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Fe-catalyzed three-component carboazidation of alkenes with 
alkanes and trimethylsilyl azide 

 Wei-Yu Li, Chuan-Shuo Wu, Wang Zhou, Luo Yang* 

Reported herein is the novel iron-catalyzed, DTBP-mediated 

carboazidation of alkenes using cycloalkanes, CH2Cl2, CHCl3 and 

CCl4 as alkylating reagents to generate electrophilic or nucleophilic 

alkyl radicals. Mechanistic studies suggested that the reaction 

proceeded via addition of alkyl radicals to alkenes followed by 

iron-mediated ligand transfer process. The reaction is unique as it 

is applicable not only to diversely functionalized electron rich 

alkenes, but also to electron-poor olefins to provide chain 

extended azides and -azido chloroalkanes in good to high yields. 

Difunctionalization of unactivated alkenes producing value-

added chemicals from easily available hydrocarbons has 

attracted much recent attention.
 1

 Among them, azide transfer 

reaction is of particular interest as it generates organic azides 

of significant synthetic importance. In this context, 

diazidation,
2
 aminoazidation,

3
 oxyazidation,

4
 azidocyanation,

5 

haloazidation
6
 and carboazidation

7-10
 of alkenes using different 

azide sources (NaN3, TMSN3 or azido hypovalent iodine) have 

been realized.
11

 Most of these reactions are initiated by 

addition of the in situ generated azide radical to the double 

bonds. The carboazidation pioneered by Renaud and co-

workers is however different as it is initiated by the addition of 

alkyl radicals to the olefins followed by azidation.
7
 Alkyl 

halides,
7,8c

 and trifluoromethyl hypervalent iodine reagents
8a,8b

 

are generally used as precursors of alkyl radical. More recently, 

oxidative carboazidation of alkenes using acetonitrile
9
 as alkyl 

radical donors have been developed by J.P. Zhu et.al. Note 

that alkyl radical used in these studies are all electrophilic, 

therefore their reaction with alkenes is polarity matched.
12

  

Oxidative generation of alkyl radicals from alkanes has been 

known for many years.
13

 However, there is a recent 

resurgence of interest in this area.
14

 In addition to alkylation of  

 

Scheme 1. Alkanes as alkylating reagent and carboazidation of alkenes 

aromatic/heteroaromatic compounds
15 

and amines/amides,
16

 

reaction of these alkyl radicals with alkenes have also been 

reported recently. The electron-poor olefins are generally 

preferred substrates to match the nucleophilicity of the alkyl 

radical A. The resulting electrophilic radical adduct B 

underwent rapid intramolecular homolytic aromatic 

substitution (HAS) with the tethered aromatic ring to afford 

cyclic compounds (eq 1, Scheme 1).
17

 On the other hand, 

vinylation of alkanes by electron rich alkenes under oxidative 

conditions have also been reported.
18

 In these cases, 1,1-diaryl 

substituted ethylenes or a stronger oxidant [e.g. Cu(OTf)2] has 

to be used to most probably accelerate the oxidation of benzyl 

radical to carbenium intermediate (eq 2, Scheme 1). Although 

it was concluded in an authoritative review that the reaction 

with alkyl radical is synthetically significant only when the 

olefinic double bond is conjugated with electron-withdrawing 

groups, owing to the nucleophilic character of the alkyl 

radical,
12

 we hypothesized that if the adduct radical C could be 

intercepted intermolecularly by a kinetically competent redox 

ligand transfer process, then a three-component reaction 

could be developed even if the initiation radical addition step 

was polarity mismatched (eq 3). We report herein an Fe-

catalyzed DTBP-mediated carboazidation of unactivated 
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alkenes with TMSN3 and alkanes (eq 4, Scheme 1). 

Dichloromethane, chloroform and carbon tetrachloride could 

also take part in the reaction as precursors of chlorinated alkyl 

radicals to afford interesting -azido chloroalkanes. 

Importantly, the reaction is applicable not only to styrene and 

its derivatives, known to be prone to undergo facial radical 

polymerization, but also to electron-poor olefins. 

