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Abstract 
F420H2-dependent enzymes reduce a wide range of 
substrates that are otherwise recalcitrant to enzyme-
catalyzed reduction, and their potential for applica-
tions in biocatalysis has attracted increasingly at-
tention. Thermobifida fusca is a moderately ther-
mophilic bacterium and holds high biocatalytic po-
tential as a source for several highly thermostable 
enzymes. We report here on the isolation and char-
acterization of a thermostable F420:NADPH oxidore-
ductase (Tfu-FNO) from T. fusca, being the first 
F420-dependent enzyme described from this bacte-
rium. Tfu-FNO was heterologously expressed in 
Escherichia coli, yielding up to 200 mg recombi-
nant enzyme per liter of culture. We found that Tfu-
FNO is highly thermostable, reaching its highest ac-
tivity at 65 °C and that Tfu-FNO is likely to act in 
vivo as an F420 reductase at the expense of NADPH, 
similar to its counterpart in Streptomyces griseus. 
We obtained the crystal structure of FNO in com-
plex with NADP+ at 1.8 Å resolution, providing the 
first bacterial FNO structure. The overall architec-
ture and NADP+-binding site of Tfu-FNO were 
highly similar to those of the Archaeoglobus fulgi-
dus FNO (Af-FNO). The active site is located in a 
hydrophobic pocket between an N-terminal dinu-
cleotide-binding domain and a smaller C-terminal 

domain. Residues interacting with the 2′-phosphate 
of NADP+ were probed by targeted mutagenesis, in-
dicating that Thr28, Ser50, Arg51, and Arg55 are im-
portant for discriminating between NADP+ and 
NAD+. Interestingly, a T28A mutant increased the 
kinetic efficiency more than three-fold as compared 
with the wild-type enzyme when NADH is the sub-
strate. The biochemical and structural data pre-
sented here provide crucial insights into the molec-
ular recognition of the two cofactors, F420 and 
NAD(P)H by FNO. 

 

Introduction 
Flavins can arguably be regarded as the most exten-
sively studied redox cofactors. One natural flavin 
analogue is cofactor F420 which was first isolated 
and characterized from methanogenic archaea in 
1972 (1). Since then, F420 has been found in mem-
bers of methanogens, actinomycetes, cyanobacte-
ria, and some betaproteobacteria (2). Replacement 
of the 5′ nitrogen of flavins with a carbon in F420, 
resulting in a so-called deazaflavin, renders the co-
factor nearly unreactive towards molecular oxygen. 
Hence, F420 is an obligate hydride-transfer cofactor 
similar to the nicotinamide cofactors (Fig. 1). Be-
sides, the 8′-OH group on the isoalloxazine ring in 
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F420 has been suggested to slow down the autooxi-
dation of the reduced cofactor (F420H2) in air, thus 
the reduced species is much more stable than that 
of flavins (3).  

Many F420(H2)-dependent enzymes have been 
characterized recently and their potential for appli-
cations in biocatalysis has attracted increasing at-
tention (4,5). F420-dependent enzymes studied so far 
have been shown to be capable of reducing a wide 
range of substrates which are otherwise recalcitrant 
to enzyme-catalyzed reduction (4,5). However, the 
commercial unavailability of cofactor F420 remains 
a bottleneck for studying and applying the respec-
tive enzymes. Therefore, it would be attractive to 
have access to an efficient F420H2 cofactor recycling 
system. In this context, F420:NADPH oxidoreductases 
(FNOs, E.C. 1.5.1.40, Fig. 1)  could become very val-
uable as NADPH-driven F420H2-recycling systems.  
FNOs catalyze the reduction of NADP+ using 
F420H2 and have been found in a number of archaea 
(6–10) and bacteria (11) (Fig. 1). It has been argued 
that in methanogens, FNO catalyzes mainly the re-
duction of NADP+ using F420H2 while bacterial 
FNOs are supposed to catalyze the reverse reaction 
(11).  

