pyrimido[1,2-*a*]-[1,3,5]triazines, we observed an unexpected rearrangement of the products. In continuation of our work on the synthesis of pyrimido[1,2-*a*][1,3,5]triazines and their fused analogues,⁷⁻⁹ we report herein an effective approach for the synthesis of a diversely substituted library of pyrimido[1,2-*a*][1,3,5]triazin-6-ones.

Recently, the synthesis of pyrimido[1,2-*a*][1,3,5]triazines with a partially hydrogenated pyrimidine ring was reported. ¹⁰ In this paper, we describe the synthesis of pyrimido[1,2-*a*]-[1,3,5]triazines with a partially hydrogenated triazine ring. Particularly, we focus on the preparation of compounds possessing amino-substitutions that are common in well-known anticancer 1,3,5-triazines (Fig. 1).

Despite very different targets, these compounds share some similarity in the substitution of amino groups. For example, primary amino groups are common for anticancer agent HL010183,11 with irsogladine12 possessing antiangiogenic and anticancer properties and the lysophosphatidic acid acyltransferase inhibitor CT32228 demonstrating a very good antileukemic profile.13 The dimethylamino substitution on the triazine ring is typical for HL010183 and anticancer drug altretamine (hexamethylmelamine).14 Morpholine can be found to be connected to the triazine ring of a dual phosphoinositide 3-kinase/mTOR inhibitor gedatolisib, which is currently under clinical trials using Pfizer as an anticancer agent. 15 This structural motif is also present in the structure of a reversing anticancer multidrug inhibitor of ABCG2 transporter PZ-39,16 and in an aromatase inhibitor SEF19, effective against experimental tumors.17

^a Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.

E-mail: nicks.sachdeva81@gmail.com; Fax: +65 67791554; Tel: +65 6516 2933

b School of Applied Science, Republic Polytechnic, Woodlands Avenue 9, Singapore 738964, Singapore

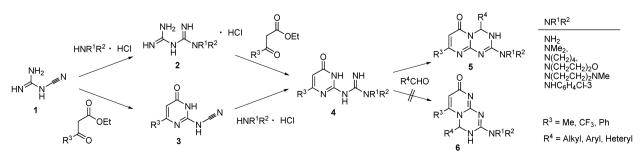
^c School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia

^d School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987 Perth, Western Australia 6845, Australia

 $[\]dagger$ Electronic supplementary information (ESI) available: Experimental procedures and characterization data. See DOI: 10.1039/c5nj00405e

NJC Paper

Some 1,3,5-triazines possessing anticancer activity.


Results and discussion

The synthesis of pyrimidinylguanidines 4, key intermediates for the desired pyrimido[1,2-a][1,3,5]triazines, was performed via two alternative pathways utilizing the same readily available reagents: cyanoguanidine (1), various amines in the form of hydrochlorides and β-keto esters (Scheme 1). In the first approach, biguanide 2, successfully prepared from cyanoguanidine (1), were subjected to the treatment with β -keto esters thus providing pyrimidinylguanidine 4. However, we found that in addition to the pyrimidine ring closure, 2,4-diamino-1,3,5-triazines were also formed in this reaction as biguanide can act as both tri- and penta-atomic synthons. 18 The low selectivity of the process was the main drawback of this approach that motivated us to explore another sequence of the reactions via the initial formation of the pyrimidine ring upon treatment of 1 β-keto esters. The reaction of resulting pyrimidinylcyanamides 3 with amines under microwave irradiation (i-PrOH, 160 °C, 15 min) was used to convert them into pyrimidinylguanidine 4. Despite the fact that the structure of the final product 4 did not depend on the sequence of the reagent introduction, our attempts to carry out the synthesis of 4 in a one-pot three-component manner were unsuccessful.

The annulation of a 1,3,5-triazine ring to the pyrimidine ring was achieved using the reaction of pyrimidinylguanidine 4 with various aldehydes (Scheme 1). The ring closure proceeded regioselectively to N-1 of 4 thus affording pyrimido [1,2-a][1,3,5]triazin-6-ones 5. The formation of the 1,3,5-triazine ring was confirmed by signals of a proton at C-4 (5.53-7.15 ppm) in ¹H NMR spectra and the C-4 signal in ¹³C NMR spectra (54.9– 64.8 ppm). The formation of regioisomeric products 6 was excluded on the basis of 2D NOESY experiments. The absence of cross-peaks between protons of R⁴ substituents and a proton at sp³-hybridized carbon of the 1,3,5-triazine ring with signals of R³ substituents in the pyrimidine ring suggested selective annulation of the triazine ring to N-1 and the formation of 5. The structure assignments were further conformed by X-ray crystallography data of compound 5v (Fig. 2). 19

The method developed for the synthesis of pyrimido [1,2-a][1,3,5]triazin-6-ones 5 was found to be general and after minor modifications can be applied for various substrates. This was demonstrated by the preparation of a series of pyrimido[1,2-a]-[1,3,5]triazin-6-ones 5 bearing different substituents in positions 2, 4 and 7 of the heterocyclic system (Table 1). A range of alkyl, aryl and hetaryl substituents was successfully introduced into a newly formed triazine ring by corresponding aldehydes. The synthesis can tolerate the use of various pyrimidinylguanidines 4, which involves only minor adjustment of solvents required to achieve an adequate solubility of the starting guanidines, allowing incorporation of diverse amino-substituents in position 2 of the triazine ring. It was demonstrated that only unsubstituted guanidine nitrogen participated in the reaction if another available nitrogen atom was substituted with an aryl group (5bm-5bn). That was confirmed by two distinct signals for NH protons at 8.38-8.52 and 9.70-9.82 ppm in the ¹H NMR spectra of 5bm-5bn. In order to further improve the efficiency of our method, we explored the effect of microwave irradiation on the outcome of the reaction. Moderate to good yields of 5 were obtained using conventional heating whereas yields were improved considerably with shortening reaction times by using focused microwave irradiation in the same solvents.

Compounds 5 might be involved in several tautomeric interconversions (Fig. 3). To assess tautomeric preferences for compounds 5, ab intio calculations were performed at three different levels of theory using 2-amino-7-methyl-4-phenyl-1(3)(8),4-dihydropyrimido[1,2-a][1,3,5]triazine-6-one (A-C) and its 6-hydroxy tautomer D as a model compound and compared their relative stability in the gaseous state (Table 2). Tautomer B

Scheme 1 Synthesis of (6-oxo-1,6-dihydropyrimidin-2-yl)guanidines (4) and 4-substituted 2-amino-1,4-dihydropyrimido[1,2-a][1,3,5]triazine-6-ones (5).

NJC Paper

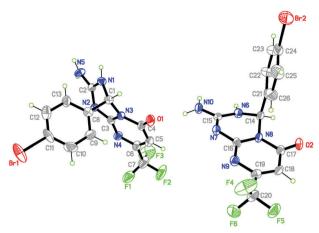


Fig. 2 Molecular structure of **5v**. ¹⁹

was found to be the most preferred species. However, the difference in energy between molecules A-C, involved in annular tautomerism in 5a, is relatively small while the hydroxy tautomer D was considerably less stable.

It should be noted that the experimental observations contradict the results of the theoretical ab initio calculations of the tautomeric preferences. On the basis of NMR data, the 3H-form A was suggested to be predominant in the DMSO solution. The

Fig. 3 Prototropic tautomerism in 5a

coupling of a proton at the sp3-hybridized carbon (C-4) and a proton at the endocyclic nitrogen was observed in ¹H NMR spectra (${}^{3}J = 0$ –4.9 Hz) of several compounds 5. Despite the Jvalue being small and not always detectable, the 2D NOESY experiments clearly indicated the location of the NH proton in the vicinity of the sp³-hybridized carbon as the signal of the migrating proton gave cross peaks with the proton signal at C-4 and proton signals of the R4 substituent.

In the crystal structure, we also found the 3H-form, where the proton at N-3 was involved in intermolecular hydrogen bonding to N-1 of another molecule thus facilitating potential interconversion of forms A and B. The discrepancy between the experimental and theoretical data of the gaseous state can be

Table 1 Synthesis of 2,4,7-trisubstituted pyrimido[1,2-a][1,3,5]triazin-6-ones (5)

