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An effective and eco-friendly technique were designated for quick alcohol oxidation by glycine functionalised
imidazolium ionic liquids in presence of FeCls at ambient-temperature. No over the primary alcohols oxidation to
carbonyl compounds was observed in presence of this FeCl3/[Gmim]Cl. These benefits of the catalyst resulted
mainly from the circumstance with alcohols-H2O», and the Fe3* was coordinated by the immobilized IL to
permitted both reactants to access the active sites of the catalyst effectively. The catalyst recycled nine times

1. Introduction

Conversion Alcohol into carbonyl compounds is one of the vibrant
functional group transformations in organic synthesis [1-4]. However,
those compounds found a significant group of molecules in synthetic
chemistry and also essential constituent of dyes, fragrances, pharma-
ceuticals, industrially important chemicals, and natural products [5-8].
There are several diverse schemes that accomplish this important func-
tional group conversion [9-11].

Moreover, etiquettes based on Oy, air or HyO, [12-14] are mainly
attractive for cheap and eagerly existing oxidants. Accordingly,
numerous studies have been reported for the alcohol oxidation with O or
H,0; catalysed by metal complexes such as Ruthenium [15-17], Palla-
dium [18-20], Cobalt [21-24], Osmium [25,26], Copper [27,28] and
heterogeneous catalysts like metal catalysts besides supported catalysts,
with mesoporous materials, zeolite, polymer-supported catalysts
[29-31], tungsten systems like tungstic acid [32-35], quaternary
ammoniumtetrakis (diperoxotungsto) phosphates [32-35] sodium
tungstate [(n-C4Hog)4N] Cl, sodium tungstate and quaternary ammonium
hydrogen sulfate [32-35].

However, in spite of this exhaustive research method, alcohol
oxidation is still far being ideal from the green chemistry point of view
and needs to improvement [36-38]. There is only a limited report of
using cheap and less toxic iron catalysts for the alcohol oxidation to
carbonyls so far [39-42]. Nowadays, Schiff-iron has established a
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substantial amount of care in the topical literature as a powerful transi-
tion metal catalysed reaction. Due to its low cost, ready abundance, and
low toxicity, iron is an ideal metal catalyst for large scale synthesis. This
growth of iron-catalysed methods, however, is still in its beginning. The
current efforts to employ iron as a catalyst for Kumada couplings,
hydrogenative reductions, friedel-crafts reactions and dihydroxylations
provided a direct evaluation among state-of-the-art transition
metal-catalysed reactions, environmentally friendly and sustainable
metal [1-4,39-42,56].

This recent years, Caselli et al. [43] initiated non-heme complexes
suitable for the selective oxidation of primary and secondary alcohols to
the corresponding ketones. However, Iskra and Mozina [44] efficiently
accomplished selective oxidation of secondary catalysed by iron (III)
chloride. Sato and co-worker [45] testified an efficient catalytic oxida-
tion of alcohols with hydrogen peroxide using mixed picolinate and
quinaldinate iron (III) complexes. Liang et al. [46] developed a simple
chemical model for aerobic oxidation of primary alcohols to the alde-
hydes catalysed by iron chloride/4-acetamido-TEMPO/sodium nitrite.
Biswas et al. [47] studied primary and secondary alcohols to carbonyl
compounds in the presence dinuclear iron complexes as catalysts using
hydrogen peroxide as primary oxidant.

Over all the outlines afford good yield, but some have problematics
issue such as extensive work-up method, severe reaction conditions
(organic co-solvents) and require absolutely dry and inert media. To our
best info, there is no report of with the FeCls/glycine functionalised ionic
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Scheme 1. Oxidation of alcohols catalysed by FeCls/[Gmim]Cl.

Table 1
Optimization of oxidation reaction.”.

Entry Different Solvent Time (hrs) Conv. (%)" Yield (%)¢
1 Blank! 24 3 2
2 Toluene 24 31 28
3 DCM 24 26 24
4 EtOAc 24 18 17
5 DME 24 22 20
6 THF 24 28 27
7 MeCN 24 34 33
8 CHCl3 24 40 37
9 DMF 24 20 19
10 [Gmim]Cl 10° 96 94
11 [Gmim]Cl 10% 97 95
12 [Gmim]Cl 10%8 96 94
13 [Gmim]Cl 15%h 96 94
14 [Gmim]Cl 10 96 94
15 [Gmim]Cl 10 95 92

@ Reaction condition: Benzyl alcohol (1 mmol), Hydrogen perxide (1.2 mmol),
FeCls (0.25 mol%), [Gmim]Cl (1 mL) at 25°C for 10 min.

b Based on GC.