We began our reaction optimization using styrene (1a), 

cyclohexane (2a, BDE of C-H: 99.5 kcal/mol) and TMSN3 as the 

model substrates (Table 1). In the presence of di-tert-butyl 

peroxide (DTBP), the reaction afforded the desired 

carboazidation product 3a in only 7% yield accompanied by 

styrene oxide and benzaldehyde (c 0.2, entry 1). Adding FeCl3 

(10 mol%) to the reaction mixture raised the yield of 3a to 29% 

(entry 2). Subsequent survey of different iron and copper salts 

(entries 3-8) indicated that Fe(acac)3 was the most effective 

one to provide 3a in 53% yield. Performing the reaction at 

lower concentration (c 0.13 M) further increased the reaction 

efficiency (entry 9). Replacing DTBP by tert-butyl 

hydroperoxide (TBHP), benzoyl peroxide (BPO) and 

dicumylperoxide (DCP) under otherwise identical conditions 

furnished 3a in diminished yield (entries 10-12). Potassium 

persulfate (K2S2O8) was an ineffective oxidant for the desired 

transformation (entry 13). Importantly, decreasing the loading 

of Fe(acac)3 from 10 to 0.5 mol% afforded 3a in similar yield 

(entries 17 vs 14). Overall, optimum conditions consisted of 

performing the reaction of 1a, with TMSN3 in cyclohexane (c 

0.13 M) at 100 °C in the presence of a catalytic amount of 

Fe(acac)3 (0.5 mol%). Under these conditions, the three-

component adduct 3a was isolated in 74% yield. 

Table 1. Optimization of reaction conditions. a 

 
entry Cat. (mol%) Peroxide (equiv) 2a (mL) Yield (%)[b] 

1 - DTBP (3.0) 1.0 7 

2 FeCl3 (10) DTBP (3.0) 1.0 29 

3 FeCl2 (10) DTBP (3.0) 1.0 < 2 

4 Fe(acac)3 (10) DTBP (3.0) 1.0 53 

5 Fe(acac)2 (10) DTBP (3.0) 1.0 42 

6 Fe(OAc)2·4H2O(10) DTBP (3.0) 1.0 n.d. 

7 CuCl (10) DTBP (3.0) 1.0 n.d. 

8 Cu(OTf)2 (10) DTBP (3.0) 1.0 n.d. 

9 Fe(acac)3 (10) DTBP (3.0) 1.5 68 

10 Fe(acac)3 (10) TBHP (3.0) 1.5 17 

11 Fe(acac)3 (10) DCP (3.0) 1.5 37 

12 Fe(acac)3 (10) BPO (3.0) 1.5 35 

13 Fe(acac)3 (10) K2S2O8 (3.0) 1.5 n.d. 

14 Fe(acac)3 (10) DTBP (2.5) 1.5 73 

15 Fe(acac)3 (5) DTBP (2.5) 1.5 72 

16 Fe(acac)3 (1) DTBP (2.5) 1.5 72 

17 Fe(acac)3 (0.5) DTBP (2.5) 1.5 74 

18 Fe(acac)3 (0.25) DTBP (2.5) 1.5 69 
a Reaction conditions: styrene (1a, 0.2 mmol, 1.0 equiv), cyclohexane (2a), 
TMSN3 (0.5 mmol, 2.5 equiv), oxidant (equiv), catalyst (mol%), 110 °C, 10 h, 
under Ar. b yield of isolated product. 

The generality of this azidoalkylation of alkenes were next 

investigated. As shown in Scheme 2, styrenes bearing an 

electron donating (Me, tBu, MeO) or withdrawing groups (F, Cl, 

Br) at the para, meta and ortho position of the phenyl ring 

were transformed smoothly to the desired alkylated azides 

(3a-3j) in good to high yields. Note that the benzyl chloride 

function remained untouched under these conditions (3e). The 

-methylstyrene, 1,1-diphenylethylene and 2-vinyl 

naphthalene took part in the reaction to provide the 

corresponding three-component adducts (3l-3n). Cyclohexene 

was tried under the optimized conditions but was not reactive 

and no similar carboazidation product could be detected, 

which implied that the substrate of this reaction limited to 

terminal alkenes. Other cyclic alkanes such as cyclopentane 

(2b, BDE of C-H: 95.6±1.0 kcal/mol), cycloheptane (2c, BDE of 

C-H: 94.0 kcal/mol) and cyclooctane (2d, BDE of C-H: 95.7 

kcal/mol) participated in the reaction to deliver the 

corresponding adducts (3o-3r) in good yields. As expected, 

when linear alkane such as n-hexane (2e) was used in this 

cascade reaction, a mixture of regioisomers was obtained. 

