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Desymmetrization of cyclic 1,3-diketones via Ir-catalyzed 
hydrogenation: an efficient approach to cyclic hydroxy ketones 
with a chiral quaternary carbon 
Quan Gong,a Jialin Wen* b,a and Xumu Zhang* a,c

We herein report an efficient method to synthesize cyclic hydroxy ketones with a chiral quaternary center. Catalyzed by an 
Ir/f-ampha complex, cyclic α,α-disubstituted 1,3-diketones were hydrogenated, giving mono-reduced products with both 
high enantioselectivies and diastereoselectivities. In addition, C=C and C≡C bonds could survive in this catalytic system. 
This method was applied in the preparation of (+)-estrone. No diols were observed in this chemical transformation. The 
enantiomeric and diastereomeric induction were achieved as a result of steric hindrance.

Introduction
Desymmetrization reactions have been proved to be an 
efficient method to generate compounds bearing chiral 
quaternary carbons1 which have historically been problematic 
in synthetic chemistry2, 3. A successful example of this strategy 
is mono-reduction of cyclic α,α-disubstituted 1,3-diketone, 
which typically gives hydroxy ketones with two vicinal 
stereogenic center1. This product has been demonstrated to 
be a versatile synthon that attracts synthetic chemists. Many 
synthetic works were documented to use this 5- or 6-member 
ring synthon to construct complex molecules with multiple 
stereogenic centers. Successful examples include coriolin4, 
anguidine5, (+)-crotogoudin6, (+)-paspaline7, 8, (+)-estrone9, 
cortistatins10 and aplysiasecosterol A11.

Fig. 1 Chiral cyclic hydroxy ketones in total synthesis.
The construction of this important synthon, however, is 

limited to enzyme catalyzed reduction12, 13, Ru-catalyzed 
transfer hydrogenation14, 15 and Corey-Bakshi-Shibata9 
reduction with borane. These methods suffer from the 
drawbacks of narrow substrate scope, moderate selectivity or 
high catalyst loading. The challenges of mono-reduction of 
cyclic α,α-disubstituted 1,3-diketone lie in such areas as (1) 
enantioselectivity and diastereoselectivity being realized in 
one step and (2) the prevention of over-reduction to diol. In 
the hydride transfer step, different facial approaches towards 
the substrate lead to two pairs of diastereomers (marked with 
blue and red arrows in Fig. 2). Enantioselectivity originates in 
the differentiation of a quaternary carbon from a methylene 

group (Fig. 2). 
Scheme 1 Methods of mono-reduction of cyclic 1,3-diketone 
to generate a chiral quaternary carbon.

Our group has been dedicated to transition metal catalyzed 
ketone reduction during recent two decades and has 
developed a series of ferrocene-based tridentate ligands for 
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iridium catalyzed hydrogenation16-18. A variety of simple or 
functionalized ketones can be hydrogenated to chiral alcohols 
with remarkably high ee’s and turnover numbers (TONs). To 
the best of knowledge, direct hydrogenation has not been 
applied in the preparation of the aforementioned synthon. 
Due to our continuous interest in construction of chiral 
molecules via transition metal catalyzed asymmetric 
hydrogenation, we envisioned that this efficient catalytic 

system could be applied in the mono-reduction of 1,3-
diketones. 
Fig. 2 Origin of stereoselectivities in mono-reduction of 1,3-
diketone.

Results and discussion
We initiated our investigation by screening a suitable ligand. 
Although simple ketones such as acetophenone could be 
reduced efficiently with all these ligands (f-amphox16, f-
amphol17 and f-ampha18), their performances in functionalized 
ketones were different. We selected 2-benzyl-2-
methylcyclopentane-1,3-dione as the model substrate and 
conducted hydrogenation with iridium in isopropanol with 
potassium tert-butoxide. To prevent further reduction, less 
forced conditions (20 atm H2) and a short reaction time (1 h) 
were applied. Those ligands performed differently: f-amphox 
and f-ampha gave promising results in the preliminary 
assessment (Table 1). 
Table 1. Preliminary investigation of ligands in hydrogenation 
of cyclic 1,3-diketonea

entry ligand
Conversio

nb
drc eec

1 f-amphox 24%
7.3/

1
93%

2 indan-f-amphox 11%
5.4/

1
28%

3 f-amphol 50%
4.1/

1
37%

4 f-ampha 84%
10.1

/1
95%

a Reaction condition: 1a (0.1 mmol, 0.1 M), 
1a/[Ir(COD)Cl]2/ligand/base = 500/0.5/1.1/10, 20 atm H2, rt, 1 h. 
b Conversion was determined by 1H NMR analysis, no by product 
was observed. c dr and ee were determined by HPLC on a chiral 
stationary phase.