¢ Isolated yield by flash chromatography.

4 Absence of catalyst.

¢ Time in mints.

f Increases of conc. of FeCl; from 0.25 to 0.5 mol%.

8 Increases of conc. of HyO, as the oxidant from 10% to 30%.

" Time to increase from 10 to 15 mints.

i Temperature (30 °C).

J Temperature (20 °C).

liquids, as catalyst for oxidation of alcohols. This prompted us to study
the possibility of the oxidation of alcohols to carbonyl compounds in the
presence of FeCls/[Gmim]Cl under mild conditions using HyO as
oxidant (Scheme 1).

2. Experimental
2.1. Materials and methods

All solvents and chemicals were commercially available and used
without further purification unless otherwise stated. The 'H NMR spectra
were recorded on a Bruker 500 MHz using CDCl; as the solvent and mass
spectra were recorded on JEOL GC MATE Il HRMS (EI) spectrometer. FT-
IR was recorded on AVATRA 330 spectrometer with DTGS detector.
Column chromatography was performed on silica gel (200-300 mesh).
Analytical thin-layer chromatography (TLC) was carried out on pre-
coated silica gel GF-254 plates.

2.2. Synthesis of [Gmim]Cl

The catalyst [Gmim]Cl was synthesized and reported [50,51]. First,
chloroglycine (0.01 mol) reacted with N-Methylimidazole (0.11 mol) in
50 mL acetonitrile at 70°C for 24 h to generate chloroglycine ligand
modified by imidazole salt (3-(amino(carboxy)methyl)-1-methy

1-1H-imidazole-3-ium chloride) [Gmim]Cl. The solvent (acetonitrile)
was removed under reduced pressure at 80 °C. Then the residue was
mixed with 50 mL water and extracted with ethyl acetate (3 x 5 mL).
Further, the water phase was evaporated under reduced pressure at 80
OC until the mass of the residue did not change.

2.3. Typical oxidation procedure

To a mixture of FeCls (0.25 mol%), [Gmim]Cl (1 mL), benzyl alcohol
(10 mmol) and Hy05 (1.2 mmol) was slowly added. The resulting reac-
tion mixture was stirred at room (25 °C) temperature for 10 min. After
completion of the reaction, ether was added (3 x 5 mL) to separate the
product from catalyst. The organic layer was concentrated and purified
by column chromatography to give the benzaldehyde.

3. Results and discussion

To get information on the optimal catalyst conditions, we carried out
intensive examinations to define the suitable solvent for this benzyl
alcohol oxidation reaction. According to publications from Rani and Bhat
[52], Hergovich and Speier [53] and Renhua Liu [54] polar, non-polar
solvents tend to give the best results for the oxidation reaction, while
Ma [55] obtained high-activity of catalysts in DCE solvent. Among the
previous reports, alcohol oxidation in absence polar and non-polar sol-
vents was the most productive (Table 1, entries 2-9). This may be due to
the easy coordination of FeCls with organic co-solvents. Our goal was to
employ FeCls under ligand, organic solvent-free conditions to effect the
alcohol oxidation reaction on a recyclable basis. Amino acid functional-
ised ionic liquids were chosen because of their recyclability and reus-
ability. The products can be easily separated from the FeClg catalysts
dissolved in ionic liquids by simple extraction with normal organic sol-
vents. We reasoned that if the ligand has an imidazole moiety, it will have
high solubility in ionic liquids having the imidazole skeleton.

