1,6-Dideoxy-D-mannitol-based 20-crown-6 ethers: synthesis and influence of the substituents upon complexing properties toward phenylglycinium methyl esters

Mostafa Nazhaoui,^a Jean-Pierre Joly,*^a Saïd Kitane^b and Mohamed Berrada^c

Groupe SUCRES, UMR CNRS 7565, Université Henri Poincaré-Nancy I, Case Officielle 79, BP 239, F-54506 Vandœuvre-lès-Nancy, France; e-mail: joly@meseb.u-nancy.fr

^b Ecole Nationale de l'Industrie Minérale, BP 753, Agdal, Rabat, Maroc

^c Faculté des Sciences Ben M'Sik, Université Hassan II, Casablanca, Maroc

Received (in Cambridge) 26th June 1998, Accepted 28th September 1998

Ten novel homotopic 20-crown-6-ethers have been prepared from 1,3:4,6-di-O-benzylidene-D-mannitol. Substituents could be introduced on the alditol framework after the macrocyclisation in order to modify their complexing abilities. In one case, a low but significant enantiomeric excess (32% ee) in favour of L(S)-phenylglycine methyl ester could be ascertained when two bulky vic-triazole substituents were associated into the vicinity of the cavity. The formation of an adjacent trans-fused ring on C-3/C-4 of the mannitol framework mediated the complexing abilities of these macrocycles toward 2-phenylglycine methyl ester perchlorates.

Introduction

In a recent paper¹ we reported the synthesis of several C_2 symmetric macrocycles prepared from technical D-mannitol. All these crown ethers were built from a common C_2 -symmetric chiral 1,3-dioxepane scaffold obtained by methylenation of 1,3(R):4,6(R)-di-O-benzylidene-D-mannitol under basic conditions. The regioselective opening of this nicely crystalline transfused tricyclic acetal, either with N-bromosuccinimide (NBS) under free-radical conditions² or by reductive cleavage with sodium cyanoborohydride (NaBH₃CN) in acidic medium,³ led, after bis-O-alkylation and cyclisation with dihydroxyaromatics, to macrocycles 1-5 with various functionalities on C-1/C-6 (e.g., H, N₃, triazole, OBn) of the 1,6-dideoxy-D-mannitol, or to macrocycles 6 and 7 with different aromatic moieties.

2,5-O-Methylene-D-mannitol crown ethers 1-5

2,5-O-Methylene-D-mannitol crown ethers 6 and 7

Apart from macrocycles 4, but only to a small extent, these homotopic hosts did not extract enantiomers of racemic phenylglycinium methyl ester (our standard-guest) from molar lithium perchlorate in deuterium oxide into deuterochloroform. This absence of extraction of the 2-phenylglycinium methyl ester perchlorates was also established for the corresponding [20-6]macrocycle 7 incorporating a flexible 2,2'-biphenyl moiety in the cavity. This rather surprising lack of interaction with salts of primary amino acid derivatives should be connected with the rigidity of the 1,3-dioxepane framework which presumably adopts a stable twist-chair (TC) conformation in solution. We concluded that this thermodynamically favoured TC conformation, which could be confirmed in the solid state for two derivatives, hinders the rotation around the C-3/C-4 axis necessary to create a regular co-ordination polyhedron into the vicinity of the ammonium cation. To ascertain this hypothesis, we decided to synthesise less rigid structures from 1,3(R):4,6(R)di-O-benzylidene-D-mannitol. In this paper, which is the eleventh from our laboratory in the field,^{2,4} we present the results of this work whose aim was the development of acidstable hosts for enantiospecific complexation of primary ammonium cations.

