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ABSTRACT: Chidamide is a histone deacetylase (HDAC) inhibitor, which is currently used to treat cutaneous T-cell lymphoma in 
clinic. Herein nicotinamide phosphoribosyltransferase (NAMPT) was identified to be a new target of chidamide on the basis of the 
pharmacophore analysis, molecular docking, biological assays, inhibitor design and structure-activity relationship study. The 
polypharmacology of chidamide will provide important information for better understanding its antitumor mechanism. Also, design 
of dual NAMPT/HDAC inhibitors may serve as an effective strategy to develop novel antitumor agents.

The balance between acetylation and deacetylation of 
histone plays an essential role in maintaining cell 
homeostasis.1 These two processes are regulated by 
histone acetyltransferase (HAT) and histone deacetylase 
(HDAC) which increases and decreases gene 
transcription, respectively.2 It has been reported that 
HDAC is overexpressed in various tumor cells.3, 4 
HDAC inhibitors (Figure 1) can decrease the 
acetylation level to modify the gene expression and 
induce death of cancer cells.5 HDAC inhibitors (e.g. 
vorinostat, romidepsin, belinostat, and panobinostat) 
have been widely used in clinic for the treatment of 
cutaneous T-cell lymphoma and multiple myeloma.6-8 
Chidamide (1) is a benzamide HDAC inhibitor, which 
was marketed in China for the treatment of cutaneous T-
cell lymphoma in 2015.9 Chidamide showed good 
inhibitory activity against class I (HDAC1-3) and class 
IIb HDACs (HDAC10), whereas it was poorly effective 
towards other class I, IIa, and IV HDAC isoforms.10 
Although its antitumor potency and antitumor 
mechanism has been widely investigated,11-14 the 
research for target profiling of chidamide is still rare, 
which limits deeper understanding its antitumor 
mechanism. 

Nicotinamide adenine dinucleotide (NAD+) plays 
an essential role in cellular physiological processes.15 
There are four synthetic routes of NAD+, including the 
de novo pathway synthesized from tryptophan (Trp), the 
alternative salvage pathway synthesized from nicotinic 
acid (NA) or nicotinamide ribose (NR) and the primary 
salvage pathway synthesized from nicotinamide (NAM). 
In mammalian cells, NAD+ relies on the primary 

salvage pathway using NAM as the precursor, in which 
nicotinamide phosphoribosyltransferase (NAMPT) is the 
rate-limiting enzyme16 (Figure 1A). Recently, NAMPT 
is recognized as a promising target for the development 
of novel antitumor agents. Although two NAMPT 
inhibitors (FK866 and CHS828) have been progressed 
into clinical trials for treatment of cutaneous T-cell 
lymphoma and metastatic melanoma.17 However, further 
drug development was hampered due to significant side 
effects, which inspired the discovery of novel NAMPT 
inhibitors. Previously, we identified a series of new 
NAMPT inhibitors through high-throughput 
screening.18-20 Moreover, novel NAMPT/HDAC dual 
inhibitors were rationally designed on the basis of the 
synergistic effects between NAMPT and HDAC, which 
showed excellent in vitro and in vivo antitumor efficacy 
toward human colon cancer cell HCT116.21 Herein 
NAMPT was proven to be a new target of chidamide by 
pharmacophore analysis, molecular docking, inhibitor 
design and biological assays, which provided new 
insights for the antitumor mechanism of chidamide and 
important information for new antitumor drug 
development. 

The pharmacophore of HDAC inhibitors consists of 
three parts (Figure 1B): cap, linker and zinc binding 
region (ZBG, hydroxamic acid or o-
phenylenediamine)22. Similar to HDAC inhibitors, the 
pharmacophore of NAMPT inhibitors also includes cap, 
linker and hydrophobic tails (Figure 1C). For 
chidamide, its (E)-3-(pyridin-3-yl)acrylamide ZBG 
could be regarded as a bioisostere of the hydrophobic 
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tail in NAMPT inhibitors. Thus, we envisioned that 
chidamide might be a NAMPT inhibitor. 
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Figure 1. (A) Pathway of NAD+ biosynthesis; (B) 
Pharmacophore of HDAC inhibitors; (C) Pharmacophore of 
NAMPT inhibitors. 