 Thermobifida fusca is a moderately thermo-
philic soil bacterium with high G+C content. This 
actinomycete holds high biocatalytic potential as it 
has already served as a source for several highly 
thermostable enzymes, e.g., catalase, Baeyer–Vil-
liger monooxygenase, and glycoside hydrolases 
(12–14). Interestingly, a recent bioinformatic study 
predicted that the T. fusca genome contains 16 
genes encoding for F420-dependent enzymes (15). 
Nevertheless, there has been so far no biochemical 
evidence for such enzymes. Here, we describe the 
identification and characterization of a dimeric 
thermostable F420:NADPH oxidoreductase from T. 
fusca (Tfu-FNO), confirming the presence of F420-
dependent enzymes in this mesophilic bacterium. 
Despite the high GC content (67%) of the gene se-
quence, Tfu-FNO is readily expressed in E. coli. 
Notably, Tfu-FNO is a thermostable enzyme and 
shows a clear substrate preference towards 
NADP(H) instead of NAD(H). By solving the 
three-dimensional crystal structure of Tfu-FNO, we 
set out site-directed mutagenesis to corroborate the 
role of residues that interact with the phosphate 
moiety at 2′ position of NADP+. 

 
 

Results 
Purification of Tfu-FNO 

A BLAST search for Af-FNO homologs in T. fusca 
resulted in the identification of the Tfu_0907 gene 
(TFU_RS04835). The encoded protein shares 40% 
and 70% sequence identity to FNOs from A. fulgi-
dus and S. griseus, respectively (Fig. 2). The Tfu-
fno gene, with a high GC content (67%), was am-
plified from the genomic DNA of T. fusca and trans-
formed into E. coli TOP10 as a pBAD-fno con-
struct. Purification of the respective protein, Tfu-
FNO, was achieved through ammonium sulfate pre-
cipitation followed by anion exchange chromatog-
raphy. DNase I treatment during the first steps of 
protein purification was found to be essential to re-
move residual DNA. Tfu-FNO was obtained in pure 
form with a relatively high yield: 120–200 mg/L 
culture. It is worth noting that the amount of puri-
fied Tfu-FNO obtained in our system is signifi-
cantly higher than that of Af-FNO when heterolo-
gously expressed in E. coli [2 mg/L culture (16)]. 
Effects of pH and temperature on activity 

FNOs are known to catalyze the reduction of 
NADP+ at higher pH, while at lower pH it catalyzes 
the reverse reaction. Figure 3 shows the effect of pH 
on Tfu-FNO activity. The reduction rate of NADP+ 
is highest at pH 8.5–9.0 while the reverse reaction 
is optimal between pH 4.0–6.0. From the kobs values 
of both the forward and backward reactions, it can 
be concluded that FNO catalyzes NADP+ reduction 
more efficiently (Fig. 3). This is in line with the re-
dox potential of F420 (−340 mV) being lower when 
compared with that of NADP+ (−320 mV) (3). 

Since FNO originates from the mesophilic or-
ganism T. fusca, the enzyme is expected to be stable 
at relatively high temperatures. Measuring the ac-
tivities at temperatures between 25 and 90 °C re-
vealed that the enzyme displays highest activity be-
tween 60–70 °C (Fig. 4). The activity at 65 °C is 
almost 4-time higher than that at 25 °C. The appar-
ent melting temperature of Tfu-FNO was found to 
be 75 °C, as measured by the Thermofluor® 
method (17). All the generated Tfu-FNO mutants 
had melting temperatures similar to the wild-type 
enzyme (data not shown). This indicates that FNO 
is remarkably thermostable and is most active at el-
evated temperatures. 
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Steady-state kinetics 

The steady-state kinetic parameters were measured 
for NADPH and F420 as substrates by following ab-
sorbance of these two cofactors at either 340 nm or 
400 nm, respectively. The concentration of one sub-
strate was varied while keeping the other substrate 
at a constant, saturated concentration. The kinetic 
data fitted well to the Michaelis–Menten kinetic 
model when the observed rates (kobs) were plotted 
against substrate concentrations. Tfu-FNO has a Km 
value of 7.3 µM and 2.0 µM for NADPH and F420, 
respectively at pH 6.0 and 25 °C (Table 1). Thus, 
Tfu-FNO has a significantly lower Km for NADPH 
(2.0 µM) compared to the values featured by Af-
FNO (40 µM) and FNO from S. griseus (19.5 µM) 
(8,11). The kcat (3.3 s−1) of Tfu-FNO is somewhat 
lower when compared with that of Af-FNO (5.27 
s−1) (18). 