Subsequent, the combination of glycine functionalised ionic liquids
with FeCl3 was tried as the catalyst for the oxidation reaction. As shown
in (Table 1, entry 10) the catalytic oxidation continued with mild con-
version of alcohol to aldehyde with satisfactory yield. Furthermore, ac-
cording to literature, Renhua Liu and co-workers obtained good yield in
the oxidation reaction of primary alcohols to the aldehydes using iron
chloride (0.25 mmol) stirred at 50°C and oxygen pressure of 0.4 MPa for
03-23 h [54]. Using Fe(NO3)3-9H50 in the 10 mol%, Ma et al. observed
acceptable rate in the oxidation [55]. Among the previous reports,
increasing the quantity of the catalyst can improve the reaction yield and
shorten reaction time. However, the influences of the amount of FeClg
and H,04 were also examined. It is renowned that increasing increase
from 0.25 to 0.5 mol% the quantity of FeCls led to improved yield
(Table 1, entry 11). However, the quantity of H>O5 increased from 10%
to 30%, the reaction was not influenced to greater extent (Table 1, entry
12). It is found that the alcohol oxidation was very fast in 10 min and
nearly approached the chemical equilibrium subsequently 15 min
(Table 1, entry 13). However, temperature also plays a significant role in
the model reaction. When we conducted the oxidation reaction at 300C,
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Table 2
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Catalytic oxidation of primary alcohols Oxidation in the presence of FeCl3/[Gmim]CI®.

H_O
}5)
Cl

2a 2b
94% 96%
H §0 H_O
_0
2e 2f
96% 87%

4O
H

2i
96%

H ;0 H ;O
Br

NH,
2co 2d
95% 90%

H3CE §O 0
2g 2h
89% 85%

P

2j 2k
87% 87%

2 Reaction condition: Benzyl alcohol (1 mmol), H202 (1.2 mmol), FeCls (0.25 mol%),
[Gmim]Cl (1 mL) at 25°C for 10 min. ® Conversion by GC. © Isolated yield by flash

chromatography. ™ Number of carbons-1-5.

Table 3
Recycling of FeClz/[Gmim]CL.".

Run Conversion (%)" Yield (%)°
1 96 94
2 96 94
3 96 93
4 96 93
5 95 93
6 95 93
7 94 92
8 94 92
9 94 91

@ Reaction condition: benzyl alcohol (10 mmol), HyO5 (12 mmol), FeCls (0.25
mol%), [Gmim]Cl (1 mL) at room temperature for 10 min.

b Conversion by GC.

¢ Isolated yield by flash chromatography.

there was no change in the yield (Table 1, entry 14) but in the case of
20°C decrease in the carbonyl compound (Table 1, entry 15).

Under the optimized conditions, the other alcohols oxidation was
studied (Table 2). The primary aromatic alcohols explored and provided
first-rate yields (Table 2, entries a-g). However, parallelly the oxidation
of benzyl alcohol gave good conversion and yield (85-96%) were found
over the alcohols attached electron-withdrawing and donating groups in
the aromatic ring, i.e., p-chloro, p-bromo, p-methoxyl, p-amino and p-
methyl benzyl alcohols (Table 2, entries b-h).

Interestingly, in contrast to B. Andrioletti, work [48] aliphatic alco-
hols were also oxidized to carbonyl compounds, with outstanding yield in
short duration (Table 2, entries i-k). Thus, we could achieve oxidation of
various aliphatic, alicyclic and aromatic alcohols to corresponding car-
bonyls without over oxidation under solvent free condition, in contrast to
Shannon S. Stahl co-works [49] which showed organic solvents were
necessary during the oxidation. The system gave well to quantitative
yields on oxidation of alcohol due to the effect of cation that facilitated
for the formation of catalytic complex with the Fe>* which resulted into a

very high activity of the system [39-42].

One of the main objectives of green chemistry is to increase the life of
the resulting catalyst. We have completed an introductory study of the
recycling productivity of FeCl3/[Gmim]Cl using benzyl alcohol as model
substrate. The FeCl3/[Gmim]Cl was disconnected from the reaction after
each trial by extraction with diethyl ether followed by ethyl acetate to
recover [Gmim]Cl. The excess solvent was removed by vacuum distilla-
tion sensibly before using it in the next cycle. The catalyst was recycled
nine times without conspicuous loss and activity (Table 3, entries 1-9).

4. Conclusions

In summary, we have established the effective examples of FeCls/
[Gmim]ClI procedure that have catalysed oxidation of various alcohols to
the ketones and aldehydes in outstanding yields. The activity of several
alcohol oxidation in the currently testified catalytic systems is much
higher than that of other aerobic oxidations in ILs/ILs-transition metals,
even with lesser catalyst loading and devoid of any additive. Addition-
ally, Easy technique, broad substrate applicability, high yields, short
reaction times can be mentioned as advantages of this method. No sol-
vent vapors released and smallest wastage of reagents during the reaction
makes this as ‘green’ process.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://do

i.org/10.1016/j.jics.2021.100099.
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