Results and discussion

Synthesis

The synthesis of the first crown ether 10 in this series proceeded as outlined in Scheme 1. The easily obtainable 1,3(R): 4,6(R)-di-O-benzylidene-D-mannitol 8 was converted into the half-crown 9, which was first cyclised to the crown ether 10 by standard chemistry.44

As the previously mentioned trans-fused tricyclic acetal, the C_2 -symmetric chiral 20-crown-6-ether 10 was treated with NBS (2.2 mol equiv.) under free-radical conditions. After 1 h at reflux, TLC (n-hexane-ethyl acetate, 1:1) of the resulting crude solution showed two main products (R_f 0.67 and 0.58 respectively) besides unchanged starting material. The following asymmetric structures A and B (Scheme 2) are in fair agreement with the ¹H NMR and electron-impact mass (EI-MS) spectra of the two main products isolated from the reaction mixture by conventional chromatography.

J. Chem. Soc., Perkin Trans. 1, 1998, 3845-3850 3845

Scheme 1 Synthesis of crown ether 10 from 1,3(R):4,6(R)-di-*O*-benzylidene-D-mannitol 8. *Reagents*: i, (ClCH₂CH₂)₂O, aq. NaOH; ii, 2,3-dihydroxynaphthalene, Cs₂CO₃, BuⁿOH.

Scheme 2 Synthesis of A and B from crown ether 10. Reagents: i, NBS, Bz_2O_2 , hv, CCl_4 , $CaCO_3$.

In order to obviate this difficulty and to obtain true homotopic hosts, we synthesised a macrocycle without an aromatic moiety, from the diol **8** and tetraethylene glycol ditosylate readily obtainable in the laboratory (Scheme 3).⁵

Scheme 3 Synthesis of the 17-crown-5 11 from 1,3(R):4,6(R)-di-*O*-benzylidene-D-mannitol 8. *Reagents*: i, NaH, tetraethylene glycol ditosylate, DMF.

Because of the poor yield of this reaction (~30%) and the very poor complexing properties of the 17-crown-5 11, we tried to optimise the cyclisation step of the dichloride 9 with pyrocatechol under different conditions (solvent and base) (see Scheme 4). The best yield (56%) was measured with caesium fluoride as base⁶ in acetonitrile.

Scheme 4 Synthesis of the symmetric crown ethers 12 and 13 from dichloride 9. *Reagents*: i, pyrocatechol, M_2CO_3 (M = K or Cs), BuⁿOH or CsF, MeCN; ii, NBS, Bz_2O_2 , hv, CCl₄, CaCO₃.

The 1,6-dibromo-1,6-dideoxy-D-mannitol derivative **13** was isolated in only 36% after tedious purification. This rather poor result may be attributed mainly to the high polarity of this macrocycle towards the stationary phase (kieselgel). The two bromine atoms could then be easily displaced by sodium azide in DMF at 100 °C to give the diazide **14** in almost quantitative yield (Scheme 5).

Scheme 5 Synthesis of crown ethers 14 and 15 from crown 13. *Reagents*: i, NaN₃, NH₄Cl, DMF; ii, K-phthalimide, DMF.

Alternatively, the two bromine atoms could be displaced by potassium phthalimide in the same solvent to give the corresponding bis-phthalimide **15** in 30% yield. The first step of this Gabriel synthesis was not optimised. From the diazide **14**, the C_2 -symmetric triazoles **16**, **17** and **18** could be isolated after cyclisation with an excess of neat diphenylacetylene, followed by saponification and acetylation (Scheme 6).

The *trans*-fused polycyclic crown ethers **19** and **20** were synthesised to check the influence of conformational restriction on complexation behaviour of the macrocycles (Schemes 7 and 8).

The last two syntheses were not optimised but afforded sufficient amounts of purified macrocycles to allow us to check their extraction behaviour toward D/L-phenylglycinium methyl esters by monoplate partitioning.

