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We present a multifunctional nanoparticle platform that has 

targeting moieties shielded by a matrix metalloproteinase-2 

(MMP2) cleavable PEG coating. Upon incubation with 10 

MMP2 this surface-switchable coating is removed and the 

targeting ligands become available for binding. The concept 

was evaluated in vitro using the biotin and αvβ3-integrin-

specific RGD-peptide functionalized nanoparticles. 

Intravenously administrable nanoparticles can be used in a variety 15 

of biomedical applications that range from targeted drug delivery, 

target-specific imaging, nucleic acid delivery to thermal 

therapy.1,2 The nanoparticle coating is of key importance as it 

greatly influences pharmacokinetics and bioavailability as well as 

the nanoparticle’s ability to target a diseased site.3 Polymeric 20 

coatings, such as a polyethylene glycol (PEG) coating, provide 

shielding, reduce recognition and subsequent removal by the 

mononuclear phagocyte system (MPS), and therefore are applied 

to the majority of nanoparticles used for intravenous 

administration.1 To enhance specificity and induce nanoparticle 25 

uptake by cells, target-specific molecules can be conjugated to 

the nanoparticle’s coating.1,2 However, the exposure of targeting 

moieties at the surface may counteract the shielding effect of the 

polymeric surface coating and can cause augmented recognition 

by the MPS. In addition, off-target binding to epitopes expressed 30 

by vascular components such as endothelial or circulating cells 

can also reduce accumulation of nanoparticles at their target site. 

 To deal with the aforementioned limitations of ligand 

functionalized nanoparticles we have developed a highly flexible 

nanoemulsion (Fig. 1a), based on a previously reported platform,4 35 

of which the coating can be removed by matrix 

metalloproteinase-2 (MMP2).5 We have chosen for an MMP2 

cleavable site as the enzyme is highly expressed at a variety of 

pathological sites, including solid tumors and atherosclerotic 

plaques.6,7 Upon nanoparticle accumulation at the pathological 40 

tissue and exposure to MMP2, the coating is ‘removed’ and the 

targeting moieties become available for binding. The 

nanoemulsion core consists of soybean oil and the coating is 

comprised of a mixture of cholesterol, PEG350 phospholipids 

(mPEG350-DSPE), PEG phospholipids functionalized with 45 

targeting moieties (i.e. biotin or RGD functionalized PEG1000 

lipids), as well as a MMP2 cleavable methoxy-polyethylene 

glycol (PEG)-lipid (mPEG-MMP2p-DSPE, Fig. 1b) to provide 

shielding. A description of the synthesis of the nanoemulsion and 

mPEG-MMP2p-DSPE is provided in the Supporting Information.   50 

Fig. 1 (a) Schematic of the biotin functionalized and surface-switchable 

nanoemulsion platform. (b) Structure of MMP2 cleavable mPEG-

MMP2p-DSPE (with mPEG being mPEG2000). 

 

 As a model for targeting and to robustly demonstrate the effect 

of shielded versus unshielded nanoemulsions we designed 

experiments where plain nanoemulsions, which had biotin-

PEG1000-DSPE and the non-cleavable mPEG3000-DSPE 

incorporated, were used. Avidin, a 66 kDa protein with 4 binding 55 

sites for biotin, can induce nanoparticle aggregation, if the 

nanoparticles are unshielded and biotin is exposed, and can 

therefore serve as a model for targeting. By varying the lipid 

composition of the corona (cholesterol, mPEG350-DSPE, 

mPEG3000-DSPE, and biotin-PEG1000-DSPE) we were able to 60 

create nanoemulsions with different coating types (Table S.1). 

The avidin-induced aggregation was monitored with dynamic 

light scattering (DLS), while targeting of Rhodamine labeled 

nanoemulsions was evaluated on an avidin coated 96-well plate 

using a plate reader (Fig. S1, S2).  65 

 Surface switchable nanoemulsions were obtained by 

incorporation of mPEG-MMP2p-DSPE into the formulation. 

Based on the aforementioned model aggregation and binding 

experiments, we prepared nanoemulsions using the minimum of 
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10% PEG shielding (thereby permitting maximum MMP2 access 

to the cleavable peptide), 2.5% biotin to ensure good binding to 

avidin, and optionally replacing the uncleavable mPEG3000-

DSPE by the MMP2 cleavable lipid mPEG-MMP2p-DSPE 

(Table S.2). Through HPLC analysis we evaluated the 5 

nanoparticle composition after synthesis (Fig.  S.10), which was 

found to be very similar to the starting phospholipid mixture 

(Table S.3), thereby proving the integrity of the nanoemulsion 

synthesis.   