The overall structure of Tfu-FNO 

Crystallization of Tfu-FNO was successful which 
allowed the elucidation of its crystal structure. This 
revealed that NADP+ had been co-purified with the 
native enzyme as it was found to be bound in the 
active site (Fig. 5–6). All crystal soaking attempts 
to obtain the F420 cofactor bound in the enzyme ac-
tive site failed, which can be explained by the tight 
molecular packing found in Tfu-FNO crystals that 
would hamper cofactor binding in the same position 
as found in Af-FNO (Fig. 5A). It is known that, de-
pending on the bacterial species, the number of glu-
tamate moieties of F420 can vary from two to nine, 
with five to six being the predominant species in 
mycobacteria (19). Given the crystal arrangement 
of Tfu-FNO molecules, an oligoglutamate tail of 
F420 of any length would clash against another sub-
unit interacting through crystal packing (Fig. 5A). 
Nevertheless, the architecture of the active site is 
highly conserved, and NADP+ adopts a virtually 
identical position with respect to that observed in 
Af-FNO (Fig. 5B). Therefore, F420 was tentatively 
modelled in Tfu-FNO upon superposition of the ar-
chaeal enzyme (Fig. 5C). The modelled F420 fits 
very well into the Tfu-FNO active site without any 
clashes. Similarly to Af-FNO, F420 would bind in 
Tfu-FNO at the C-terminal domain with its 
deazaisoalloxazine ring burying deep inside the cat-
alytic pocket and the highly polar oligoglutamyl tail 
directed towards the exterior of the dimer (Fig. 
5B,C).  

As mentioned above, NADP+ binds to the N-
terminal part of Tfu-FNO in a highly similar man-
ner to that of Af-FNO which is characteristic for 
members of the dinucleotide binding protein family 
(20,21). The hydrogen bonding network between 
NADP+ and the residues that form the active site are 
illustrated in Fig. 6. In particular, the nicotinamide 
ring directly docks to the protein by hydrogen bond-
ing the cofactor amide group to the peptide nitrogen 
of Ala155 (corresponding to Ala137 in Af-FNO). 
This conserved interaction is believed to be crucial 
in conferring the trans conformation of the amide 
group. With this conformation, the pyridine ring of 
NADP+ is maintained planar which in turn facili-
tates the hydride transfer between the C4 of the 
NADP and C5 of F420 by shortening the distance of 
the two atoms (20).     

NADP+ binding site 

The residues involved in binding the ADP moiety 
are also conserved in Tfu-FNO (Fig. 6). Analogous 
to Af-FNO, the negatively charged group of the ri-
bose 2′-phosphate interacts with the side chains of 
Thr28, Ser50, Arg51, and Arg55 (corresponding to 
Thr9, Ser31, Arg32, and Lys36 in Af-FNO). These 
residues are highly conserved in other known FNOs 
(Fig. 2). These residues therefore appear to be cru-
cial for substrate recognition and help to discrimi-
nate between NADP+ and NAD+ (20). To get more 
insights into the role of these residues, they were 
mutated into amino acids with different charge 
and/or size, and tested for the cofactor specificity 
towards the two nicotinamide cofactors. Table 1 
shows the kinetic parameters for both NADH and 
NADPH as substrate. For wild-type Tfu-FNO, the 
Km value for NADH (14 mM) is several orders of 
magnitude higher than that for NADPH (7.3 µM), 
clearly confirming that the enzyme prefers 
NADP(H) over NAD(H). For all mutants, the Km 
value for NADPH significantly increased (from 
2.6- to >68-fold) compared to that of the wild-type 
enzyme, which verified the crucial role of these res-
idues in binding NADP(H). Intriguingly, recogni-
tion of NADH remained the same or improved in 
all mutants (Table 3), with a Km value ranging from 
0.23- to 2.3-times of that from the wild-type. No-
ticeably, R55N and R55S variants have a signifi-
cantly improved affinity towards NADH. In case of 
mutant R55N, Km, NADPH increased more than 100 
fold while the Km, NADH decreased almost 4 fold. The 
S50E mutant was the best among the tested mutants 
with a Km, NADH of almost 5-time lower and a Km, 
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NADPH of approximately 100-fold higher as com-
pared to wild-type Tfu-FNO. Interestingly, the 
T28A mutant showed an increased activity towards 
both NADPH and NADH, with a 4-fold increase in 
catalytic rate (kcat = 14 s−1) for NADPH and a 2.8-
fold decrease in Km value (5 mM) for NADH when 
compared with the wild-type enzyme. This resulted 
in significantly improved kcat/Km values for both 
NADPH and NADH, respectively. Unfortunately, 
combinations of the mutations did not show signif-
icant additive effects (Table 1).  