Compound	NR^1R^2	R^3	R ⁴	Yield ^a (%)	Compound	NR^1R^2	\mathbb{R}^3	R ⁴	Yield (%)
5a	NH_2	Me	Ph	61 ^b , 79 ^c	5ah	NMe ₂	Me	4-MeOC ₆ H ₄	55 ^f , 73 ^g
5b	NH_2	Me	$4\text{-MeC}_6\text{H}_4$	$55^{b'}, 77^{c}$	5ai	NMe_2	Me	$4\text{-FC}_6\text{H}_4$	63^f , 76^g
5 c	NH_2	Me	4-MeOC_6H_4	$60^{b'}$, 72^{c}	5aj	NMe_2	Me	4 -CF $_3$ C $_6$ H $_4$	76^{f}
5 d	NH_2	Me	$4\text{-FC}_6\text{H}_4$	67 ^b , 87 ^c	5ak	NMe_2	Me	4 -CNC $_6$ H $_4$	54^f
5e	NH_2	Me	4 - $CF_3C_6H_4$	65^{b}	5al	NMe_2	Me	2-Furyl	69 ^f , 76 ^g
5f	NH_2	Me	Me	61 ^b	5am	NMe_2	Me	2-Pyridyl	77 ^f , 92 ^g
5g	NH_2	Me	Isopropyl	70^b	5an	NMe_2	Me	4-ClC ₆ H ₄	$66^f, 85^g$
5h	NH_2	Me	Cyclohexyl	77 ^b	5ao	NMe_2	Me	4-BrC ₆ H ₄	79 ^ƒ
5i	NH_2	Me	$PhCH_2CH_2$	79^{b}	5ap	NMe_2	Me	$4\text{-OHC}_6\text{H}_4$	75^{f}
5j	NH_2	Me	2-Furyl	$54^{b}, 78^{c}$	5aq	Morpholino	Me	Ph	64^f , 75^g
5k	NH_2	Me	2-Thienyl	52^b	5ar	Morpholino	Me	$4\text{-MeC}_6\text{H}_4$	$76^f, 79^g$
5 l	NH_2	Me	2-Pyridyl	63 ^b , 81 ^c	5as	Morpholino	Me	$4\text{-MeOC}_6\text{H}_4$	$94^f, 96^g$
5m	NH_2	CF_3	Ph	$62^{d'}, 89^{e}$	5at	Morpholino	Me	$4\text{-FC}_6\text{H}_4$	$53^f, 88^g$
5n	NH_2	CF_3	$4\text{-MeC}_6\text{H}_4$	$65^{d'}, 86^{e}$	5au	Morpholino	Me	4 - $CF_3C_6H_4$	79^{f}
50	NH_2	CF_3	$4-MeOC_6H_4$	$52^{d'}, 79^{e}$	5av	Morpholino	Me	4-CNC ₆ H ₄	50^f
5 p	NH_2	CF_3	$4-FC_6H_4$	63^d , 81^e	5aw	Morpholino	Me	2-Furyl	$59^f, 71^g$
5q	NH_2	CF_3	$4-CF_3C_6H_4$	69^d	5ax	Morpholino	Me	2-Thienyl	$57^{f^{*}}$
5r	NH_2	CF_3	2-Furyl	57 ^d , 70 ^e 55 ^d	5ay	Morpholino	Me	2-Pyridyl	$55^f, 90^g$
5s	NH_2	CF_3	2-Thienyl	55^{d}	5az	Morpholino	Me	4-BrC ₆ H ₄	51^f
5t	NH_2	CF_3	2-Pyridyl	$75^d, 82^e$	5ba	Morpholino	CF_3	Ph	69^f , 86^g
5u	NH_2	CF_3	$4\text{-ClC}_6\text{H}_4$	80^d	5 bb	Morpholino	CF_3	$4\text{-MeC}_6\text{H}_4$	$83^f, 93^g$
5 v	NH_2	CF_3	4-BrC ₆ H ₄	78^d	5bc	Morpholino	CF_3	4-MeOC_6H_4	$86^f, 95^g$
5w	NH_2	Ph	Ph	$65^d, 80^e$	5 bd	Morpholino	CF_3	$4\text{-FC}_6\text{H}_4$	63^f , 90^g
5x	NH_2	Ph	$4-MeC_6H_4$	$65^{d'}, 86^{e}$	5 be	Morpholino	CF_3	4 - $CF_3C_6H_4$	69^J
5 y	NH_2	Ph	$4-MeOC_6H_4$	$69^{d'}, 85^{e}$	5 bf	Morpholino	CF_3	2-Furyl	57 ^f , 78 ^g
5 z	NH_2	Ph	$4\text{-FC}_6\text{H}_4$	57 ^d , 80 ^e 69 ^d	5 b g	Morpholino	CF_3	$4-NO_2C_6H_4$	58^{f}
5aa	NH_2	Ph	$4-CF_3C_6H_4$	$69^{d^{'}}$	5bh	Morpholino	CF_3	2-Pyridyl	60^f , 76^g
5ab	NH_2	Ph	2-Furyl	$65^d, 86^e$	5bi	Morpholino	CF_3	4-BrC ₆ H ₄	72^{f}
5ac	NH_2	Ph	2-Pyridyl	$71^d, 86^e$	5bj	Morpholino	CF_3	4-CNC ₆ H ₄	88^f
5ad	NH_2	Ph	4 -BrC $_6$ H $_4$	$67^{d'}$	5 b k	Pyrrolidino	Me	$4-MeC_6H_4$	69^{f}
5ae	NH_2	Ph	4-ClC ₆ H ₄	69 ^d	5 bl	<i>N</i> -Methylpiperazino	Me	$4\text{-MeC}_6\text{H}_4$	53^{f}
5af	NMe_2	Me	Ph	$69^f, 83^g$	5bm	3-ClC ₆ H ₄ NH	Me	$4-MeC_6H_4$	$65^f, 86^g$
5ag	NMe_2	Me	4-MeC_6H_4	72 ^f , 87 ^g	5 bn	3-ClC ₆ H ₄ NH	Me	5-(HOCH ₂) fur-2-yl	$38^{f'}$

a Isolated yields after recrystallization. AcOH, reflux, 5-9 h. AcOH, microwave irradiation, 150 °C, 25 min. DMF, reflux, 3-8 h. DMF, microwave irradiation, 165-170 °C, 20 min. f EtOH, piperidine, reflux, 4-12 h. g EtOH, piperidine, microwave irradiation, 140 °C, 20 min.

Table 2 Tautomeric preference for **5a** according to *ab initio* calculations²⁰

	Relative energies of tautomers, kcal mol ⁻¹					
Level of theory	A	В	\mathbf{C}	D		
Gaseous phase $(\varepsilon = 1)$						
HF/6-311**	2.9	0	3.5	28.3		
B3LYP/6-311++**	3.3	0	2.9	24.1		
MP2/6-311++G**	5.0	0	4.2	23.4		
DMSO ($\varepsilon = 46.7$)						
HF/6-311**	0	2.3	3.7	27.2		
B3LYP/6-311++**	0	1.8	3.6	24.3		
MP2/6-311++G**	0	3.5	4.2	30.1		

attributed to the effect of the solvent. The solvent influence was confirmed by the single point energy calculations performed considering the presence of DMSO as a solvent using the polarizable continuum model.²¹

Anticancer properties of compounds 5 were evaluated using a standard MTT assay. 22 Some of the tested compounds demonstrated antiproliferative activity against the A549 lung cancer cell line. In particular, 5j was found to inhibit growth of this type of cell with an IC_{50} value of 6.0 \pm 0.4 μM . Moreover, the effect of this compound against cancerous cells was found to be highly selective. Thus no significant inhibition in the growth of normal human lung fibroblast cells (MRC-5) was observed when 5j was applied at the concentrations of up to 100 μM .

Conclusions

In summary, we have successfully developed an efficient method for the synthesis of bioactive pyrimido[1,2-a][1,3,5]triazin-6-ones. This method allows the preparation of libraries of variously substituted compounds with this heterocyclic system from easily available reagents. Shortening reaction time and higher yields were demonstrated to be advantages of carrying out this reaction under microwave irradiation. Moreover, the method is currently applied to obtain 2-thioxo derivatives of 1,3,5-triazine fused heterocyclic systems.

Experimental

General

Melting points (uncorrected) were determined on a Gallenkamp melting point apparatus. NMR spectra were recorded on a Bruker DPX-300 or a Bruker Avance DRX-400 at 298 K using Me_2SO-d_6 as a solvent and TMS as an internal reference. 1H 2DNOESY spectra were acquired using a 150 ms mixing time. The raw data were processed using Topspin 2.1 (Bruker Scientific Inc.). IR spectra were obtained on a Perkin Elmer Spectrum 100 FT-IR spectrophotometer in potassium bromide pellets. Mass spectra were obtained using either a QTRAP 2000 LC-MS mass spectrometer in atmospheric pressure chemical ionization (APCI) mode or a Shimadzu LCMS-IT-TOF system in electron spray ionization (ESI) mode. The course of the reactions was monitored by TLC on Silica gel 60 $F_{2.54}$ plates (Merck, Germany). HPLC analysis was performed on an Agilent Eclipse XDB-C18

 $(4.6 \times 250 \text{ mm}, 5 \text{ } \mu\text{m})$ column at 30 °C, with a flow rate of 1 mL min⁻¹. 5–90% gradients of MeOH/MeCN (solvent A) and H₂O (solvent B) were used as mobile phases. Microwave-assisted reactions were conducted using a Biotage Initiator microwave synthesizer at a maximal power of 400 W. Elemental analyses were performed on a Perkin Elmer 2400 Elemental Analyzer Series II.

Typical procedure for the synthesis of intermediate 4

Method A: into a 5 mL microwave vessel was added N-(4-substituted-6-oxo-1,6-dihydropyrimidin-2-yl)cyanamide 3 (2 mmol) followed by amine hydrochloride (2.12 mmol) and isopropanol/ACN (1.0 mL). The vial was sealed and the mixture was irradiated at 160–170 °C for 15 min and allowed to cool. The white solid obtained was filtered, washed with solution of sodium hydrogen carbonate and cold water and dried. The data of the products correspond to that reported in the literature.⁸

Method B: pyrimidine ring annulation of biguanides 2 with β -keto esters to obtain 4 was done using the method described by Curd *et al.*²³

General procedure for the synthesis of 2-amino-8-methyl-4-(het)aryl-3,4-dihydropyrimido[1,2-a][1,3,5]triazin-6-ones (5a-5l)

Procedure 1: a mixture of guanidine 4 (0.5 g, 2.5 mmol) and an appropriate aldehyde (5.0 mmol) in acetic acid (3 mL) was heated under reflux for 5–9 h. The excess solvent was removed under reduced pressure and the solid obtained was neutralized using sodium carbonate solution (50%). The precipitate formed was filtered and purified by either recrystallization (EtOH) or column chromatography (dichloromethane/methanol – 8.5/1.5).

Procedure 2: a mixture of guanidine 4 (1.5 mmol) and an appropriate aldehyde (1.8 mmol) in 0.2–0.3 mL of acetic acid was irradiated in a 10 mL vial using a Biotage microwave synthesizer at 150 $^{\circ}$ C for 25 min. After cooling, the precipitated crude product was filtered, washed with cold ethyl acetate followed by aqueous sodium carbonate, dried under vacuum and recrystallized.

2-Amino-8-methyl-4-(4-methylphenyl)-3,4-dihydropyrimido [1,2-a][1,3,5]triazin-6-one (5b). Mp 267–268 °C; MS (APCI) m/z 270.1 (MH⁺); anal. calcd C, 62.44; H, 5.61; N, 26.01; found C, 61.98; H, 5.36; N, 26.02. ¹H NMR (300 MHz, Me₂SO- d_6): δ 2.04 (3H, s, 8-Me), 2.26 (3H, s, 4'-Me), 5.69 (1H, s, H-7), 6.82 (1H, d, J = 2.6 Hz, H-4), 7.00 (2H, br s, NH₂), 7.11 (2H, d, J = 8.3 Hz, H-3' and H-5'), 7.16 (2H, d, J = 8.3 Hz, H-2' and H-6'), 8.23 (1H, d, J = 3.0 Hz, NH); ¹³C NMR (75 MHz, Me₂SO- d_6): δ 20.5 (4'-Me), 23.8 (8-Me), 59.6 (C-4), 102.1 (C-7), 125.2 (C-2' and C-6'), 128.9 (C-3'and C-5'), 137.2 (C-1'), 137.7 (C-4'), 154.2 (C-9a), 157.4 (C-2), 160.5 (C-6), 165.6 (C-8); IR (KBr): ν 3331 NH, 3080 CH, 2922, 1688 C=O, 1663, 1592, 1487, 1366. HPLC: purity 98.5%, $t_{\rm R}$ 11.4 min (MeOH:H₂O); purity 100%, $t_{\rm R}$ 7.7 min (CH₃CN:H₂O).