Table 1 Extraction data of the enantiomers of phenylglycine methyl ester perchlorate as guests by crown ethers 10–20 in CDCl₃ at 273 K

C (a	Crown ether as host)	R (G/H) (quotient of guest to host)	CRF (Chiral Recognition Factor)	$\Delta \delta H^{\mathbf{b}} $ (ppm) = H ^b D - H ^b L
10	0	1.0	1.20 (L) ^{<i>a</i>}	+0.20
11	1	nm ^b	b	
12	2	0.9	1.50 (L)	+0.16
13	3	1.2	1.30 (L)	+0.33
14	4	1.1	1.35 (L)	+0.26
15	5	1.0	1.30 (D)	+0.33
10	6	0.8	1.95 (L)	+0.37
17	7	0.5	1.20 (L)	0 ^c
18	8	0.55	1.85 (L)	+0.31
19	9	b	b	
20	0	0.5	1.60 (L)	+0.19

Scheme 6 Synthesis of crown ethers 16, 17 and 18 from diazide 14, *Reagents*: i, diphenylacetylene; ii, MeONa, MeOH; iii, Ac₂O, Pyr.

Scheme 7 Synthesis of crown ether 19 from compound 14. Reagents: i, CH_2Br_2 , NBu_4HSO_4 , 50% aq. NaOH.

Scheme 8 Synthesis of crown ether 20 from compound 16. *Reagents*: i, ClCH₂CH₂Cl, NBu₄HSO₄, 50% aq. NaOH.

Extraction experiments of phenylglycinium methyl ester perchlorates from LiClO₄ M (D₂O) to CDCl₃ at 273 K

Liquid–liquid extraction, also called monoplate partitioning, provides one of the fastest methods to evaluate the ability of an optically pure host to distinguish between enantiomers as guests. The guest salt is dissolved in the aqueous buffered phase first as a pure enantiomer and then as a racemic mixture.⁷ A spectroscopic method (most often ¹H NMR) may be used to

estimate the enantiomeric excess (ee) directly in the organic layer, but analytical HPLC with an appropriate chiral column is perhaps the best method especially for measuring high or low ee-values.⁸ When complexation occurred, R was the molar quotient of *guest* to *host* in the organic phase, CRF (for Chiral Recognition Factor) the ratio of the pre-eminent enantiomer to the less complexed enantiomer in the organic phase, and $\Delta\delta$ the chemical-shift difference in ppm between the diastereotopic benzylic protons of the guest.⁷ Our results for the extraction of aq. racemic phenylglycine methyl ester perchlorate (see Experimental section and ref. 1) by eleven chiral homotopic hosts dissolved in CDCl₃ at 273 K are summarised in Table 1.

Apart from host 11, which is a 17-crown-5 without any measurable affinity in the test, most of the 20-crown-6 compounds described here were able to extract the phenylglycinium methyl esters perchlorates from D₂O at 0 °C. The temperature was decreased from ambient to slightly improve chiral recognition.9 Complexation produced marked chemical shifts and multiplicity changes of ¹H NMR spectral bands of both host and guest, the more obvious one being the splitting of the benzylic proton of phenylglycine into two well separated singlets (see last column, Table 1) which allowed the estimation of CRF.4f High extraction (~1:1) ratios were related with lower enantioselectivity (hosts 10, 12, 13, 14 and 15). We observed that the introduction of a phthalimide moiety on C-1 and C-6 of D-mannitol in compound 15 reversed the enantioselectivity from L- and D-phenylglycine methyl ester. In compounds 16, 17 and 18, the best result was observed with the largest substituents (benzoate) on C-3 and C-4. From this point of view, it might be worth noting that another co-ordination site on C-3/ C-4 as a second binding site endowed with a different selectivity could induce positive or negative allosteric co-operation.¹⁰ The formation of an adjacent trans-fused ring on C-3/C-4 of the mannitol framework dramatically reduced the complexing abilities of the macrocycle 19, even with small azide functions on C-1/C-6. We believe that this behaviour is likely to be relevant to those of the previously described 2,5-O-methylene-D-mannitol trans-fused crown ethers.1 However, the trans-fused dioxane moiety restored the extraction capacity of macrocycle 20 with a medium enantioselectivity ($CRF_{20} > CRF_{17}$). A solid-state structure of compound 20 would need to be ascertained for us to understand the origin of this difference.