 
Scheme 2. a Reaction conditions: alkene (1, 0.2 mmol), alkane (2, 1.5 mL), 
TMSN3 (0.5 mmol, 2.5 equiv), DTBP (0.5 mmol, 2.5 equiv), Fe(acac)3 (0.5 
mol %), 110 °C, 10 h, under Ar. b a mixture of C1, C2 and C3 regioisomers. 
 

The use of CH2Cl2 (BDE of C-H: 97.3±1 kcal/mol) as the 

alkylating agent of the above carboazidation reaction was next 

examined. Gratefully, simply heating a CH2Cl2 solution of 

alkenes (c 0.13 M) and TMSN3 in the presence of DTBP (2.5 

equiv) and Fe(acac)3 (0.005 equiv) afforded the γ-azido 

dichloroalkanes in good to excellent yields (Scheme 3).  

Reaction turned out to be generally applicable to a diverse set 

of styrenes with different electronic properties (4a-4k). 1,1-

Disubstituted ethylenes and 2-vinylnaphthalene were 

converted to the corresponding -azido chloroalkanes (4l-4n) 

in good yields. 
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Scheme 3 a Reaction conditions: alkene (0.2 mmol), CH2Cl2 (1.5 mL), TMSN3 
(0.5 mmol, 2.5 equiv), DTBP (0.5 mmol, 2.5 equiv), Fe(acac)3 (0.5 mol %), 
110 °C, 10 h, under Ar. 

Reaction of alkenes with chloroform (BDE of C-H: 93.8±0.6 

kcal/mol) in the presence of peroxide is known to afford 1,1,1-

trichloroalkanes (Kharasch reaction, Scheme 4a).
19

 Minisci
20

 

and Asscher
21

 demonstrated that in the presence of an iron 

salt, the same reaction can be diverted to afford the 1,1,3-

trichloroalkanes. Notwithstanding these precedents, the 

reaction of styrene with TMSN3 in CHCl3 under our standard 

conditions furnished the 1,1,1-trichloro-3-azido-3-

phenylpropane (5a) in 67% yield indicating that the reaction 

went through a different reaction manifold in the presence of 

both peroxide and iron salt.  The 4-methoxystyrene was 

similarly converted to 5b in good yield (Scheme 4c). 

Interestingly, carbon tetrachloride also took part in the 

reaction to afford 5c in 47% yield together with 1,1,1,3-

tetrachloroalkane 6 (15%).
22

 When diphenylethylene was used, 

alkyl azide 5d was formed exclusively. These results seems to 

indicate that azido-transfer to the benzylic radical was faster 

than the competitive Cl-transfer process under our conditions. 

 
Scheme 4. Azidoalkylation of alkenes using CHCl3 and CCl4 as alkyl sources. a 
alkene (0.2 mmol), CHCl3 or CCl4 (1.5 mL), TMSN3 (0.5 mmol, 2.5 equiv), 
DTBP (0.5 mmol, 2.5 equiv), Fe(acac)3 (0.5 mol %), 110 °C, under Ar. 
 

A possible reaction pathway is depicted in Scheme 5. 

Reduction of DTBP by in situ generated Fe(II) salt would 

produce tert-butoxy radical and Fe(OtBu)X2. Intermolecular 

hydrogen abstraction from alkane by tBuO• (BDE of O-H: 

106.3±0.7 kcal/mol) would generate alkyl radical A which, 

upon addition to alkene, would provide the radical C. On the 

other hand, reaction of Fe(III) salt with TMSN3 would produce 

the Fe(III)N3 salt, which would then transfer the azido radical 

to C leading to the three-component adduct with concurrent 

regeneration of the Fe(II) salt (path a). Several experimental 

observations were in line with the proposed reaction pathway. 