  10 

 The nanoemulsions were left untreated or treated with MMP2 

before conducting aggregation or binding experiments. We 

observed that mPEG-MMP2p-DSPE containing nanoemulsions 

that were not pre-incubated with MMP2 (Fig. 2a) or that were 

incubated with inactive MMP2 (Fig. S.11) did not aggregate upon 15 

incubation with avidin, similar to the control nanoemulsions that 

contained either 10% or 20% mPEG3000-DSPE (Fig. S.2a). 

Conversely, MMP2-treated mPEG-MMP2p-DSPE containing 

nanoemulsions did aggregate and the relative particle size was 

found to increase by a factor 2 to 3, similar to the control 20 

nanoemulsions with the freely exposed biotin-PEG-DSPE (and 

0% mPEG3000-DSPE) (Fig. 2a). MMP2 dose effects on the 

cleavage are shown in Fig. S.12.  

 To mimic binding to epitopes expressed at cells, we performed 

binding experiments with an avidin monolayer using the same 25 

samples and conditions as for the above-described aggregation 

experiment. To that end we used avidin coated 96-well plates and 

incubated the wells with the different samples for 30 min. 

Rhodamine labeled phospholipids were included in the lipid 

corona of the nanoemulsions so that their binding could be 30 

measured by recording the fluorescence with a plate reader. 

Similar to the aggregation experiment, and in line with the 

aforementioned hypothesis, we observed binding for the 

unshielded control nanoemulsions and, crucially, for the mPEG-

MMP2p-DSPE nanoemulsions that were pretreated with MMP2 35 

(Fig. 2b). 

 In a further evaluation of the nanoemulsion binding 

characteristics, we developed a self-assembled monolayer (SAM) 

method that enabled the functionalization of gold-silicon (Au-Si) 

wafers with avidin and imaging with atomic force microscopy 40 

(AFM). The 2D-AFM image in Fig. 3c clearly shows elevated 

binding of mPEG-MMP2p-DSPE containing nanoemulsion 

treated with MMP2 to the surface as compared to the control 

sample (Fig. 3b).  

 

Fig. 3 Typical 2D-AFM images of Au-Si wafers after incubation with (a) 

avidin only, (b) avidin and then a 10% mPEG3000-DSPE with 2.5% biotin-

PEG1000-DSPE nanoemulsion and (c) avidin and then a 10% mPEG-

MMP2p-DSPE with 2.5% biotin-PEG1000-DSPE nanoemulsion previously 

treated with MMP2. 

  45 

 To confirm that the aggregation/binding was induced by 

cleaving of the mPEG2000 moiety we performed mass 

spectrometry on mPEG-MMP2p-DSPE that was left untreated or 

incubated with MMP2 for 12 hrs. Mass spectrometry revealed the 

mPEG2000 cleavage product in the sample incubated with 50 

MMP2 (Fig. S.13). 

 The kinetics of PEG cleavage was also investigated. To that 

end the nanoemulsions were incubated with MMP2 for different 

time spans, ranging from 1 to 12 hours, while avidin-induced 

aggregation was used as the readout method. As shown in Fig. 55 

S.14b, 12 hours of MMP2 treatment was necessary to induce the 

ligand exposure. A similar timeframe has been shown by others 

to induce the in vitro cleavage of cancer pro-drugs conjugated 

with MMP2 sensitive peptides.16 However, it is important to 

consider that in vitro conditions do not fully reflect the in vivo 60 

situation. We purposely and carefully designed our nanoparticles 

to have a PEG-density and ligand density that requires relatively 

long MMP2 exposure in order for the PEG to be cleaved off. 

Indeed, in experiments where we have exposed the 

nanoemulsions to serum protein (FBS), we have seen a high 65 

stability of the nanoparticles (Fig. S.15).  