Discussion 
F420-dependent enzymes are interesting candidates 
for biotechnological applications (5). Recent stud-
ies have suggested a widespread occurrence of such 
deazaflavin-dependent enzymes in actinobacteria 
(15). Some specific lineages seem especially rich in 
F420-dependent enzymes, such as Mycobacterium 
tuberculosis. This makes members of this super-
family of deazaflavoproteins potential drug targets 
due to their absence in the human proteome and the 
human gut flora. The work of Selengut et al. also 
predicted the presence of at least 16 F420 related 
genes in T. fusca, including all genes required for 
F420 biosynthesis (15). Through our study, we have 
experimentally confirmed the presence of an F420-
dependent enzyme in this actinomycete by cloning 
and characterization of a thermostable F420:NADPH 
oxidoreductase (Tfu-FNO), which catalyzes the re-
duction of NADP+ using reduced F420 and the re-
verse reaction. 

The role of FNO in generating reduced F420 

F420 cofactor provides microorganism alternative 
redox pathways. The deazaflavin cofactor seems 
especially equipped for reduction reactions as it dis-
plays a redox potential which is lower when com-
pared with the nicotinamide cofactor. Two enzymes 
have been identified in previous studies that serve a 
role in reducing F420—FNO and F420-dependent 
glucose-6-phosphate dehydrogenase (FGD) (4). 
Using T. fusca cell-free extract and heterologously 
expressed Tfu_1669 (a putative M. tuberculosis 
FGD homolog), we could not detect any FGD ac-
tivity (unpublished data). This suggests that the T. 
fusca proteome indeed does not include an FGD. In 
fact, it has been shown before that not all actinomy-
cetes have an FGD (22). Therefore, FNO may be 
the primary enzyme in actinomycetes for providing 
the cells with F420H2. Nevertheless, at physiological 
pH (7.0–8.0, Fig. 3) Tfu-FNO performs reduction 
of NADP+ slightly better than reduction of cofactor 

F420, which is different from the FNO from S. 
griseus (11) and more similar to the archaeal FNOs 
(7,8). This can partly be explained by the experi-
mental condition (24 °C) differing from the opti-
mum temperature at which the bacteria grow (55 
°C) and the intercellular environment (e.g., cofactor 
concentrations, salt concentrations). Several lines 
of evidence suggest that in other actinomycetes, 
such as Rhodococcus opacus and Nocardioides 
simplex, FNO is also the main source of F420H2. In 
these bacteria, the fno gene was embedded in the 
same operon with genes encoding for the F420H2-
dependent reductases, which are involved in the 
metabolism of picrate and 2,4-dinitrophenols (23–
25). FNO-catalyzed regeneration of F420H2 was also 
proposed to be crucial for the reductive steps in the 
biosynthesis of tetracycline by Streptomyces (26). 

Structure and NADP(H) binding site of Tfu-FNO 

FNO is believed to be the only F420-dependent en-
zyme known so far that is conserved between ar-
chaea and bacteria (4). Except for a 19 amino acid 
extension loop at the N-terminus, Tfu-FNO largely 
shares the overall topology and cofactor binding 
site with that from A. fulgidus (Fig. 2 and 5B). The 
residues that interact directly with the 2′-phosphate 
group of NADP(H) are also highly conserved (Fig. 
6), and have proven to be essential for binding this 
cofactor. Upon disrupting the hydrogen bonding 
network by mutagenesis, all the mutants lost virtu-
ally all ability to recognize NADPH (Table 1). In-
triguingly, the affinity of these variants towards 
NADH improved, with the T28A mutant being the 
best in terms of specificity for NADH (3.3-fold 
higher kcat/Km than that of WT). Yet, an efficient 
NADH-dependent FNO has still to be engineered. 
For this, a newly developed tool could be explored 
which can guide structure-inspired switching of co-
enzyme specificity (27). 

Potential applications in biocatalysis 

Tfu-FNO represents a highly attractive candidate 
for the biocatalytic reduction of F420. The enzyme is 
very thermostable, remains active over a wide range 
of pH (Fig. 3,4), and can be easily expressed in E. 
coli (120–200 mg/ L culture). Tfu-FNO is also a rel-
atively fast enzyme, especially with the T28A mu-
tant displaying a kcat of 14 s−1 for NADPH (Table 
1). Whereas the majority of current enzymatic 
F420H2 regeneration protocols employ FGDs 
(28,29), the cost of the expensive, non-recyclable 
cosubstrate glucose-6-phosphate remains the main 
bottleneck for the use of such enzyme in large-scale 
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applications. Therefore, an F420H2-generating sys-
tem whose cosubstrate could be recycled, such as 
T28A TfuFNO would be highly promising. Availa-
ble, robust NAD(P)H regeneration machineries, 
such as glucose dehydrogenase or other dehydro-
genases, have been thoroughly investigated and 
widely applied in industry (30). Therefore, by com-
bining Tfu-FNO with an appropriate NAD(P)H re-
cycler, F420H2-reductases can be exploited for bio-
catalytic purposes. 