2-Amino-4-(4-methoxyphenyl)-8-methyl-3,4-dihydropyrimido [1,2-a][1,3,5]triazin-6-one (5c). Mp 252–253 °C; MS (APCI) m/z 289.1 (MH⁺); anal. calcd C, 58.94; H, 5.30; N, 24.55; found C, 58.73; H, 5.09; N, 24.43. H NMR (300 MHz, Me₂SO- d_6): δ 2.04 (3H, s, Me), 3.72 (3H, s, OMe), 5.69 (1H, s, H-7), 6.80 (1H, s, H-4), 6.91 (2H, d, J = 8.7 Hz, H-3' and H-5'), 7.00 (2H, br s, NH₂),

7.16 (2H, d, J = 8.7 Hz, H-2′ and H-6′), 8.20 (1H, s, NH); 13 C NMR (75 MHz, Me₂SO- d_6): δ 23.7 (8-Me), 55.1 (OMe), 59.6 (C-4), 102.2 (C-7), 113.8 (C-3′ and C-5′), 126.6 (C-2′and C-6′), 132.2 (C-1′), 154.1 (C-9a), 157.4 (C-2), 159.2 (C-4′), 160.4 (C-6), 165.5 (C-8); IR (KBr); ν 3319 NH, 3083 CH, 2929 CH, 2837, 1687 C=O, 1661, 1612, 1585, 1487, 1395. HPLC: purity 100%, t_R 12.6 min (MeOH:H₂O); purity 100%, t_R 7.1 min (CH₃CN:H₂O).

2-Amino-4-(furan-2-yl)-8-methyl-3,4-dihydropyrimido[1,2-a] [1,3,5]triazin-6-one (5j). Mp > 300 °C; MS (APCI) m/z 246.2 (MH⁺); anal. calcd C, 53.87; H, 4.52; N, 28.56; found C, 53.70; H, 5.03; N, 28.61. ¹H NMR (300 MHz, Me₂SO- d_6): δ 2.02 (3H, s, Me), 5.64 (1H, s, H-7), 6.19 (1H, d, J = 3.0 Hz, H-3'), 6.38 (1H, dd, J = 3.5, 1.6 Hz, H-4'), 6.87 (1H, s, H-4), 7.10 (2H, br s, NH₂), 7.58 (1H, d, J = 1.0 Hz, H-5'), 8.25 (1H, s, NH); ¹³C NMR (75 MHz, Me₂SO- d_6): δ 23.8 (8-Me), 55.4 (C-4), 101.8 (C-7), 106.9 (C-3'), 110.3 (C-4'), 142.8 (C-5'), 152.0 (C-2'), 153.9 (C-9a), 157.7 (C-2), 160.0 (C-6), 165.5 (C-8); IR (KBr); ν 3344 NH, 3066 CH, 2804, 2697, 1669 br C=O, 1490. HPLC: purity 97.5%, t_R 15.9 min (MeOH:H₂O); purity 100%, t_R 7.9 min (CH₃CN:H₂O).

General methods for the synthesis of 2-amino-4-(het)aryl-8-trifluoromethyl-3,4-dihydro-pyrimido[1,2-*a*][1,3,5]triazin-6-one (5m–5v)

Procedure 1: a mixture of 4 (0.5 g, 2.5 mmol) and an appropriate aldehyde (3.0 mmol) in DMF (5 mL) was heated under reflux for 3–8 h. After 2 hours, more amount (up to 0.5 equivalent) of aldehyde was added to facilitate the completion of reaction. The reaction mixture was concentrated under vacuum, filtered, washed with diethyl ether and recrystallized from DMF.

Procedure 2: a mixture of guanidine 4 (1.5 mmol) and an appropriate aldehyde (2.0 mmol) in DMF (1.0 mL) was irradiated in a 10 mL vial using a Biotage initiator microwave synthesizer at 165 $^{\circ}$ C for 20 min. After cooling, the precipitated product was filtered, washed with diethyl ether and recrystallized.

2-Amino-4-(4-methylphenyl)-8-(trifluoromethyl)-3,4-dihydro pyrimido[1,2-a][1,3,5]triazin-6-one (5n). Mp 251–252 °C (DMF); TLC (silica gel, 8.5:1.5 DCM: MeOH): $R_{\rm f}$ 0.5; MS (ESI) m/z: 324.060 [MH]⁺; anal. calcd for C₁₄H₁₂F₃N₅O: C, 52.01; H, 3.74; N, 21.66; found: C, 51.87; H, 3.50; N, 21.63. ¹H NMR (300 MHz, Me₂SO- d_6): δ 2.27 (3H, s, Me), 6.22 (1H, s, H-7), 6.88 (1H, d, J = 2.3 Hz, H-4), 7.14 (2H, d, J = 7.9 Hz, H-3′ and H-5′), 7.19 (2H, d, J = 7.9 Hz, H-2′ and H-6′), 7.40 (2H, br s, NH₂), 8.49 (1H, d, J = 2.3 Hz, NH); ¹³C NMR (75 MHz, Me₂SO- d_6): 20.6 (4′-Me), 60.2 (C-4), 100.8 (q, $^3J_{\rm C-F}$ = 3.1 Hz, C-7), 120.8 (q, $^1J_{\rm C-F}$ = 275.0 Hz, CF₃), 125.2 (C-2′ and C-6′), 129.2 (C-3′ and C-5′), 136.4 (C-4′), 138.3 (C-1′), 153.3 (q, $^2J_{\rm C-F}$ = 33.5 Hz, C-8), 155.9, 157.6, 160.3; IR (KBr); ν 3419 NH, 3345, 3154, 2954 CH, 2821, 1684, 1658 C=O, 1552, 1491, 1424, 1298, 1276. HPLC: purity 100%, $t_{\rm R}$ 4.90 min (MeOH:H₂O).

2-Amino-4-(4-methoxyphenyl)-8-(trifluoromethyl)-3,4-dihydropyrimido[1,2-a][1,3,5]triazin-6-one (50). Mp 225–226 °C (DMF); TLC (silica gel, 8.5:1.5 DCM: MeOH): $R_{\rm f}$ 0.40; anal. calcd for $C_{14}H_{12}F_3N_5O_2$: C, 49.56; H, 3.57; N, 20.64; found: C, 49.31; H, 4.09; N, 19.83. ¹H NMR (300 MHz, Me₂SO- d_6): δ 3.73 (3H, s, OMe), 6.22 (1H, s, H-7), 6.86 (1H, s, H-4), 6.95 (2H, d, J = 8.7 Hz, H-3′ and H-5′), 7.20 (2H, d, J = 8.7 Hz, H-2′ and H-6′), 7.36 (2H, br s, NH₂),

8.49 (1H, s, NH); ¹³C NMR (75 MHz, Me₂SO- d_6): 55.1 (OMe), 60.1 (C-4), 100.9 (q, ${}^3J_{\text{C-F}}$ = 3.5 Hz, C-7), 114.0 (C-3'and C-5'), 120.8 (q, ${}^1J_{\text{C-F}}$ = 275.6 Hz, CF₃), 126.6 (C-2' and C-6'), 131.4 (C-1'), 153.3 (q, ${}^2J_{\text{C-F}}$ = 33.0 Hz, C-8), 155.7, 157.5, 159.5 (C-4'), 160.3. HPLC: purity 96.5%, t_{R} 4.95 min (MeOH:H₂O).

2-Amino-4-(4-fluorophenyl)-8-(trifluoromethyl)-3,4-dihydro pyrimido[1,2-a][1,3,5]triazin-6-one (5p). Mp 260–261 °C (MeOH); TLC (silica gel, 8.5:1.5 DCM: MeOH): $R_{\rm f}$ 0.7; MS (ESI) m/z: 328.034 [MH]⁺; anal. calcd for $C_{13}H_9F_4N_5O$: C, 47.71; H, 2.77; N, 21.40; found: C, 47.38; H, 2.81; N, 21.24. ¹H NMR (300 MHz, Me₂SO- d_6): δ 6.23 (1H, s, H-7), 6.91 (1H, d, J = 3.8 Hz, H-4), 7.21–7.34 (4H, m, H2', H6', H3' and H5'), 7.46 (2H, br s, NH₂), 8.50 (1H, d, J = 3.8 Hz, NH). ¹³C NMR (75 MHz, Me₂SO- d_6): 59.9 (C-4), 100.9 (q, $^3J_{\rm C-F}$ = 2.7 Hz, C-7), 115.7 (d, $^2J_{\rm C-F}$ = 21.8 Hz, C-3' and C-5'), 120.8 (q, $^1J_{\rm C-F}$ = 275.6 Hz, CF₃), 127.5 (d, $^3J_{\rm C-F}$ = 8.8 Hz, C-2' and C-6'), 135.6 (d, $^4J_{\rm C-F}$ = 2.8 Hz, C-1'), 153.4 (q, $^2J_{\rm C-F}$ = 33.3 Hz, C-8), 155.8, 157.5, 160.3, 162.1 (d, $^1J_{\rm C-F}$ = 245.2 Hz, C-4').

2-Amino-8-(trifluoromethyl)-4-[4-(trifluoromethyl)phenyl]-3,4-dihydropyrimido[1,2-a][1,3,5]triazin-6-one (5q). Mp 150–151 °C (DMF); TLC (silica gel, 8.5:1.5 DCM: MeOH): $R_{\rm f}$ 0.7; MS (ESI) m/z: 378.021 [MH]⁺; anal. calcd for $C_{14}H_9F_6N_5O$: C, 44.57; H, 2.40; N, 18.56; found: C, 44.30; H, 2.37; N, 18.48. H NMR (300 MHz, Me₂SO- d_6): δ 6.27 (1H, s, H-7), 7.00 (1H, d, J = 2.2 Hz, H-4), 7.48 (2H, d, J = 8.3 Hz, H-2' and H-6'), 7.38 (2H, br s, NH₂), 7.81 (2H, d J = 8.3 Hz, H-3' and H-5'), 8.62 (1H, J = 2.2 Hz, NH); 13 C NMR (75 MHz, Me₂SO- d_6): 60.2 (C-4), 100.9 (q, $^{3}J_{C-F}$ = 3.4 Hz, C-7), 120.8 (q, $^{1}J_{C-F}$ = 275.4 Hz, 8-CF₃), 123.9 (q, $^{1}J_{C-F}$ = 275.4 Hz, 4'-CF₃), 125.9 (q, $^{3}J_{C-F}$ = 3.5 Hz, C-3'and C-5'), 126.2 (C-2'and 6'), 129.3 (q, $^{2}J_{C-F}$ = 31.8 Hz, C-4'), 143.7 (d, $^{4}J_{C-F}$ = 1.2 Hz, C-1'), 153.5 (q, $^{2}J_{C-F}$ = 33.7 Hz, C-8), 155.8, 157.5, 160.4; IR (KBr); ν 3336 br NH, 3166 br, 2949, 1684, 1550, 1496, 1419, 1329, 1278, 1219. HPLC: purity 99.4%, t_R 6.03 min (MeOH:H₂O).