Conclusions

Homotopic 20-crown-6 ethers were successfully synthesised from D-mannitol and tested under conditions of monoplate partitioning near 0 °C with phenylglycinium methyl esters as guests. These hosts displayed much higher extraction capacities than did former [18-6] derivatives incorporating a chiral 1,3dioxepane framework.¹ The enantioselectivity (CRF) of these new [20-6] macrocycles seemed to be more dependent on the nature of the substituents on C-3 and C-4 than those on C-1 and C-6. In the extreme, the formation of a methylene acetal between C-3 and C-4 completely froze the D-mannitol framework and also the *trans*-fused cavity, which lost its complexing behaviour. At least enantioselectivities were in the range of values actually found in the literature for especially designed receptors.¹¹ Further investigations with these macrocycles and related structures will be undertaken under HPLC conditions in order to evaluate their enantiomeric recognition of un-derivatised amino acids at various pH-values.^{4d,4e}

Experimental

Preparative chromatography was performed on kieselgel from E. Merck, particle size 0.040–0.063 mm (230–400 mesh). Mps were determined on a Büchi apparatus in capillary tubes and are uncorrected; optical rotations were measured on a Perkin-Elmer 141 automatic polarimeter in a 1 dm cell at room temp.; $[a]_{D}$ -values are given in units of $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$. IR spectra were recorded on a Perkin-Elmer 1000 spectrometer at room temp. Mass spectra were recorded on a Nermag R1010 instrument at 70 eV unless otherwise stated. Enantioselectivity in the complexation of the enantiomers of phenylglycine methyl esters by crown ethers was estimated with the help of 250 MHz ¹H NMR spectroscopy (Bruker AC 250). For this purpose, the crown ether (~50 µM) was dissolved in 1.0 cm³ of CDCl₃ and shaken for 1 min with 1.0 cm³ of 1 M LiClO₄ in D₂O containing 4 mol equiv. of racemic phenylglycine methyl ester hydrochloride at 0 °C. The mixture was allowed to settle for 30 min in crushed ice and the organic layer was then carefully separated, dried over anhydrous Na₂SO₄, filtered through a small cotton pad, and its ¹H NMR spectrum was immediately recorded at 27 °C. The CRFs were estimated by comparison of integrals of the separated benzylic protons of phenylglycine between δ 4.5 and 5.0. The molar ratio R of guest to host in the organic phase was estimated by comparison of suitable expanded aromatic signals. NMR J-values are given in Hz.

1,3:4,6-Di-O-benzylidene-2,5-bis-O-[(2-chloroethoxy)ethyl]-Dmannitol 9

To a vigorously cooled suspension of the diol 8 (7.16 g, 20.0 mmol) and Bu₄NHSO₄ (14.00 g, 2 mol equiv.) in bis-(2-chloroethyl) ether (150 cm³) was added 50% aq. NaOH (150 cm³) below 5 °C. The two-phase system was mechanically stirred for 16 h below 20 °C, the reaction being monitored by TLC with hexane-AcOEt (2:3). The mixture was then diluted with both ice-cooled water (500 cm³) and CH_2Cl_2 (400 cm³) and the organic phase was isolated. The aqueous phase was extracted twice with CH₂Cl₂ (150 cm³), and the organic phases were combined, washed with water $(2 \times 75 \text{ cm}^3)$, dried over MgSO₄, and concentrated under reduced pressure to remove the solvents and the excess of reagent. Rapid chromatography with hexane-AcOEt (3:2) yielded the bis-chloride 9 (9.82 g, 86%) as a gum, $[a]_{D}$ -30.9 (c 3.8, CHCl₃); $\delta_{H}(250 \text{ MHz}; \text{ CDCl}_{3})$ 3.56–3.66 (10 H, m, $5 \times \text{OCH}_2$), 3.67–3.74 (6 H, m, $2 \times \text{OCH}_H$ Cl, $2 \times \text{OCH}H$, 2- and 5-H), 3.79 (2 H, dd, $J_{1e,1a}$ 10, 1-, 6-H^a), 3.84–3.96 (2 H, m, 2 × OC*H*HCl), 4.08 (2 H, d, J_{2.3} 9, 3-, 4-H), 4.44 (2 H, dd, J_{1e,2} 5, 1-, 6-H^e), 5.55 (2 H, s, OCHPhO), 7.31-7.42 (6 H, m, ArH) and 7.51 (4 H, m, ArH).