Experimental procedures 
Cloning, expression, and purification of Tfu-FNO 

Thermobifida fusca YX was grown at 55 °C in 
Hägerdahl medium and its genomic DNA was ex-
tracted using the GeneElute Bacterial Genomic 
DNA kit (Sigma–Aldrich). The gene Tfu-fno 
(Tfu_0970, TFU_RS04835) was PCR amplified 
from genomic DNA of T. fusca using the pair of pri-
mers listed in Table 2 with the NdeI and HindIII re-
striction sites introduced at the 5′ and 3′ positions 
of the gene, respectively. The purified PCR product 
and the pBADN/Myc-HisA vector were digested 
with the restriction enzymes NdeI and HindIII, pu-
rified, and ligated [vector to insert ratio ca. 1 to 5 
(mol/mol)] using T4 DNA ligase (Promega) with 
quick ligation buffer. The pBADN/Myc-HisA vec-
tor is a variant of the commercial pBAD/Myc-HisA 
(Invitrogen) where the unique NcoI site at the trans-
lation start is replaced with NdeI. The ligation prod-
uct was transformed into chemically competent E. 
coli TOP10 cells using the heat shock method. Cor-
rect transformants were confirmed by sequencing 
the recombinant plasmid pBAD-fno.  

Site-directed mutagenesis was carried out by 
using the pBAD-fno vector as template and the 
QuikChange® mutagenesis method with the corre-
sponding pairs of primers listed in Table 2. The pri-
mers (200 nM) were used in a 10 µL reaction mix-
ture. In case of the double mutants, plasmids with a 
single mutation were used as template. The remain-
ing parent template vector was digested by incubat-
ing with DpnI (New England Biolab) at 37 °C for 2 
h. DpnI was then inactivated at 80 °C for 10 min 
and the mutant plasmid was transformed into chem-
ically competent E. coli TOP10 cells. Mutations 
were confirmed by sequencing. 

E. coli TOP10 cells with pBAD-fno were 
grown overnight at 37 °C, 130 rpm in a 5 ml lyso-
genic broth (LB) containing 50 µg/ml ampicillin. 
This pre-culture was used to inoculate 500 ml of the 
same medium and grown at 37 °C, 130 rpm. When 

the OD600 reached 0.4–0.6, the protein expression 
was induced by addition of 0.02% (w/v) arabinose 
followed by incubation at 30 °C, 130 rpm for 12 h. 
Cells were harvested by centrifugation at 6000 × g 
for 15 min (JLA 10.500 rotor, 4 °C) and resus-
pended in 10 ml of 50 mM KPi pH 7.0 supple-
mented with 1 µg/ml of DNase I. Cells were soni-
cated for 7 min (10 sec on, 15 sec off cycle, 70% 
amplitude) at 4 °C using a VCX130 Vibra-Cell son-
icator (Sonics & Materials, Inc., Newton, USA), 
and then centrifuged at 15000 × g (JA 17 rotor) for 
45 min to obtain the cell-free extract. Tfu-FNO was 
precipitated by adding 50% saturated ammonium 
sulfate followed by anion exchange chromatog-
raphy with a HiTrap™ Q HP 5ml (GE Healthcare) 
column pre-equilibrated with the same resuspen-
sion buffer. Tfu-FNO was eluted by using a linear 
gradient of 0–1 M NaCl in the same buffer. At 
around 250 mM NaCl, Tfu-FNO started eluting. 
Excess salt was removed by using PD-10 desalting 
column and the protein was stored in 50 mM KPi 
buffer. (GE Healthcare). Protein concentration was 
estimated using Bradford assay (30). 

Temperature, pH optima, and thermostability of 
Tfu-FNO 

F420 was isolated from Mycobacterium smegmatis 
mc2 4517 as previously published protocol (32). 
F420H2 was prepared by biocatalytic reduction of 
F420 using a recombinant F420-dependent glucose-6-
phosphate dehydrogenase from Rhodococcus jostii 
RHA1 (29) as previously described (28). 