2-Amino-4-(furan-2-yl)-8-(trifluoromethyl)-3,4-dihydro pyrimido-[1,2-a][1,3,5]triazin-6-one (5r). Mp 226–227 °C (DMF); TLC (silica gel, 8.5:1.5 DCM: MeOH): R_f 0.5; MS (ESI) m/z: 300.025 [MH][†]; anal. calcd for $C_{11}H_8F_3N_5O_2$: C, 44.16; H, 2.69; N, 23.41; found: C, 43.21; H, 3.04; N, 22.81. 1H NMR (300 MHz, Me₂SO- d_6): δ 6.21 (1H, s, H-7), 6.33 (1H, d, J = 3.0 Hz, H-3′), 6.44 (1H, dd, J = 3.0 Hz, J = 1.9 Hz, H-4′), 6.95 (1H, s, H-4), 7.19 (2H, br s, NH₂), 7.65 (1H, d, J = 0.8 Hz, H-5′), 8.45 (1H, s, NH). 13 C NMR (75 MHz, Me₂SO- d_6): 55.3 (C-4), 100.8 (q, $^3J_{C-F}$ = 3.2 Hz, C-7), 107.8 (C-3′), 110.5 (C-4′), 120.8 (q, $^1J_{C-F}$ = 275.2 Hz, CF₃), 143.5 (C-5′), 150.7 (C-2′), 153.4 (q, $^2J_{C-F}$ = 33.5 Hz, C-8), 155.6, 157.8, 159.9; IR (KBr); ν 3294 NH, 3153, 2941, 2817, 1697, 1664 C=O, 1496, 1410, 1299, 1277, 1229. HPLC: purity 100%, t_R 4.03 min (MeOH:H₂O).

General methods for the synthesis of 4-substituted 2-amino-8-phenyl-3,4-dihydropyrimido[1,2-a][1,3,5]triazin-6-one (5w-5af)

Procedure 1: a mixture of 4 (0.5 g, 2.5 mmol) and an appropriate aldehyde (3.0 mmol) in DMF (5 mL) was heated under reflux for 3–8 h. After 2 hours, more amount (up to 0.5 equivalent) of aldehyde was added to facilitate the completion of reaction. The reaction mixture was concentrated under vacuum, filtered, washed with diethyl ether and recrystallized from the suitable solvent.

Procedure 2: a mixture of guanidine 4 (1.5 mmol) and an appropriate aldehyde (2.0 mmol) in DMF (1.0 mL) was irradiated in a 10 mL vial using a Biotage initiator microwave synthesizer at 170 $^{\circ}$ C for 20 min. After cooling, the precipitated product was filtered, washed with diethyl ether and recrystallized.

2-Amino-4,8-diphenyl-3,4-dihydropyrimido[1,2-a][1,3,5] triazin-6-one (5w). Mp 260–261 °C (MeOH–AcOEt); TLC (silica gel, MeOH: CH₂Cl₂, 1:6): R_f 0.43; MS (ESI) m/z = 318.1 (MH⁺). ¹H NMR (300 MHz, Me₂SO- d_6): δ 6.44 (1H, s, H-7), 6.93 (1H, s, H-4), 7.11 (2H, br s, NH₂), 7.24–7.55 (8H, m, H_{Ar}), 8.00 (2H, dd, J = 7.0 Hz, 3.2 Hz, H-2"and H-6"), 8.36 (1H, br s, NH); ¹³C NMR (75 MHz, Me₂SO- d_6): δ 60.0 (C-4), 99.1 (C-7), 125.3, 126.6 (C-7), 128.3 (C-2' and C-6'), 128.5, 128.6, 130.0, 137.1 (C-4'), 140.0 (C-1'), 151.2, 154.5 (br, C-2), 157.5 (C-9a), 161.2 (C-6), 161.8 (C-8). HPLC: purity 100%, t_R 11.0 min (MeOH:H₂O).

2-Amino-4-(4-methoxyphenyl)-8-phenyl-3,4-dihydropyrimido [1,2-a][1,3,5]triazin-6-one (5y). Mp 249–250 °C (MeOH–AcOEt); TLC (silica gel, MeOH : CH₂Cl₂, 1 : 6): $R_{\rm f}$ 0.43; MS (ESI) m/z = 348.1 (MH⁺); anal. calcd C, 65.69; H, 4.93; N, 20.16; found C, 65.20; H, 4.83; N, 20.09. ¹H NMR (300 MHz, Me₂SO- $d_{\rm 6}$): δ 3.72 (3H, s, OMe), 6.41 (1H, s, H-7), 6.87 (1H, d, J = 3.4 Hz, H-4), 6.93 (2H, d, = 8.7 Hz, H-2′ and H-6′), 7.07 (2H, br s, NH₂), 7.23 (2H, d, = 8.7 Hz, H-3′ and H-5′), 7.51–7.62 (3H, m, H-3″, H-4″ and H-5″), 8.00 (2H, dd, J = 7.0 Hz, 3.2 Hz, H-2″ and H-6″), 8.27 (1H, d, J = 3.4 Hz, NH); ¹³C NMR (75 MHz, Me₂SO- $d_{\rm 6}$): δ 55.1 (OMe), 59.8 (C-4), 99.1 (C-7), 113.9, 126.6, 126.7, 128.3 (C-2′ and C-6′), 129.3, 129.9, 132.2, 137.1 (C-4′), 154.5 (br, C-2), 157.5 (C-9a), 159.3 (C-1′), 161.1 (C-6), 161.7 (C-8). HPLC: purity 100%, t_R 16.5 min (MeOH:H₂O).

2-Amino-8-phenyl-4-(4-(trifluoromethyl)phenyl)-3,4-dihydro pyrimido[1,2-a][1,3,5]triazin-6-one (5aa). Mp 239–240 °C (MeOH–AcOEt); TLC (silica gel, MeOH : CH₂Cl₂, 1 : 6): $R_{\rm f}$ 0.55. MS (ESI) m/z = 304.0 (MH⁺). ¹H NMR (300 MHz, Me₂SO- $d_{\rm 6}$): δ 6.49 (1H, s, H-7), 7.05 (1H, s, H-4), 7.24 (2H, br s, NH₂), 7.38–7.49 (3H, m, H-3", H-4" and H-5"), 7.53 (2H, d, ^{3}J = 7.9 Hz, H-2' and H-6'), 7.80 (2H, d, ^{3}J = 7.9 Hz, H-3' and H-5'), 8.04 (2H, dd, J = 7.0 Hz, 3.2 Hz, H-2"and H-6"), 8.46 (1H, s, NH); ¹³C NMR (75 MHz, Me₂SO- $d_{\rm 6}$): δ 59.8 (C-4), 99.2 (C-7), 123.9 (q, ^{1}J = 271.5 Hz, CF₃), 125.8 (q, ^{3}J = 3.9 Hz, C-3"and C-5"), 126.3, 126.7, 128.4, 128.9, 129.1 (d, ^{2}J = 32 Hz, C-4"), 137.0 (C-4'), 144.4 (C-1'), 154.4 (br, C-2), 157.4 (C-9a), 161.2 (C-6), 162.0 (C-8). HPLC: purity 99.4%, $t_{\rm R}$ 24.0 min (MeOH:H₂O).

General methods for the synthesis of 2,8-disubstituted-4-aryl-3,4-dihydropyrimido[1,2-*a*][1,3,5]triazin-6-ones (5af-5az)

Procedure 1: to a stirred suspension of 4 (1.05–1.20 mmol) in ethanol (5 mL), an appropriate amount of aldehyde (1.26–1.44 mmol) and piperidine (0.48–0.60 mmol) was added. The reaction mixture was heated under reflux. After 2 hours, more amount (up to 0.5 equivalent) of aldehyde was added to facilitate the completion of reaction. The reaction mixture was refluxed until TLC showed no spot for the starting material (4–12 h). The reaction mixture was concentrated under vacuum, filtered, and washed with diethyl ether. The product was then recrystallized from the appropriate solvent.

Procedure 2: a mixture of guanidine 4 (1.2 mmol), piperidine (0.25 mmol) and appropriate aldehyde (1.5 mmol) in 1.5 mL of absolute ethanol was irradiated in a 10 mL vial using a Biotage microwave synthesizer for 20 min at 140 $^{\circ}$ C. After removing solvent under vacuum, the crude product was washed with diethyl ether and filtered.

2-(N,N-Dimethylamino)-8-methyl-4-phenyl-3,4-dihydro pyrimido[**1,2-a**][**1,3,5**]**triazin-6-one** (**5af**). Mp 290–291 °C (MeOH); TLC (silica gel, MeOH: CH₂Cl₂, 1:6): $R_{\rm f}$ 0.45; MS (ESI) m/z 284.1 (MH⁺); anal. calcd C, 63.59; H, 6.05; N, 24.72; found C, 63.48; H, 5.78; N, 24.66.

¹H NMR (300 MHz, Me₂SO- d_6): δ 2.07 (3H, s, Me) 3.02 (6H, s, N(Me)₂), 5.74 (1H, s, H-7), 6.84 (1H, d, 3J = 3.4 Hz, H-4), 7.17 (2H, d, 3J = 6.8 Hz, H-2' and H-6'), 7.43 (3H, m, H-3', H-4' and H-5'), 8.74 (1H, d, 3J = 3.4 Hz, NH); 13 C NMR (75 MHz, Me₂SO- d_6): δ 23.7 (Me), 36.6 (N(Me)₂), 59.6 (C-4), 102.1 (C-7), 125.1 (C-2' and C-6'), 128.5 (C-4'), 128.6 (C-3'and C-5'), 139.5 (C-1'), 153.5 (C-2), 155.6 (C-9a), 160.4 (C-6), 165.7 (C-8). HPLC: purity 100%, t_R 14.8 min (MeOH:H₂O).