To validate the hypothesis, molecular docking was 
initially carried out to investigate whether chidamide 
shares a similar binding mode to NAMPT inhibitors. 
Chidamide was docked into the active site of NAMPT 
(PDB code: 2GVJ)23 using docking software Gold24. 
The results showed that chidamide bound to the same 
pocket of FK866 in the active site of NAMPT (Figure 
2). As shown in Figure 2A, the pyridyl group of 
chidamide formed face to face π-π interactions with 
TYR18, PHE193 and ARG311, respectively, which 
were similar to that of FK866. The carbonyl oxygen and 
nitrogen atom of the pyridyl amide group formed two 
hydrogen bonds with SER275 and ASP219, 
respectively, while FK866 only formed a hydrogen bond 
with SER275. The results suggested that chidamide 
could bind to the active site of NAMPT. Thus, the 
inhibitory activity of chidamide against human 
recombinant NAMPT was tested using the fluorometric 
assay described in our previous studies.19 As shown in 
Table 1, chidamide was proven to be a NAMPT 
inhibitor with an IC50 value of 2.1 M.

Cellular thermal shift assay (CETSA)21 was further 
performed to investigate whether NAMPT is the direct 
binding target of chidamide in HCT116 cells using 
FK866 as the positive control. The results indicated that 
the NAMPT expression level of cells treated with 
chidamide was more stable compared with the control, 
indicating a good binding affinity between the 
chidamide and NAMPT protein (Figure 3).

Figure 2. Predicted binding mode of chidamide in the active site 
of NAMPT (PDB: 2GVJ). (A) Predicted binding pose of 
chidamide in the active region of NAMPT. Hydrogen bonds 
(yellow) are represented with dash lines. The figure was generated 
using PyMol (http://www. Pymol.org/). (B) Superimposition of 
FK866 (green) and chidamide (purple) in the active region of 
NAMPT. The figure was generated using PyMol (http://www. 
Pymol.org/).

Figure 3. Binding of chidamide with NAMPT using CETSA. (A) 
Western blot of CETSA for NAMPT with FK866 (10 M) and 
chidamide (10 M) in HCT116 cells after the treatment for 2 h. 
(B) CESTA melt curves in HCT116 cells for NAMPT with 
FK866 and chidamide (at 10 μM).

The decrease in NAD+ level is a classic feature 
after inhibition of NAMPT activity.21 Therefore, we 
measured the NAD+ variation qualitatively compared 
with the control group. As shown in Figure 4A, 
chidamide effectively decreased the cellular NAD+ level 
after incubation with human HCT116 cells for 24 h.
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Figure 4. (A) Relative NAD+ level in HCT116 cells treated with 
chidamide at different concentrations for 24 h.  Rescue studies 
with the addition of NA (4 M) or NMN (10 M) in HCT116 
cells (B), K562 cells (C), HL60 cells (D) and HEL cells (E).

The addition of NA could activate the alternative 
rescue pathway to synthesize NAD+. Furthermore, the 
addition of the downstream product NMN could skip the 
exertion of activity of NAMPT to obtain NAD+. Herein, 
rescue studies25 showed that addition of NA (4 M) or 
NMN (10 M) could significantly rescue cells from 
treatment with chidamide in HCT116 cells and human 
leukemia cells including K562, HL60 and HEL (Figure 
4B-4E), further confirming that NAMPT is a target of 
chidamide.