The apparent melting temperature, Tm, was de-
termined using the Thermoflour® technique (17) 
with a Bio-Rad C1000 Touch Thermal Cycler (Bio-
rad Laboratories, Inc.). The reaction volume was 25 
µL, containing 10 µM of enzyme and 5 µL of 5 × 
SYPRO Orange (Invitrogen). To determine the tem-
perature for optimal activity of Tfu-FNO, the en-
zyme activity was measured using 1.25 mM 
NADPH and 20 µM F420 in 50 mM KPi pH 6.0 in a 
100 µL reaction volume. The cuvette containing the 
substrates in preheated buffer was heated to the 
tested temperature (25–90 °C) and the reaction was 
started by adding 10 nM enzyme. The pH optimum 
was determined for both the forward and backward 
reactions of Tfu-FNO. F420 depletion at 400 nm (ε400 
= 25 mM−1 cm−1) (33,34) or NADH formation at 
340 nm (ε340 = 6.22 mM−1 cm−1) was followed using 
a V-660 spectrophotometer from Jasco (IJsselstein, 
The Netherlands). In this experiment, the reaction 
(100 µL) contained 250 µM NADPH and 20 µM 
F420 (F420 reduction); or 250 µM NADP+ and 20 µM 
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F420H2 (NADP+reduction) in 50 mM buffer. Sodium 
acetate, KPi and Tricine-KOH based buffers were 
used for pH 4.5–5.5, 6.0–7.5 and 8.0–9.5, respec-
tively. 

Steady-state kinetic analyses 

To determine the kinetic parameters of the enzyme, 
initial F420 reduction rates were measured using a 
SynergyMX microplate reader (BioTek) using 96-
well F-bottom plates (Greiner Bio-One GmbH) at 
25 °C. The reaction was performed in 50 mM KPi 
pH 6.0 and was started by adding 25–50 nM en-
zyme in the final volume of 200 µL. The concentra-
tion of one of the substrates was kept constant (250 
µM for NADPH and 20 µM for F420, respectively) 
while varying the concentration of the other sub-
strate. All the measurements were performed in du-
plicate. A decrease of absorption either at 400 nm 
(F420 reduction, ε400 = 25.7 mmol−1 cm−1) or at 340 
nm (NADPH oxidation, ε340 = 6.22 mmol−1 cm−1) 
was followed to determine the observed rates, kobs 

(s−1). Km and kcat values for NADP+, NADPH, F420 
and F420H2 were calculated by fitting the data into 
the Michaelis–Menten kinetic model using nonlin-
ear regression with GraphPad Prism 6.00 
(GraphPad Software, La Jolla, CA, USA). 

Crystallization, X-ray data collection, and structure 
determination of Tfu-FNO 

Native Tfu-FNO was crystallized using the sitting-
drop vapour diffusion technique at 20 °C by mixing 
equal volumes of 9.0 mg/mL protein in 10 mM 
Tris/HCl pH 7.5, 100 mM NaCl and of the reservoir 
solution containing 5% (w/v) PEG 3000, 30% (v/v) 
PEG 400, 10% (v/v) glycerol, 0.1 M HEPES pH 
7.5. Prior to data collection, crystals were cryo-pro-
tected in the mother liquor and flash-cooled by 
plunging them into liquid nitrogen. X-ray diffrac-
tion data to 1.8 Å were collected at the ID30B 
beamline of the European Synchrotron Radiation 
Facility in Grenoble, France (ESRF). Image index-
ing, integration, and data scaling were processed 
with XDS package (35,36) and programs of the 
CCP4 suite (37). The Tfu-FNO structure was ini-
tially solved by molecular replacement method with 
Phaser (38) using the coordinates of FNO from A. 
fulgidus [PDB ID code 1JAY (20)] which shares 
40% sequence identity with Tfu-FNO as a starting 
model devoid of all ligands and water molecules. 
Manual model correction and structure analysis was 
carried out with Coot (39) whereas alternating cy-
cles of refinement was performed with Refmac5 

(40). Figures were generated by using UCSF Chi-
mera (41). Atomic coordinates and structure factors 
were deposited in the Protein Data Bank under the 
accession code 5N2I. Detailed data processing and 
refinement statistics are available in Table 3. 
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Table 1 Steady-state kinetic parameters for wild-type and mutant Tfu-FNOs using NADH and NADPH as substrate. 
n.d., not determined.  
 