2-(N,N-Dimethylamino)-8-methyl-4-(4-methylphenyl)-3,4-dihydropyrimido[1,2-a][1,3,5]triazin-6-one (5ag). Mp 288–289 °C (AcOEt); TLC (silica gel, MeOH : CH₂Cl₂, 1 : 6): $R_{\rm f}$ 0.49; MS (ESI) m/z 298.1 (MH⁺); anal. calcd C, 64.63; H, 6.44; N, 23.55; found C, 64.44; H, 6.81; N, 21.35. ¹H NMR (300 MHz, Me₂SO- $d_{\rm 6}$): δ 2.06 (3H, s, 8-Me), 2.26 (3H, s, p-Me) 3.01(6H, s, N(Me)₂), 5.73 (1H, s, H-7), 6.80 (1H, s, H-4), 7.06 (2H, d, 3J = 7.9 Hz, H-2′ and H-6′), 7.16 (2H, d, 3J = 7.9 Hz, H-3′ and H-5′), 8.68 (1H, s, NH). ¹³C NMR (75 MHz, Me₂SO- $d_{\rm 6}$): δ 20.5 (Me), 23.8 (8-Me), 36.6 (N(Me)₂), 59.5 (C-4), 102.1 (C-7), 125.1 (C-2′ and C-6′), 129.0 (C-3′ and C-5′), 136.6 (C-1′), 137.8 (C-4′), 153.5 (C-2), 155.7 (C-9a), 160.4 (C-6), 165.8 (C-8). HPLC: purity 100%, $t_{\rm R}$ 16.6 min (MeOH:H₂O).

2-(*N*,*N*-Dimethylamino)-4-(4-methoxyphenyl)-8-methyl-3,4-dihydropyrimido[1,2-*a*][1,3,5]triazin-6-one (5ah). Mp 280–281 °C (AcOEt–EtOH); TLC (silica gel, MeOH : CH₂Cl₂, 1 : 6): R_f 0.48; MS (ESI) m/z 314.0 (MH⁺); anal. calcd C, 61.33; H, 6.11; N, 22.35; found C, 61.32; H, 5.65; N, 22.44. ¹H NMR (300 MHz, Me₂SO-*d*₆): δ 2.06 (3H, s, Me), 3.02 (6H, s, N(Me)₂), 3.71 (3H, s, OMe), 5.72 (1H, s, H-7), 6.79 (1H, d, 3J = 3.4 Hz, H-4), 6.90 (2H, d, 3J = 8.7 Hz, H-3'and H-5'), 7.10 (2H, d, 3J = 8.7 Hz, H-2'and H-6'), 8.67 (1H, d, 3J = 3.4 Hz, NH). ¹³C NMR (75 MHz, Me₂SO-*d*₆): δ 23.7 (Me), 36.6 (N(Me)₂), 55.1 (OMe), 59.4 (C-4), 102.1 (C-7), 113.9 (C-3' and C5'), 126.5 (C-2'and C-6'), 131.6 (C-1'), 153.5 (C-2), 155.7 (-9a), 159.2 (C-4'), 160.4 (C-6), 165.7 (C-8). HPLC: purity 100% t_R 15.0 min (MeOH:H₂O); purity 100%, t_R 8.0 min (CH₃CN:H₂O).

2-(*N,N*-Dimethylamino)-4-(4-fluorophenyl)-8-methyl-3,4-dihydropyrimido[1,2-a][1,3,5]triazin-6-one (5ai). Mp 287–288 °C (AcOEt: EtOH), TLC (silica gel, MeOH: CH₂Cl₂, 1:9): $R_{\rm f}$ 0.70; MS (ESI) m/z 302.1 (MH⁺); anal. calcd C, 59.79; H, 5.35; N, 23.24; found C, 59.67; H, 5.29; N, 23.12. ¹H NMR (300 MHz, Me₂SO- d_6): δ 2.07 (3H, s, Me), 3.03 (6H, s, N(Me)₂), 5.74 (1H, s, H-7), 6.83 (1H, s, H-4), 7.11–7.33 (4H, m, H-2', H-3', H-5' and H-6'), 8.72 (1H, br s, NH). ¹³C NMR (75 MHz, Me₂SO- d_6): 23.1 (Me), 36.0 (N(Me)₂), 58.6 (C-4), 101.5 (C-7), 114.8 (d, ${}^2J_{\rm C-F}$ = 21.8 Hz, C-3' and C-5'), 126.8 (d, ${}^3J_{\rm C-F}$ = 8.2 Hz, C-2' and C-6'), 135.6 (d, ${}^4J_{\rm C-F}$ = 3.5 Hz, C-1'), 152.7 (C-2), 154.9 (C-9a), 159.8 (C-6), 162.1 (d, ${}^1J_{\rm C-F}$ = 245.1 Hz, C-4'), 165.3 (C-8). HPLC: purity 100%, $t_{\rm R}$ 16.1 min (MeOH:H₂O).

(CH₃CN:H₂O).

4-(4-Chlorophenyl)-2-(*N*,*N*-dimethylamino)-8-methyl-3,4-dihydropyrimido[1,2-*a*][1,3,5]triazin-6-one (5an). Mp 289–290 °C (AcOEt: EtOH); TLC (silica gel, MeOH: CH₂Cl₂, 1:6): R_f 0.52; MS (ESI) m/z 317.9 (MH⁺); anal. calcd C, 56.69; H, 5.08; N, 22.04; found C, 56.46; H, 5.19; N, 21.86. ¹H NMR (300 MHz, Me₂SO- d_6): δ 2.07 (3H, s, Me), 3.02 (6H, s, N(Me)₂), 5.75 (1H, s, H-7), 6.82 (1H, s, H-4), 7.18 (2H, d, 3J = 8.7 Hz, H-2' and H-6'), 7.44 (2H, d, 3J = 8.7 Hz, H-3'and H-5'), 8.74 (1H, s, NH). ¹³C NMR (75 MHz, Me₂SO- d_6): δ 23.6 (Me), 36.6 (N(Me)₂), 59.3 (C-4), 102.1 (C-7), 127.1 (C-2' and C-6'), 128.7 (C-3'and C-5'), 133.1 (C-4'), 138.5 (C-1'), 153.3 (C-2), 155.5 (C-9a), 160.3 (C-6), 165.7 (C-8). HPLC: purity 100%, t_R 19.0 min (MeOH:H₂O); purity 100%, t_R 12.8 min

8-Methyl-2-morpholino-4-phenyl-3,4-dihydropyrimido[1,2-a][1,3,5]triazin-6-one (5aq). Mp 272–273 °C (EtOH); TLC (silica gel, MeOH: CH₂Cl₂, 1:9): R_f 0.48; MS (ESI) m/z 326.1 (MH⁺); anal. calcd C, 62.75; H, 5.89; N, 21.52; found C, 62.51; H, 5.80; N, 21.35. ¹H NMR (300 MHz, Me₂SO- d_6): 2.08 (3H, s, Me), 3.36–3.71 (8H, m, morpholino), 5.79 (1H, s, H-7), 6.87 (1H, br s, H-4), 7.18 (2H, d, J = 7.5 Hz, H-2' and H-6'), 7.30–7.40 (3H, m, H-3', H-4' and H-5'), 8.91 (1H, br s, NH); 13 C NMR (75 MHz, Me₂SO- d_6): 23.8 (8-Me), 44.5 (C-2' and C-6'), 59.6 (C-4), 65.6 (C-3' and C-5'), 102.6 (C-7), 125.1 (C-2' and C-6'), 128.5 (C-4'), 128.6 (C-3' and C-5'), 139.3 (C-1'), 153.5 (C-2), 155.1 (C-9a), 160.4 (C-6), 165.8 (C-8); IR (KBr); ν 3390 br NH, 2980 (CH), 1670 C=O, 1616, 1481, 1388, 1296, 1203, 966. HPLC: purity 98.4%, t_R 15.2 min (MeOH:H₂O).

2-Morpholino-4-(methylphenyl)-8-methyl-3,4-dihydropyrimido- [1,2-a][1,3,5]triazin-6-one (5ar). Mp 211–212 °C (AcOEt:EtOH); TLC (silica gel, MeOH:DCM, 1:9): R_f 0.49; MS (ESI) m/z 340.1 (MH⁺); anal. calcd C, 63.70; H, 6.24; N, 20.64; found C, 61.88; H, 6.05; N, 19.87. ¹H NMR (300 MHz, Me₂SO- d_6): δ 2.07 (3H, s, 8-Me), 2.26 (3H, s, 4'-Me) 3.48–3.69 (8H, m, morpholino), 5.78 (1H, s, H-7), 6.83 (1H, s, H-4), 7.06 (2H, d, 3J = 7.9 Hz, H-2' and H-6'), 7.16 (2H, d, 3J = 7.9 Hz, H-3' and H-5'), 8.94 (1H, br s, NH). 13 C NMR (75 MHz, Me₂SO- d_6): 20.5 (4'-Me), 23.7 (8-Me), 44.5 (C-3" and C-5"), 59.7 (C-4), 65.6 (C-2" and C-6"), 102.6 (C-7), 125.1 (C-2' and C-6'), 129.1 (C-3' and C-5'), 136.5 (C-1'), 137.8 (C-4'), 153.5 (C-2), 155.0 (C-9a), 160.4 (C-6), 165.4 (C-8); IR (KBr); ν 3398 br NH, 2988 (CH), 1672 C=O, 1620, 1418, 1308, 1211, 967. HPLC: purity 99.6%, t_R 17.6 min (MeOH:H₂O).

4-(4-Methoxyphenyl)-8-methyl-2-morpholino-3,4-dihydropyrimido-[**1,2-***a***][1,3,5**]**triazin-6-one** (**5as**). Mp 203–204 °C (Ether); TLC (silica gel, MeOH:DCM, 1:9): R_f 0.53; MS (ESI) m/z 356.1 (MH⁺); anal. caled C, 60.83; H, 5.96; N, 19.71; found C, 60.26; H, 5.86; N, 19.39. ¹H NMR (300 MHz, Me₂SO- d_6): δ 2.07 (3H, s, Me), 3.46–3.67 (8H, m, morpholino), 3.72 (3H, s, OMe), 5.78 (1H, s, H-7), 6.83 (1H, s, H-4), 6.91 (2H, d, 3J = 8.7 Hz, H-3′ and H-5′), 7.12 (2H, d, 3J = 8.7 Hz, H-2′ and H-6′), 8.89 (1H, s, NH). ¹³C NMR (75 MHz, Me₂SO- d_6): 23.7 (Me) 44.7 (C-3″ and C-5″), 55.1 (OMe), 59.4 (C-4), 65.7 (C-2″ and C-6″), 102.7 (C-7), 113.9 (C-3′ and 5′), 126.5 (C-2′ and C-6′), 131.4 (C-1′), 153.5 (C-2), 155.1 (C-9a), 159.3 (C-4′), 160.4 (C-6), 165.7 (C-8). HPLC: purity 100%, t_R 15.3 min (MeOH:H₂O).