1,3:4,6-Di-O-benzylidene-2,5-O-[naphthalene-2,3-diylbis-(oxyethyleneoxyethyl)]-D-mannitol 10

A solution of 2,3-dihydroxynaphthalene (1.14 g, 3.0 mol equiv.) in freshly distilled BuⁿOH (30 cm³) was stirred for 20 min at room temp. under argon. To this solution were added, first, dried powdered Cs_2CO_3 (3.47 g, 4.5 mol equiv.) and then, after the mixture had been heated to a gentle reflux, the half-crown **9** (1.35 g, 2.36 mmol). The resulting suspension was boiled for 40 h, allowed to cool to room temp., and the BuⁿOH was evaporated off under reduced pressure. The remaining solids were dis-

solved in a mixture of CH₂Cl₂ (50 cm³) and water (30 cm³). The aqueous phase was extracted twice with CH₂Cl₂ (30 cm³), and the organic phases were combined, washed with water (5 cm³), dried over MgSO₄, and concentrated under reduced pressure. Chromatography with hexane–AcOEt (7:3) yielded the crown ether **10** (0.760 g, 49%) as a solid, mp 78–80 °C; [*a*]_D 71.7 (*c* 1.6, CHCl₃); *m/z* 658 (M⁺); $\delta_{\rm H}$ (250 MHz; CDCl₃) 3.64–4.17 (16 H, m, 6 × OCH₂, 2-, 5-H, 1-, 6-H^a), 4.21 (2 H, d, $J_{2,3}$ 9, 3-, 4-H), 4.28–4.36 (4 H, m, 2 × OCH₂), 4.45 (2 H, dd, $J_{\rm 1e,1a}$ 10, $J_{\rm 1e,2}$ 5, 1-, 6-H^e), 5.54 (2 H, s, 2 × OCHPhO), 7.19 (2 H, s, 1-, 4-H naphth.), 7.31–7.40 (8 H, m, 6 × ArH, 6-, 7-H naphth.), 7.50 (m, 4 H, ArH) and 7.69 (2 H, m, 8-, 5-H naphth.).

1,3:4,6-Di-O-benzylidene-2,5-O-[oxybis(ethyleneoxyethyl]-D-mannitol 11

To a solution of 1,3:4,5-di-O-benzylidene-D-mannitol 8 (3.58 g, 10 mmol) in abs. THF (125 cm³) under argon was added 60%NaH (1.2 g, 1.5 mol equiv.) and the resulting mixture was magnetically stirred at room temp. until the solution turned white (ca. 1 h). Tetraethylene glycol ditosylate [37860-51-8] (6.03 g, 1.2 mol equiv.) was added in small portions and the mixture was stirred for 80 h under argon. The reaction was monitored by TLC (hexane-AcOEt, 1:1; R_f 0.22) and stopped by dilution with water (50 cm³). The solvents were evaporated off under reduced pressure, and the residue was dissolved in CH₂Cl₂ (100 cm³) and washed with water $(2 \times 25 \text{ cm}^3)$. These aqueous phases were re-extracted with CH_2Cl_2 (2 × 15 cm³). The organic phases were combined, dried over MgSO₄, and concentrated under reduced pressure. Chromatography of the residue on silica with CH₂Cl₂-EtOH (9:1) yielded the crown ether 11 (1.91 g, 37%) as a syrup; $[a]_D$ -30.1 (c 2.2, CHCl₃); m/z 515 $(M - H)^+$; δ_H (400 MHz; CDCl₃) 3.5–3.85 (18 H, m, 8 × OCH₂, 1-, 6-H^{*a*}), 3.82–4.10 (2 H, m, 2-, 5-H), 4.21 (2 H, d, $J_{3,4}$ 8.8, 3-, 4-H), 4.41 (2 H, dd, J_{1e,2} 5, J_{1e,1a} 10.8, 1-, 6-H^e), 5.55 (2 H, s, 2 × OCHPhO), 7.33 (6 H, d, ArH) and 7.52 (4 H, d, ArH).