Firstly, reaction of 1a with TMSN3 in cyclohexane was 

completely inhibited in the presence of 2,2,6,6-tetramethyl-1-

piperidinyloxy (TEMPO) and the formation of 1-

(cyclohexyloxy)-2,2,6,6-tetramethylpiperidine was observed 

(see ESI). Secondly, dimer 7, resulting most probably from the 

dimerization of benzyl radical C, was isolated in some of our 

initial experiments due to the inefficient azido transfer process. 

The formation of Kharasch’s adduct 6 (Scheme 4b) was also in 

accord with the presence of intermediate C. The fact that the 

reaction of (-)--pinene with cyclohexane, CH2Cl2 and CHCl3 

afforded the ring opened products 9a-9c (Scheme 6) 

supported further the proposed radical mechanism. 

 
Scheme 5. Proposed mechanism for the cascade reaction. 

 

Oxidation of the benzylic radical followed by trapping of the 

resulting carbocation D by azide could also account for the 

formation of the three-component adduct (path b). To gain 

further mechanistic insights, azidoalkylation of ethyl 

phenylacrylate (10) was examined. As is shown in Scheme 6b, 

compound 10 was converted under standard conditions to the 

adducts 11a-11c in good yields. Since it is reasonable to 

assume that oxidation of benzyl radical 12 to benzyl cation 13 

would be an energetically unfavourable process due to the 

presence of the adjacent electron-withdrawing ester group, 

the azidation might proceed via Fe-mediated azide transfer 

process (path a, Scheme 5). We note that compounds 11 are 

interesting precursor of 2-substituted phenylglycine 

derivatives. 

It is known that azide radical can be generated in the 

presence of peroxide and iron salt. Azide radical, being 

moderately electrophilic, should be more reactive than 

nucleophilic alkyl radicals towards the electron rich styrenes, 

leading to diazidation product.
20

 This is however not the case 

and we think that iron might also coordinate to double bond 

modifying therefore its electronic properties. 

 
Scheme 6. Examples with mechanistic implication. Conditions (See foot note of 
schemes 2-4). 

 

The azides can be subjected to further chemical 

manipulations as depicted in Scheme 7. The Pd/C-catalyzed 

hydrogenation of azide 4a provided the chlorinated benzyl 

amine 4 that is armed for the further functionalization at both 

the C1 and C3 positions. The CuI-catalyzed “Click” reaction of 

3a with phenylacetylene produced triazole 15 in 84% yield 

without event. 
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Scheme 7. Transformation of the azido function. 

Conclusions 

We have developed a novel Fe-catalyzed, DTBP-mediated 

carboazidation of alkenes using cycloalkanes, CH2Cl2, CHCl3 and 

CCl4 as alkylating reagents. The reaction provided chain 

elongated benzyl azides and -azido chloroalkanes in good to 

high yields. The reaction is unique since it is applicable not only 

to diversely substituted styrenes, known to be prone to 

polymerization, but also to electron-poor olefins. 
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Fe-catalyzed three-component carboazidation of 
alkenes with alkanes and trimethylsilyl azide 

Graphic: 

Ar

R

TMSN3

Ar

R1

R3
R2

R

N3

+ +

CHR1R2R3 = alkanes, CH2Cl2, CHCl3

Fe(acac)3 (0.5 mol%)
DTBP (2.5 equiv)

110 oC, 12 h, Ar

H R1

R3
R2

 

Wei-Yu Li, Chuan-Shuo Wu, Wang Zhou, Luo Yang* 

Text: 

Iron out the difference Carboazidation of alkenes using cycloalkanes, 

CH2Cl2, CHCl3 and CCl4 as alkylating reagents proceeded smoothly in 

the presence of TMSN3, DTBP and a catalytic amount of Fe(acac)3 to 

afford the chain extended alkyl azides and γ-azido chloroalkanes in 

good to high yields. 
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