4-(4-Fluorophenyl)-8-methyl-2-morpholin-4-yl-3,4-dihydropyrimido[1,2-a][1,3,5]triazin-6-one (5at). Mp 269–270 °C (EtOH);

TLC (silica gel, MeOH: DCM, 1:9): $R_{\rm f}$ 0.51; MS (ESI) m/z 344.1 (MH⁺); anal. calcd C, 59.47; H, 5.28; N, 20.40; found C, 59.45; H, 5.26; N, 20.15. ¹H NMR (300 MHz, Me₂SO- d_6): δ 2.08 (3H, s, 8-Me), 3.49–3.70 (8H, m, morpholino), 5.79 (1H, s, H-7), 6.86 (1H, s, H-4), 7.15–7.30 (4H, m, H-2', H-3',H-5' and H-6'), 8.90 (1H, s, NH). ¹³C NMR (75 MHz, Me₂SO- d_6): 23.7 (Me), 44.5 (C-3" and C-5"), 59.2 (C-4), 65.6 (C-2" and C-6"), 102.7 (C-7), 115.5 (d, ${}^2J_{\rm C-F}$ = 21.8 Hz, C-3' and C-5'), 127.4 (d, ${}^3J_{\rm C-F}$ = 8.8 Hz, C-2' and C-6'), 135.6 (d, ${}^4J_{\rm C-F}$ = 2.4 Hz, C-1'), 153.4 (C-2), 155.0 (C-9a), 160.3 (C-6), 161.9 (d, ${}^1J_{\rm C-F}$ = 245.2, C-4'), 165.9 (C-8). HPLC: purity 94.7%, $t_{\rm R}$ 16.1 min (MeOH:H₂O).

8-Methyl-2-morpholino-(4-trifluoromethylphenyl)-3,4-dihydropyrimido[1,2-a][1,3,5]triazin-6-one (5au). Mp 233–234 °C (AcOEt); TLC (silica gel, MeOH: DCM, 1:9): $R_{\rm f}$ 0.52; MS (ESI) m/z 394.1 (MH⁺); anal. calcd C, 54.96; H, 4.61; N, 17.80; found C, 54.80; H, 4.58; N, 17.73. H NMR (300 MHz, Me₂SO- d_6): δ 2.10 (1H, s, Me) 3.48–3.71 (8H, m morpholino), 5.83 (1H, s, H-7), 6.94, (1H, s, H-4), 7.41 (2H, d, 3J = 7.9 Hz, H-2′ and H-6′), 7.77 (2H, d, 3J = 7.9 Hz, H-3′ and H-5′), 9.02 (1H, br s, NH). 13 C NMR (75 MHz, Me₂SO- d_6): 44.7 (C-3″ and C-5″), 60.1 (C-4), 65.6 (C-2″ and C-6″), 102.8 (C-7), 123.9 (q, $^1J_{\rm C-F}$ = 272.1 Hz, p-CF₃), 125.8 (q, $^3J_{\rm C-F}$ = 3.5 Hz, C-3′and C-5′), 126.2 (C-2′ and C-6′), 129.1 (q, $^2J_{\rm C-F}$ = 31.8 Hz, C-4′), 143.9 (C-1′), 153.5 (C-2), 154.8 (C-9a), 160.3 (C-6), 165.9 (C-8). HPLC: purity 100%, $t_{\rm R}$ 20.3 min (MeOH:H₂O).

4-(8-Methyl-2-morpholino-6-oxo-4,6-dihydro-3H-pyrimido-[1,2-a][1,3,5]triazin-4-yl)benzonitrile (5av). Mp 269–270 °C (MeOH); TLC (silica gel, AcOEt: hexane, 8:2): R_f 0.18; MS (ESI) m/z 351.1 (MH⁺); anal. calcd C, 61.70; H, 5.18; N, 23.99; found C, 61.60; H, 5.13; N, 23.72. ¹H NMR (300 MHz, Me₂SO- d_6): δ 2.09 (3H, s, Me), 3.48–3.69 (8H, m, morpholino), 5.82 (1H, s, H-7), 6.92 (1H, s, H-4), 7.35 (2H, d, 3J = 8.3 Hz, H-2′ and H-6′), 7.86 (2H, d, 3J = 8.3 Hz, H-3′ and H-5′), 8.99 (1H, s, NH). ¹³C NMR (75 MHz, Me₂SO- d_6): 23.7 (Me), 44.7 (C-3″ and C-5″), 59.5 (C-4), 65.6 (C-2″ and C-6″), 102.7 (C-7), 111.4 (C-4′), 118.3 (CN), 126.3 (C-2′ and C-6′), 132.8 (C-3′ and C-5′), 144.5 (C-1′), 153.3 (C-2), 154.9 (C-9a), 160.3 (C-6), 166.1 (C-8). HPLC: purity 100%, t_R 19.1 min (MeOH:H₂O).

8-Methyl-2-morpholino-4-(thiophen-2-yl)-3,4-dihydropyrimido-[1,2-a][1,3,5]triazin-6-one (5ax). Mp 267–268 °C (decomposed) (EtOH); TLC (silica gel, MeOH: DCM, 1:9): $R_{\rm f}$ 0.41; MS (ESI) m/z 332.1 (MH $^+$); anal. calcd C, 54.36; H, 5.17; N, 21.13, S, 9.68; found C, 54.23; H, 5.05; N, 21.09, S, 9.60. ¹H NMR (300 MHz, Me₂SO- d_6): δ 2.05 (3H, s, Me), 3.49–3.78 (8H, m, morpholino), 5.79 (1H, s, H-7), 6.89–7.00 (2H, m, H-4, H-4'), 7.06 (1H, m, H-3'), 7.45 (1H, dd, J = 4.9 Hz, J = 1.1 Hz, H-5'), 8.97 (1H, s, NH). ¹³C NMR (75 MHz, Me₂SO- d_6): 23.6 (Me), 44.6 (C-3" and C-5"), 56.9 (C-4), 65.7 (C-2" and C-6"), 102.8 (C-7), 125.1, 126.3, 126.7, 142.8 (C-2'), 152.7 (C-2), 154.9 (C-9a), 160.0 (C-6), 165.8 (C-8); IR (KBr); ν 3400 br NH, 3097, 2991 (CH), 1674 C=O, 1620, 1530, 1477, 881, 760. HPLC: purity 99.4%, $t_{\rm R}$ 14.1 min (MeOH:H₂O).

4-(4-Bromophenyl)-8-methyl-2-morpholino-3,4-dihydro-pyrimido-[1,2-a][1,3,5]triazin-6-one (5az). Mp 245–246 °C (MeOH); TLC (silica gel, MeOH: DCM, 1:9): $R_{\rm f}$ 0.60; MS (ESI) m/z 404.1, 406.1 (MH⁺); anal. calcd C, 50.51; H, 4.49; N, 17.32; found C, 50.50; H, 4.27; N, 17.32. H NMR (300 MHz, Me₂SO- d_6): δ 2.08 (3H, s, Me), 3.60 (8H, s, morpholino), 5.80 (1H,s, H-7), 6.83 (1H, s, H-4),

NJC Paper

7.12 (2H, d, ${}^{3}I = 8.7 \text{ Hz}$, H-2' and H-6'), 7.58 (2H, d, ${}^{3}I = 8.3 \text{ Hz}$, H-3' and H-5'), 8.92 (1H, s, NH). 13 C NMR (75 MHz, Me₂SO- d_6): 23.8 (Me), 44.5 (C-3" and C-5"), 59.3 (C-4), 65.6 (C-2" and C-6"), 102.6 (C-7), 121.7 (C-4'), 127.4 (C-2' and C-6'), 131.6 (C-3' and C-5'), 138.7 (C-1'), 153.4 (C-2), 154.9 (C-9a), 160.3 (C-6), 165.9 (C-8). HPLC: purity 100%, t_R 19.9 min (MeOH:H₂O).

General methods for the synthesis of 4-substituted 2-morpholino-8-trifluoromethyl-3,4-dihydro-pyrimido[1,2-a][1,3,5] triazin-6-ones (5ba-5bn)

Procedure 1: the solution of N-(6-oxo-4-trifluoromethyl-1, 6-dihydro-pyrimidin-2-yl)-morpholine-4-carboxamidine 4 (0.50 g, 1.7 mmol), aldehydes (2.0 mmol) and piperidine (0.05 mL, 0.5 mmol) in ethanol (10 mL) was heated under reflux for 12-18 h. During halfway through the reaction period, additional aldehyde (up to 0.25 mmol) was added. After completion of the reaction as observed by TLC, the precipitate obtained after cooling was filtered, washed with diethyl ether, dried and recrystallized from suitable solvents.

Procedure 2: a mixture of guanidine 4 (1.2 mmol), piperidine (0.25 mmol) and appropriate aldehyde (1.5 mmol) in 1.5 mL of absolute ethanol was irradiated in a 10 mL vial at 150 °C for 20 min using a Biotage microwave synthesizer. After removing solvent under vacuum, the crude product was washed with diethyl ether and filtered.

2-Morpholino-4-phenyl-8-trifluoromethyl-3,4-dihydropyrimido-[1,2-a][1,3,5]triazin-6-one (5ba). Mp 269–270 °C (AcOEt); MS (APCI) m/z: 380.1 (MH⁺); anal. calcd for C₁₈H₁₈F₃N₅O₂: C, 53.83; H, 4.25; N, 18.46; found: C, 53.99; H, 3.90; N, 18.46. ¹H NMR (300 MHz, Me_2SO-d_6): δ 3.54–3.69 (8H, m, morpholino) 6.33 (1H, s, H-7), 6.91 (1H, br s, H-4), 7.22 (2H, d, J = 7.5 Hz, H-2' and H-6'), 7.35–7.43 (3H, m, H-3', H-4' and H-5'), 9.16 (1H, br s, NH); ¹³C NMR (75 MHz, Me₂SO- d_6): 44.7 (C-2" and C-6"), 60.3 (C-4), 65.6 (C-3" and C-5"), 101.5 (q, ${}^{3}J_{C-F}$ = 3.5 Hz, C-7), 120.8 (q, ${}^{1}J_{C-F}$ = 275.4 Hz, CF₃), 125.1 (C-3' and C-5'),128.9 (C-2' and C-6'), 138.6 (C-1'), 153.4 (q, ${}^{2}J_{C-F}$ = 33.7 Hz, C-8), 155.0, 155.3, 160.2 (C-6); IR (KBr); ν 3385 NH, 3014, 1675 C=O, 1499, 1307. HPLC: purity 100%, $t_{\rm R}$ 11.9 min (MeOH:H₂O).