 Protease induced nanoparticle aggregation has been suggested 

to be useful in medical and biochemical assays as well as to 

preserve good pharmacokinetics of target-specific 

nanoparticles.8,9 In for example tumor targeting, a number of 70 

epitopes of interest that are expressed at tumor cells are also 

expressed by cells of the MPS and, more importantly, by the 

diseased endothelium. An example of such an epitope is the 

αvβ3-integrin, which is an excellent tumor vasculature marker for 

nanoparticle targeting,10 but targeting of this integrin expressed at 75 

 

Fig. 2 (a) Avidin-induced aggregation of biotin functionalized 

nanoemulsions. Nanoparticle relative size was measured by DLS. (b) 

Nanoemulsion binding to an avidin monolayer. Normalized fluorescence 

of unshielded control nanoemulsions, as well as non-treated and MMP2-

treated surface-switchable nanoemulsions. Mean ± SD (N=3). § vs 10% 

PEG-shielded 2.5% biotin nanoparticles (P≤ 0.05), , vs 10% PEG-MMP2p-

shielded 2.5% biotin nanoparticles before MMP2 treatment (P≤ 0.05). 
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tumor cells is difficult as, upon intravenous administration, the 

nanoparticles are exposed and bind to the vascular endothelium 

first and therefore can only marginally extravasate into the tumor 

interstitium.11 Because RGD peptides are known to have a high 

affinity for αvβ3-integrin, we have functionalized our platform 5 

with c[RGDfK]-DSPE (full synthetic details are included in the 

Supporting Information). As for biotin-PEG1000-DSPE, 

c[RGDfK]-DSPE has been designed such that the c[RGDfK] 

targeting units protrude from the nanoemulsion platform after 

MMP2 cleavage of the mPEG-MMP2p-DSPE lipid.  10 

 

 Human umbilical vein endothelial cells (HUVEC) and breast 

cancer cells (MDA-MB-231), that both are known to express high 

levels of αvβ3-integrin, as well as murine macrophage (J774A1) 

were treated with RGD functionalized control nanoemulsions and 15 

surface switchable nanoemulsions. Flow cytometry revealed a 

clear difference in nanoparticle-cell association when the RGD 

moieties were available for targeting, i.e. at 0% mPEG3000 and 

at 10% mPEG-MMP2p-DSPE after MMP2 treatment (Fig. 4). 

 Lastly, to examine the versatility of our nanoemulsion 20 

platform, we included either oleic acid coated iron oxide (IO) or 

oleyl mercaptan coated gold (Au) nanocrystals as well as the 

lipophilic drug simvastatin in mPEG-MMP2p-DSPE 

functionalized nanoemulsion samples to render so-called 

theranostic nanoparticles, exhibiting both therapeutic and 25 

diagnostic properties. In Supp. Fig. 20a and 20b we present DLS 

size and polydispersity measurements as well as transmission 

electron microscopy (TEM) images of these theranostic 

nanoemulsions. For the Au nanoemulsions the attenuation 

characteristics, measured in Hounsfield Units (HU) per mM 30 

(SFig. 20a), revealed good CT contrast generating properties 

(Fig. 5, top), similar to that of a clinically applied iodinated CT 

contrast agent (Isovue, Bracco Diagnostic). As a measure for the 

IO nanoemulsion’s potential to serve as an MRI contrast 

generating material we acquired the longitudinal and transverse 35 

relaxivities r1 and r2 at 60 MHz (Supp. Fig. 20a). Clear MR 

hypo-intensities are generated by IO loaded nanoemulsions as is 

shown in Fig. 5 (bottom). The drug inclusion for the final Au 

formulation was measured using 1H-NMR spectroscopy (Fig. 

S.21). Simvastatin encapsulation efficiency (encapsulated 40 

drug/input) was established to be 57.2% of the initial input value, 

and the loading efficiency was 1.43% (weight drug/weight oil).  

 

Fig. 5 CT (top) and MR (bottom) images of Au and IO theranostic 

nanoemulsion phantoms. 

 

 In summary we have presented a self-assembled and 

multifunctional nanoemulsion platform that is surface-switchable 45 

upon exposure to MMP2. The inclusion of diagnostically active 

materials and drugs is straightforward. We believe our 

nanoemulsion platform may be useful in a variety of conditions 

that are associated with MMP2 (over)expression, including 

cancer. 50 
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Fig. 4 Flow cytometry histograms of HUVEC, MDA MB 231 and J774A1 

cells incubated with (i) 0% mPEG3000 and 2.5% RGD nanoemulsions, (ii) 

10% mPEG3000 and 2.5% RGD nanoemulsions and (iii) 10% PEG-MMP2p 

and 2.5% RGD nanoemulsions after MMP2 treatment. 
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