Tfu-FNO variant NADH NADPH kcat/Km, NADPH/ 
kcat/Km, NADH Km (mM) kcat (s−1) kcat/Km 

(M−1 s−1) Km (µM) kcat (s−1) kcat/Km 
(mM−1 s−1) 

Wild-type  14 ± 4.2 2.2 ± 0.4 160 7.3 ± 1.0 3.3 ± 0.1 450 2800 
R51A 8.6 ± 0.9 3.2 ± 0.2 370 >180 >1.6 6.2 17 
R51V 8.7 ± 1.1 3.4 ± 0.2 290 >180 >1.3 9.3 32 
R55A 7.0 ± 0.8 3.0 ± 0.2 420 29 ± 4.0 8.8 ± 0.3 300 710 
R55N 6.3 ± 3.6 2.8 ± 0.7 440 >500 n.d.   
R55S 4.4 ± 1.3 3.5 ± 0.4 790 170 ± 38 6.9 ± 0.7 41 52 
R55V 9.6 ± 1.4 3.2 ± 0.2 330 49 ± 7.2 n.d.   
S50E 3.2 ± 1.0 2.7 ± 0.3 840 >500 n.d.   
S50Q 8.2 ± 2.7 4.2 ± 0.6 510 >500 n.d.   
T28A 5.0 ± 0.6 2.6 ± 0.1 520 19 ± 2.6 14 ± 0.5 720 1400 
R51ER55A 10 ± 2.7 1.6 ± 0.2 160 >500 n.d.   
R51ER55N 6.5 ± 1.3 2.7 ± 0.2 420 >500 n.d.   
R51ER55S 32 ± 1.9 4.9 ± 0.2 150 >500 n.d.   
R51VR55V 10 ± 1.4 2.8 ± 0.2 280 >500 n.d.   
S50ER55A 20 ± 9.2 2.3 ± 0.7 120 >500 n.d.   
S50ER55V 9.8 ± 2.3 1.8 ± 0.2 180 >500 n.d.   
T28AR51V 12 ± 2.2 2.7 ± 0.3 230 >500 n.d.   
T28AR55A 5.4 ± 1.5 2.5 ± 0.3 460 93 ± 29 3.3 ± 0.4 3.5 8 
T28AR51VR55V 12 ± 2.2 3.3 ± 0.3 280 >500 n.d.   
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Table 2 Primers used in this study. Sites of mutations are marked with oligonucleotides in bold, whereas restriction 
sites are in bold, italic. 
 

fno genes Forward primers (5′–3′) Reverse primers (5′–3′) 
FNO WT TGCCATATGTCGATTGCCGTGCTG TCG AAGCTTTAGATGTCGGTGATGCGGATAC 
FNO_R51M TGATTCTCGGTTCGATGAGCGCGGAGCGGG CCCGCTCCGCGCTCATCGAACCGAGAATCA 
FNO_S50Q GCACGAGGTGATTCTCGGTCAGCGGAGCGCG CGCGCTCCGCTGACCGAGAATCACCTCGTGC 
FNO_S50E GCACGAGGTGATTCTCGGTGAGCGGAGCGCG CGCGCTCCGCTCACCGAGAATCACCTCGTGC 
FNO_R55S GGAGCGCGGAGAGCGCCCAGGCGGT ACCGCCTGGGCGCTCTCCGCGCTCC 
FNO_R55N GCGGAGCGCGGAGAACGCCCAGGCGGTTG CAACCGCCTGGGCGTTCTCCGCGCTCCGC  
FNO_T28A GTGCTGGGGGGCGCGGGTGATCAGG CCTGATCACCCGCGCCCCCCAGCAC 
FNO_R51A GATTCTCGGTTCGGCGAGCGCGGAGCGG CCGCTCCGCGCTCGCCGAACCGAGAATC 
FNO_R51V GATTCTCGGTTCGGTGAGCGCGGAGCGG CCGCTCCGCGCTCACCGAACCGAGAATC 
FNO_R51E GATTCTCGGTTCGGAGAGCGCGGAGCGG CCGCTCCGCGCTCTCCGAACCGAGAATC 
FNO_R55A GGAGCGCGGAGGCGGCCCAGGCGG CCGCCTGGGCCGCCTCCGCGCTCC 
FNO_R55V GGAGCGCGGAGGTGGCCCAGGCGG CCGCCTGGGCCACCTCCGCGCTCC 
FNO_R55E GGAGCGCGGAGGAGGCCCAGGCGG CCGCCTGGGCCTCCTCCGCGCTCC 
FNO_S50A ACGAGGTGATTCTCGGTGCGCGGAGCG CGCTCCGCGCACCGAGAATCACCTCGT 
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Table 3 Data collection and refinement statistics  
PDB ID Code 5N2I 
Space group P212121 
Resolution (Å) 1.80 
a, b, c (Å) 82.4, 86.1,136.8 
Rsym