2-Morpholino-4-(4-methylphenyl)-8-trifluoromethyl-3,4-dihydropyrimido[1,2-a][1,3,5]triazin-6-one (5bb). Mp 251-252 °C (Diethyl ether); anal. calcd for C₁₈H₁₈F₃N₅O₂: C, 54.96; H, 4.61; N, 17.80. Found: C, 54.86; H, 4.17; N, 17.81. H NMR (300 MHz, Me₂SO- d_6): δ 2.27 (1H, s, Me), 3.51–3.69 (8H, m, morpholino), 6.31 (1H, s, H-7), 6.87 (1H, s, H-4), 7.09 (2H, d, I = 7.5 Hz, H-3' and H-5'), 7.19 (2H, d, J = 7.5 Hz, H-2' and H-6'), 9.12 (1H, s, NH); ¹³C NMR (75 MHz, Me_2SO-d_6 : 44.6 (C-2" and C-6"), 60.2 (C-4), 65.6 (C-3" and C-5"), 101.4 (q, ${}^{3}J_{C-F}$ = 2.5 Hz, C-7), 120.8 (q, ${}^{1}J_{C-F}$ = 275.2 Hz, CF₃), 125.0 (C-3' and C-5'),129.3 (C-2' and C-6'), 135.7 (C-1'), 138.3 (C-4'), 153.3 (q, ${}^{2}J_{C-F}$ = 33.0 Hz, C-8), 155.0, 155.3, 160.2 (C-6); IR (KBr); ν 3411 br NH, 2981 (CH), 2924, 2868, 1693 C=O, 1600, 1579, 1447, 1363, 1276, 906, 840, 790. HPLC: purity 100%, t_R 13.7 min (MeOH:H₂O).

4-(4-Fluorophenyl)-2-morpholino-8-trifluoromethyl-3,4-dihydropyrimido[1,2-a][1,3,5]triazin-6-one (5bd). Mp 270-271 °C (AcOEt: diethylether); anal. calcd for $C_{17}H_{15}F_4N_5O_2$: C, 51.39; H, 3.81; N, 17.63; found: C, 51.34; H, 3.41; N, 17.65. H NMR (300 MHz, Me₂SO- d_6): δ 3.54–3.74 (8H, m, morpholino), 6.33 (1H, s, H-7), 6.90 (1H, d, J = 4.9 Hz, H-4), 7.20-7.30 (4H, m, H2', H6', H3') and H5'), 9.15 (1H, d, J = 4.9 Hz, NH). ¹³C NMR (75 MHz, Me₂SO- d_6): 44.6 (C-2" and C-6"), 59.8 (C-4), 65.5 (C-3" and C-5"), 101.4 $(q, {}^{3}J_{C-F} = 2.4 \text{ Hz}, C-7), 115.7 (d, {}^{2}J_{C-F} = 21.8 \text{ Hz}, C-3' \text{ and } C-5'),$ 120.8 (q, ${}^{1}J_{C-F}$ = 278.1 Hz, CF₃), 127.4 (d, ${}^{3}J_{C-F}$ = 8.8 Hz, C-2' and C-6'), 134.8 (d, ${}^{4}J_{C-F}$ = 2.9 Hz, C-1'), 153.3 (q, ${}^{2}J_{C-F}$ = 33.3 Hz, C-8), 154.8, 155.1, 160.2 (C-6), 162.0 (d, ${}^{1}J_{C-F}$ = 245.2 Hz, C-4'). HPLC: purity 100%, t_R 12.6 min (MeOH:H₂O).

2-Morpholino-8-trifluoromethyl-4-(4-trifluoromethylphenyl)-3,4-dihydropyrimido[1,2-a][1,3,5]triazin-6-one (5be). Mp 288-289 °C (AcOEt); anal. calcd for C₁₈H₁₅F₆N₅O₂: C, 48.33; H, 3.38; N, 15.66. Found: C, 48.57; H, 3.14; N, 15.79. ¹H NMR (300 MHz, Me₂SO-d₆): 3.52-3.75 (8H, m, morpholino), 6.36 (1H, s, H-7), 6.99 (2H, d, J = 4.2 Hz, H-4), 7.45 (2H, d, J = 8.3 Hz, H-3' and H-5'), 7.80 (2H, d, J = 8.3 Hz, H-2' and H-6'), 9.23 (d, J = 4.2 Hz, NH). ¹³C NMR (75 MHz, Me₂SO-*d*₆): 44.7 (C-2" and C-6"), 60.1 (C-4), 65.6 (C-3" and C-5"), 101.6 (q, ${}^{3}J_{C-F} = 2.4$ Hz, C-7), 120.8 (q, ${}^{1}J_{C-F} = 275.8$ Hz, 8-CF₃), 123.8 (q, ${}^{1}J_{C-F}$ = 272.3 Hz, 4'-CF₃), 126.0 (q, ${}^{3}J_{C-F}$ = 3.3 Hz, C-3' and C-5'), 126.2 (C-2' and C-6'), 129.4 (q, ${}^{2}J_{C-F}$ = 31.8 Hz, C-4'), 143.0 (C-1'), 153.5 (q, ${}^{2}J_{C-F}$ = 33.7 Hz, C-8), 154.9, 155.2, 160.3 (C-6); IR (KBr); ν 3396 br NH, 2982 (CH), 1693 C=O, 1604, 1581, 1417, 1336, 1278. HPLC: purity 98.3%, t_R 20.4 min (MeOH:H₂O); purity 100%, $t_{\rm R}$ 7.4 min (CH₃CN:H₂O).

2-Morpholino-4-(4-nitrophenyl)-8-trifluoromethyl-3,4-dihydropyrimido[1,2-a][1,3,5]triazin-6-one (5bg). Mp 294-295 °C (AcOEt); TLC (silica gel, AeOEt:hexane, 8:2): R_f 0.3. ¹H NMR (300 MHz, Me₂SO- d_6): δ 3.64-3.70 (8H, m, morpholino), 6.37 (1H,s, H-7), 7.02 (1H, d, ${}^{3}J = 4.5$ Hz, H-4), 7.51 (2H, d, ${}^{3}J = 8.7$ Hz, H-2' and H-6'), 8.27 (2H, d, ${}^{3}I = 8.7$ Hz, H-3' and H-5'), 9.25 (1H, d, ${}^{3}I =$ 4.5 Hz, NH). ¹³C NMR (75 MHz, Me₂SO-d₆): 44.7 (C-3" and C-5"), 60.0 (C-4), 65.6 (C-2" and C-6"), 101.7 (q, ${}^{3}J_{C-F}$ = 2.9 Hz, C-7), 120.8 $(q, {}^{1}J_{C-F} = 275.8 \text{ Hz}, CF_3), 124.2 (C-2' \text{ and } C-6'), 126.8 (C-3' \text{ and } C-6')$ C-5'), 145.4 (C-1'), 147.7 (C-4'), 153.5 (q, ${}^{2}J_{C-E} = 33.5 \text{ Hz}$, C-8), 154.8, 155.2, 160.3 (C-6).

2-Morpholino-4-(pyridin-2-yl)-8-(trifluoromethyl)-3,4-dihydropyrimido[1,2-a][1,3,5]triazin-6-one (5bh). Mp 260–261 °C (CH₂Cl₂); MS (APCI) m/z: 381.5 (MH⁺); anal. calcd for $C_{16}H_{15}F_3N_6O_2$: C, 50.53; H, 3.98; N, 22.10; found: C, 50.29; H, 3.83; N, 21.93. ¹H NMR (300 MHz, Me₂SO- d_6): δ 3.50–3.71 (8H, m, morpholino), 6.27 (1H, s, H-7), 6.88 (1H, d, J = 4.5 Hz, H-4), 7.34-7.46 (2H, m, H-4' and H-5'), 7.88 (1H, dt, J = 7.9 Hz, 1.5 Hz, H-4'), 8.50 (1H, d, I = 4.5 Hz, H-3'), 9.08 (1H, d, I = 4.9 Hz, NH). ¹³C NMR (75 MHz, Me₂SO-d₆): 44.7 (C-2" and C-6"), 61.4 (C-4), 65.6 (C-3" and C-5"), 101.3 (q, ${}^{4}J_{C-F}$ = 1.7 Hz, C-7), 120.8, 120.9 (q, ${}^{1}J_{C-F}$ = 275.1 Hz, CF₃), 124.1, 137.5, 149.2 (C-1'), 153.3 (q, ${}^{2}J_{C-F}$ = 33.2 Hz, C-8), 155.1 (C-2), 155.6 (C-2'), 156.1 (C-9a), 160.4 (C-6); IR (KBr); ν 3357 NH, 3068, 2970, 2845, 1656 C=O, 1208, 1070, 908. HPLC: purity 99.2%, t_R 6.2 min (CH₃CN:H₂O).

4-(2-Morpholino-6-oxo-8-trifluoromethyl-4,6-dihydro-3H-pyrimido-[1,2-a][1,3,5]triazin-4-yl)benzonitrile (5bj). Mp 269–270 °C (AcOEt); anal. calcd for C₁₈H₁₅F₃N₆O₂: C, 53.47; H, 3.74; N, 20.78. Found: C, 53.59; H, 3.91; N, 20.89. ¹H NMR (300 MHz, Me₂SO- d_6): δ 3.54– 3.73 (8H, m, morpholino), 6.36 (1H, s, H-7), 6.97 (1H, s, H-4), 7.41 (2H, d, J = 8.3 Hz, H-3' and H-5'), 7.89 (2H, d, J = 8.3 Hz, H-2')and H-6'), 9.23 (1H, br s, NH); ¹³C NMR (75 MHz, Me₂SO-d₆): 44.7 (C-2" and C-6"), 60.1 (C-4), 65.6 (C-3" and C-5"), 101.6 (q, ${}^{4}J_{\text{C-F}}$ = 2.4 Hz, C-7), 111.8 (C-4'), 118.2 (CN), 120.8 (q, ${}^{1}J_{C-F}$ = 275.6 Hz, CF₃),

126.3 (C-2' and C-6'), 133.0 (C-3' and C-5'), 143.6 (C-1'), 153.5 (q, ${}^2J_{\text{C-F}} = 33.5 \text{ Hz}$, C-8), 154.8, 155.1, 160.3 (C-6). HPLC: purity 98.9%, t_{R} 12.2 min (MeOH:H₂O).