 To investigate the role of NAMPT in exerting the 
antitumor activity of chidamide, four chidamide analogs 
7a-d (Scheme 1) were designed as the control molecules 
by removing the pharmacophores of HDAC (o-
phenylenediamine) or NAMPT ((E)-3-(pyridin-3-
yl)acrylamide) inhibitors. Enzyme inhibition and in vitro 
antitumor activity assay (Table 1) showed that 

compounds 7a and 7b without the pharmacophore of 
NAMPT inhibitors lost NAMPT inhibitory activity. 
Interestingly, their HDAC1 inhibitory activities were 
improved, while HDAC2 and HDAC3 inhibitory 
activities were comparable to chidamide (Table 1). For 
the antitumor activity, they retained good potency 
against K562 cell line, whereas the growth inhibitory 
activity against HCT116, HL60 and HEL cell lines were 
decreased. Similarly, after the removal of 
pharmacophore of HDAC inhibitors, compounds 7c and 
7d lost HDAC inhibitory activity but retained the 
NAMPT inhibitory activity. However, their antitumor 
activities were significantly decreased. Compounds 7a-
7d and chidamide were also assayed cytotoxicity against 
cancer cells deficient in NAMPT using siRNA26. The 
results indicated that NAMPT inhibitors chidamide, 7a 
and 7b showed decreased inhibitory activity in NAMPT-
deficient cells, further confirming that NAMPT is a 
target of chidamide. The detailed contribution of 
HDAC1-3 and NAMPT to the antitumor activity of 
chidamide still remains to be further explored.

Scheme1 Chemical synthesis of target compoundsa
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a Reagents and conditions: (a) CH3OH, H2SO4, reflux, 6 h, yield 
92%; (b) (E)-3-(pyridin-4-yl)acrylic acid or (E)-3-(pyridin-3-
yl)acrylic acid or cinnamic acid, HATU, DIPEA, DMF, rt, 2 h, 
yield 85%-93%; (c) LiOH, THF/MeOH/H2O, rt, 4 h, yield 80%-
92%; (d) different substituted anilines, HATU, DIPEA, DMF, rt, 
2 h, yield 76%-88%.

 Table 1. Enzyme inhibition and in vitro antitumor activity of target compounds (IC50, M)

Compounds chidamide 7a 7b 7c 7d
NAMPT 2.1   >100 >100 2.5  0.20 3.9  1.1
HDAC1 0.13  0.0020 0.026  0.004 0.033  0.0070 >100 >100
HDAC2 0.11  0.0004 0.14 0.0016 0.15  0.0015 >100 >100
HDAC3 0.33  0.028 0.36 0.018 0.32  0.0064 >100 >100
HCT116 0.34  0.064 2.6  0.45 2.4  0.87 >20 >20

K562 0.32  0.063 0.38  0.17 0.14  0.08 0.70  0.16 4.1  1.2
HL60 0.0022  0.0010 1.5  0.56 0.37  0.042 11  1.2 8.4  2.0
HEL 0.013  0.0071 1.5  0.55 1.2  0.52 5.0  0.67 4.7  0.65

HCT116-siRNA > 20 9.7  1.9 6.1  0.31 > 20 > 20
K562-siRNA 2.4  0.26 0.40  0.12 0.27  0.06 > 20 > 20
HL60-siRNA 3.2  0.40 0.89  0.080 0.48  0.03 > 20 > 20
HEL-siRNA 1.8  0.23 2.3  0.090 1.4  0.21 > 20 > 20
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In summary, NAMPT was identified to be a new 
target of chidamide on the basis of the similarity of 
pharmacophore between HDAC and NAMPT inhibitors. 
Chidamide had low micromolar inhibitory activity 
towards NAMPT and significantly decreased cellular 
NAD+ level, which shares a similar binding mode to 
NAMPT inhibitor FK866. The results are helpful for 
better understanding of antitumor mechanism of 
chidamide. The modification of chidamide by removal 
of HDAC pharmacophore and NAMPT pharmacophore 
significantly decreased its antitumor activity, indicating 
that dual inhibition of HDAC and NAMPT might lead to 
improved antitumor activity. In our previous studies, the 
balanced inhibitory activity against both targets was 
found to be important for the anti-tumor activity.21 
Considering the synergistic effects of HDAC and 
NAMPT, HDAC/NAMPT dual inhibitors might be a 
promising strategy for the development of novel 
antitumor agents.
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