a,b (%) 11.2 (99.1) 
Completenessb (%) 98.6 (90.2) 
Unique reflections 89383 
Multiplicityb 4.5 (2.8) 
I/σb 7.9 (0.9) 
CC1/2

b 99.4 (24.7) 
Number of atoms:  
      protein  6594 
      NADP+/glycerol/water 4 × 48/7 × 6/600 
Average B value for all atoms (Å2) 25.0 
Rcryst

b,c (%) 16.5 (34.1) 
Rfree

b,c (%) 21.4 (35.7) 
Rms bond length (Å) 0.019 
Rms bond angles (°) 2.02 
Ramachandran outliers  0 

 

a Rsym = ∑|Ii − <I>|/∑Ii, where Ii is the intensity of ith observation and <I> is the mean intensity of the reflection.  
b Values in parentheses are for reflections in the highest resolution shell. 
c Rcryst = ∑|Fobs – Fcalc|/∑|Fobs| where Fobs and Fcalc are the observed and calculated structure factor amplitudes, respectively. Rcryst and Rfree 
were calculated using the working and test sets, respectively. 
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Figure 1 The reversible reaction catalyzed by F420:NADPH oxidoreductase. The number of glutamate residues at-
tached to the phospholactyl moiety may vary (n = 2–8 in case of Mycobacterium smegmatis).  
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Figure 2 Multiple sequence alignment of selected FNOs from Thermobifida fusca (Tfu_FNO), Archaeoglobus fulgidus 
(Af_FNO), Methanothermobacter marburgensis (Mma_FNO), Methanobrevibacter smithii (Msm_FNO), Methanosphaera 
stadtmanae (Mst_FNO), and Streptomyces griseus (Sgr_FNO). The figure was generated with Clustal X2.1. Residues in-
volved in binding the 2′-phosphate group of NADP+ are indicated with an arrow.   
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Figure 3 pH optimum for the Tfu-FNO-catalyzed F420 reduction using NADPH (dots) or the NADP+ reduction using 
F420H2 (squares) at 24 °C. kobs (s−1) for the NADP+ reduction (pH optima 8–10) is almost 3-time higher than that for 
the F420 reduction (pH optimum 4–6). 
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Figure 4 Effect of temperature on Tfu-FNO activity. Reaction mixture of 100 µL contained 1.25 mM NADH, 20 µM 
F420 in 50 mM KPi pH 6.0. The reaction was started by adding 50 nM FNO. The error bars represent standard deviation 
from two measurements.  
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A 

 
B 

 
 
C 

 
 

Figure 5 Crystal structure of FNO from Thermobifida fusca (A) The asymmetric unit of Tfu-FNO crystals contain 
two dimers AB and CD, colored in coral (monomer A), orchid (monomer B), deep sky blue (monomer C), and green 
(monomer D), respectively. (B) Superposition of the Tfu-FNO monomer C onto the homologous NADP+- and F420-
bound Af-FNO monomer [carbon atoms in white, 40% sequence identity, PDB ID 1JAY (20)]. The two structures 
largely share the same overall topology and the binding pocket architecture, with the nicotinamide rings adopting a 
similar position in the active site. (C) Close-up view of Tfu-FNO binding pocket with a modelled F420 molecule (in 
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shaded colors with carbon atoms in yellow) as a result of superposition as in B. The NADP(H) carbon atoms are 
shown in yellow, oxygen atoms in red, nitrogen atoms in blue, and phosphorous atoms in orange.  
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Figure 6 Active site of Tfu-FNO in complex with NADP+. Unbiased 2Fo − Fc electron density map calculated at 1.8 
Å and contoured at 1.0 σ are drawn as grey chicken-wire. Potential hydrogen bonds are depicted with dashed lines 
and water molecules as red spheres. Residues in direct contact with NADP+ are labeled. The orientation of the mole-
cule is approximately 180° clockwise rotated along an axis perpendicular to the plane of the paper with respect to that 
in Figure 5. Color coding for atoms is as in Figure 5. 
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