8-Methyl-2-pyrrolidino-4-(4-methylphenyl)-3,4-dihydropyrimido- [1,2-a][1,3,5]triazin-6-one (5bk). Mp 202–203 °C (AcOEt + EtOH); anal. calcd for $C_{18}H_{21}N_5O$: C, 66.85; H, 6.55; N, 21.66. Found: C, 66.76; H, 6.71; N, 21.59. ¹H NMR (300 MHz, Me₂SO- d_6): 1.86 (8H, br s, pyrrolidino), 2.05 (3H, s, 8-Me), 2.26 (3H, s, 4'-Me), 5.70 (1H, s, H-7), 6.79 (1H, d, J = 3.4 Hz, H-4), 7.08 (2H, d, J = 8.3 Hz, H-3' and H-5'), 7.15 (2H, d, J = 8.3 Hz, H-2' and H-6'), 8.59 (1H, d, J = 3.7 Hz, NH); ¹³C NMR (75 MHz, Me₂SO- d_6): 20.5 (4'-Me), 23.8 (8-Me), 59.6 (C-4), 101.9 (C-7), 125.2 (C-2' and C-6'), 129.1 (C-3' and C-5'), 136.9 (C-1'), 137.7 (C-4'), 153.6 (C-9a), 160.5 (C-6), 165.7 (C-8).

8-Methyl-2-(4-methylpiperazino)-4-(4-methylphenyl)-3,4-dihydropyrimido[1,2-a][1,3,5]triazin-6-one (5bl). Mp 208–209 °C (AcOEt); anal. calcd for C₁₉H₂₄N₆O: C, 64.75; H, 6.86; N, 23.85. Found: C, 64.90; H, 6.92; N, 23.95. ¹H NMR (300 MHz, Me₂SO- d_6): 2.07 (3H, s, 8-Me), 2.18 (3H, s, N-Me), 2.26 (3H, s, 4'-Me), 2.27–2.39 (4H, m, (CH₂)₂N-CH₃), 3.46–3.67 (4H, m, (CH₂)₂N), 5.76 (1H, s, H-7), 6.80 (1H, s, H-4), 7.05 (2H, d, J = 8.0 Hz, H-3' and H-5'), 7.18 (2H, d, J = 7.9 Hz, H-2' and H-6'), 8.85 (1H, br s, NH); 13 C NMR (75 MHz, Me₂SO- d_6): 20.5 (4'-Me), 23.7 (8-Me), 44.0 (C-2" and C-6"), 45.4 (NCH₃), 54.0 (C-3" and C-5"), 59.5 (C-4), 102.5 (C-7), 125.0 (C-2' and C-6'), 129.1 (C-3' and C-5'), 136.5 (C-1'), 137.8 (C-4'), 153.5 (C-9a), 154.7 (C-2), 160.4 (C-6), 165.7 (C-8).

2-(3-Chlorophenylamino)-8-methyl-4-(4-methylphenyl)-3,4-dihydropyrimido[1,2-a][1,3,5]triazin-6-one (5bm). Mp 259–260 °C anal. calcd for C₂₀H₁₈N₅OCl: C, 63.24; H, 4.78; N, 18.44. Found: 63.31; H, 4.86; N 18.55. ¹H NMR (300 MHz, Me₂SO- d_6): 2.13 (3H, s, 8-Me), 2.26 (3H, s, 4'-Me), 5.87 (1H, s, H-7), 6.92 (1H, s, H-4), 7.03–7.22 (5H, m, H-3', H-5', H-2', H-6' and H-4"), 7.30–7.42 (2H, m, H-5" and H-6"), 7.81 (1H, s, H-2"), 8.38 (1H, br s, NH), 9.70 (1H, br s, NH).

2-(3-Chlorophenylamino)-4-(5-(hydroxymethyl)furan-2-yl)-8-methyl-3,4-dihydropyrimido[1,2-a][1,3,5]triazin-6-one (5bn). Mp 237–238 °C; anal. calcd for $C_{18}H_{16}N_5O_3Cl$: C, 56.04; H, 4.18; N, 18.15. Found: C, 56.44; H, 4.50; N, 18.01. ¹H NMR (300 MHz, Me₂SO- d_6): 2.12 (3H, s, 8-Me), 4.32 (2H, d, J = 5.6 Hz, CH₂), 5.22 (1H, t, J = 5.3 Hz, OH), 5.85 (1H, s, H-7), 6.11–6.28 (2H, m, H-3' and 4'), 6.93 (1H, s, H-4), 7.13 (1H, d, J = 7.2 Hz, H-4"), 7.35 (1H, t, J = 8.1 Hz, H-5"), 7.43 (1H, d, J = 7.9 Hz, H-6"), 7.79 (1H, s, H-2"), 8.53 (1H, s, NH), 9.82 (1H, s, NH); 13 C NMR (75 MHz, Me₂SO- d_6): 21.0, 23.2, 55.5 (CH₂), 64.8 (C-4), 104.1, 107.7, 108.1, 130.3, 133.0, 140.2, 150.3, 152.5 (C-9a), 155.8 (C-2), 159.4 (C-6), 165.7 (C-8).

Acknowledgements

This work is partially supported by the National Medical Research Council, Singapore (NMRC/NIG/0020/2008) and the National University of Singapore (R-148-050-091-101/133 and R-148-000-069-112).

Notes and references

1 For a recent review on bioactive 1,3,5-triazines, see: D. R. Shah, R. P. Mohd and K. H. Chikhalia, *Future Med. Chem.*, 2014, **6**, 463.

- 2 For a review on bioactive 1,3,5-triazine-based purine isosteres, see: F. P. L. Lim and A. V. Dolzhenko, *Eur. J. Med. Chem.*, 2014, **85**, 371.
- 3 For a review on pyrimido[1,2-*a*][1,3,5]triazines, see: A. V. Dolzhenko, *Heterocycles*, 2011, **83**, 1489.
- 4 I. T. Kay, Pat. DE, 2451899, 1975 (Chem. Abstr., 83, 97391).
- 5 I. T. Kay, Pat. DE, 2452893, 1975 (Chem. Abstr., 83, 97363).
- 6 L. Lucry, F. Enoma, F. Estour, H. Oulyadi, S. Menager and O. Lafont, J. Heterocycl. Chem., 2002, 39, 663.
- 7 A. V. Dolzhenko, M. C. Foo, B. J. Tan, A. V. Dolzhenko, G. N. C. Chiu and W. K. Chui, *Heterocycles*, 2009, 78, 1761.
- 8 N. Sachdeva, A. V. Dolzhenko and W. K. Chui, *Org. Biomol. Chem.*, 2012, **10**, 4586.
- 9 (a) A. V. Dolzhenko, A. V. Dolzhenko and W. K. Chui, J. Heterocycl. Chem., 2006, 43, 1513; (b) A. V. Dolzhenko, A. V. Dolzhenko and W. K. Chui, J. Heterocycl. Chem., 2008, 45, 173.
- 10 D. M. Arnold, M. G. LaPorte, S. M. Anderson and R. Wipf, *Tetrahedron*, 2013, **69**, 7719.
- 11 M. Koh, J. C. Lee, C. Min and A. Moon, *Bioorg. Med. Chem.*, 2013, 21, 2305.
- 12 S. Nozaki, M. Maeda, H. Tsuda and G. W. Sledge, *Breast Cancer Res. Treat.*, 2004, **83**, 195.
- 13 P. La Rosée, T. Jia, S. Demehri, N. Härtel, P. de Vries, L. Bonham, D. Hollenback, J. W. Singer, J. V. Melo, B. J. Druker and M. W. Deininger, *Clin. Cancer Res.*, 2006, 12, 6540.
- 14 C. R. Lee and D. Faulds, Drugs, 1995, 49, 932.
- 15 (a) R. Mallon, L. R. Feldberg, J. Lucas, I. Chaudhary, C. Dehnhardt, E. D. Santos, Z. Chen, O. dos Santos, S. Ayral-Kaloustian, A. Venkatesan and I. Hollander, *Clin. Cancer Res.*, 2011, 17, 3193; (b) http://clinicaltrials.gov/show/NCT00940498.
- 16 H. Peng, Z. Dong, J. Qi, Y. Yang, Y. Liu, Z. Li, J. Xu and J. T. Zhang, *PLoS One*, 2009, 4, e5676.
- 17 Y. Iino, T. Karakida, N. Sugamata, T. Andoh, H. Takei, M. Takahashi, S. Yaguchi, T. Matsuno, M. Takehara, M. Sakato, S. Kawashima and Y. Morishita, *Anticancer Res.*, 1998, 18, 171.
- 18 N. Sachdeva, A. V. Dolzhenko and W. K. Chui, *C. R. Chim.*, 2010, **14**, 580–587.
- 19 A. V. Dolzhenko, N. Sachdeva, G. K. Tan, L. L. Koh and W. K. Chui, *Acta Crystallogr.*, 2009, **E65**, 0684.
- 20 The geometry of the molecules has been optimized with the MP2/6-31G(d,p) basis set using Gaussian 03 computational package. The single point calculations were performed at different levels of theory *viz*. HF/6-311G(d), B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p) and the relative energies for the tautomers were calculated. Since there was no imaginary frequency in the vibrational spectra, all the tautomers were confirmed to exist at stationary points corresponding to the local minima on the potential energy surface.
- (a) J. Tomasi, R. Cammi, B. Mennucci, C. Cappelli and S. Corni, *Phys. Chem. Chem. Phys.*, 2002, 4, 5697; (b) J. L. Pascual-Ahuir, E. Silla and I. Tunon, *J. Comput. Chem.*, 1994, 15, 1127.
- 22 M. C. Alley, D. A. Scudiero, A. Monks, M. L. Hursey, M. J. Czerwinski, D. L. Fine, B. J. Abbott, J. G. Mayo, R. H. Shoemaker and M. R. Boyd, *Cancer Res.*, 1988, 48, 589.
- 23 F. H. S. Curd, W. Graham and F. L. Rose, *J. Chem. Soc.*, 1948, 549.