Elongating the reaction time and increasing the hydrogen 
pressure drove this reaction to a full conversion. Interestingly, 
no over-reduction product (diol) was observed under harsher 
conditions. After careful optimization [for detailed condition 
screening, see supplementary information], we finally 

obtained a satisfactory condition: catalyzed by an Ir/f-ampha 
complex (0.1 % loading), the symmetric 1,3-diketone was 
reduced in dichloromethane in the present of sodium tert-
butoxide, giving the corresponding chiral hydroxy ketone with 
99% ee and 21/1 dr. To our delight, no diol was observed in 
the crude reaction mixture. The turnover number of this 
reaction could reach 10000 without obvious erosion of 
stereoselectivities19.
Scheme 2 Reaction scope of desymmetrization of cyclic 1,3-
diketones via hydrogenation. Reaction condition: 1 (0.2 mmol, 
0.2 M), 1/[Ir(COD)Cl]2/f-amphox/tBuONa = 1000/0.5/1.1/10, 
40 atm H2, rt, 14 h; isolated yields; dr and ee were determined 
by HPLC on a chiral stationary phase. a Substrate/catalyst/base 
= 200/1/10, 15 min. b Substrate/catalyst/base = 200/1/10, 14 h. 

c Volatile compound, > 99% conversion.
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We applied the optimized condition to explore the scope of 
this method with 0.1% catalyst loading. Various substation 
groups on the benzene ring, no matter electron-withdrawing 
or electron-donating groups, did not bring significant changes 
in both of the stereoselectivity and conversion (2a to 2j). 1,3-
Diketones with an allyl group, instead of benzyl, were 
hydrogenated with high enantioselectivities as well as 
satisfactory diastereoselectivities (2k to 2m). In addition to 
alkene, alkynyl group also survives in this chemical 
transformation (2n). The preference of reducing polar C=O 
bonds demonstrated its chemoselectivity. To our surprise, 
dialkyl substrate also worked well in this reaction (2o and 2p). 
This excellent stereoselectivity indicated that this catalytic 
system could discriminate the two different alkyl groups 
(methyl vs ethyl and methyl vs propyl). Discrimination 
between simple alkyl groups has always been a top challenge 
in asymmetric catalysis, while alkyl and aryl group are easy to 
differentiate (2q). When we expanded the ring size of the 
substrate from five to six, the performance faded and 
moderate stereoselectivities were obtained (2r). α,α-
Disubstituted 1,3-indandiones could also be hydrogenated, 
giving desired yields and stereoselectivities (2s and 2t).

Scheme 3 Scale-up reaction and application of 
desymmetrization via hydrogenation in the synthesis of (+)-

estrone.
Scheme 4 Attempts of further reduction of the hydroxy 
ketone. 

This reaction could be scaled up smoothly (Scheme 3, top).  
In order to exploit the potential application of this method in 
synthetic chemistry, we chose (+)-estrone as a target. This 
molecule plays a key role in steroidogenesis20 and chemical 
synthesis of steroids7, 21, 22. We followed Corey’s route9, as well 
as List’s route23, to synthesize Torgov’s 1,3-diketone24 in a sub-
gram scale. Hydrogenation of this diketone under the 
optimized condition quantitatively give hydroxy ketone with > 
99% ee and 8:1 dr. After Prins cyclization/dehydration and 
oxidation with IBX, Torgov’s diene24 was obtained25 which 
could be easily converted to (+)-estrone by a two-step 
transformation23.

Our curiosity was drawn by the phenomenon of only one 
carbonyl group being reduced. When applying a harsh 
condition, it was also difficult to form diol (Scheme 4, eq. 1). 
Purified product 2a could not yield diol under this forced 
condition as well (eq. 2). Hydrogenation under the same 
condition with the other enantiomer of the ligand, however, 
also failed in this transformation (eq. 3). The chiral pocket of 
both catalyst enantiomers seemed not to be compatible with 
the hydroxy ketone. Reduction of 2a with sodium borohydride 
exclusively gave a chiral trans-diol in a quantitative yield. After 
protecting the hydroxyl group, however, reduction this ketone 
with sodium borohydride under the same conditions 
exclusively gave cis-diol (Scheme 4, eq. 5). Plausible 
explanations included an intramolecular hydride transfer after 
the formation of a boron alkoxide, which could be a result of 
transesterification of borate26-28. 
Scheme 5 Comparison of Ir-catalyzed hydrogenation and 
sodium borohydride reduction in desymmetrization of cyclic 
diketone.

While reduction of five-member-ring cyclic 1,3-diketone by 
both of sodium borohydride and iridium catalyzed 
hydrogenation gave the same diastereoselectivity, the 
reduction of six-member-ring substrate was different. 
Hydrogenation under the optimized condition gave an alcohol 
with the -OH cis to the larger benzyl group, but mono-

reduction with sodium borohydride29 yielded the other 
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diastereomer30 (Scheme 5). These results indicated the same 
facial preference of iridium catalyzed hydrogenation and 
sodium borohydride reduction in five-member ring but a 
different facial preference in six-member ring. 

Conclusions
We applied the strategy of transition metal catalyzed 
hydrogenation in the mono-reduction of cyclic 1,3-diketones. 
This desymmetrization reaction efficiently gave chiral hydroxy 
ketones with high stereoselectivities. Gratefully, further 
reduction that leads to diol was not observed in the 
hydrogenation step. This catalytic system was highly 
compatible with C=C and C≡C bonds, therefore making it a 
practical method to prepare complicated molecules with a 
chiral quaternary carbon.
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