2,5-*O*-[Benzene-1,2-diylbis(oxyethyleneoxyethyl)]-1,3:4,6-di-*O*-benzylidene-D-mannitol 12

The same procedure was used as described for compound **10** except that pyrocatechol was used instead of 2,3-dihydroxynaphthalene and the reaction time was 48 h. From 0.81 g (3 mol equiv.) of catechol, 2.40 g (3 mol equiv.) of Cs₂CO₃, and 1.40 g (2.45 mmol) of dichloride **9** was obtained 1.00 g (67%) of crown ether **12** as a gum after chromatography on silica with *n*hexane–AcOEt (1:1), $[a]_D - 47.3$ (*c* 3.1, CHCl₃); *m/z* 608 (M)⁺; $\delta_{\rm H}(400 \text{ MHz}; \text{ CDCl}_3)$ 3.61–3.71 [8 H, m, 2 × (OCH₂ + *O*CH*H*), 2-, 5-H], 3.72–3.81 (2 H, m, 2 × OC*H*H), 3.85 (2 H, dd, $J_{1e,1a}$ 11, $J_{1e,2}$ 4.5, 1-, 6-H^{*a*}), 3.87–3.98 (4 H, m, 2 × OCH₂), 4.14–4.22 (6 H, m, 2 × OCH₂, 3-, 4-H), 4.39 (2 H, dd, $J_{1e,1a}$ 11, 1-, 6-H^{*e*}), 5.46 (2 H, s, 2 × OC*H*PhO), 6.91 (4 H, br s, catechol ring), 7.25–7.40 (6 H, m, ArH) and 7.48 (4 H, m, ArH).

2,5-*O*-[Benzene-1,2-diylbis(oxyethyleneoxyethyl)]-3,4-di-*O*-benzoyl-1,6-dibromo-1,6-dideoxy-D-mannitol 13

To a stirred solution of compound **12** (0.65 g, 1.07 mmol) in anhydrous CCl₄ (50 cm³) under argon were added successively dried CaCO₃ (235 mg, 2.2 mol equiv.), NBS (420 mg, 2.35 mol equiv.) and a few crystals of Bz₂O₂. The resulting dispersion was immediately heated to reflux by an incandescent 500 W lamp for 30 min, cooled to 5 °C, and filtered through sintered glass under a fume board. The remaining succinimide and calcium salts were rinsed with CH₂Cl₂ (~50 cm³) and the combined organic phases were washed successively with 0.2 M aq. Na₂S₂-O₅ (10 cm³), 5% aq. NaHCO₃ (10 cm³) and water (10 cm³), dried over MgSO₄, and finally evaporated under reduced pressure. The residue was chromatographed with *n*-hexane–AcOEt (4:1) to yield the dibromide **13** (0.48 g, 59%) as a gum, $[a]_D + 34.0$ (*c* 1.5, CHCl₃); v_{max} (neat/NaCl)/cm⁻¹ 1724; δ_H (250 MHz; CDCl₃) 3.48 (2 H, dd, J_{gem} 12, $J_{1,2}$ 6, 1-, 6-H), 3.72 (2 H, dd, $J_{1',2}$ 3, 1-, 6-H'), 3.78–4.07 (14 H, m, 2-, 5-H, 6 × OCH₂), 4.21 (4 H, m, 2 × CH₂ near catechol ring), 5.69 (2 H, dd, $J_{2,3}$ 6.5, 3-, 4-H), 6.92 (4 H, br s, catechol ring), 7.32 (4 H, t, ArH), 7.49 (2 H, t, ArH) and 7.92 (4 H, d, ArH).

1,6-Diazido-2,5-*O*-[benzene-1,2-diylbis(oxyethyleneoxyethyl)]-3,4-di-*O*-benzoyl-1,6-dideoxy-D-mannitol 14

To a solution of the dibromide 13 (0.35 g, 0.46 mmol) in DMF (25 cm^3) were added sodium azide (0.12 g, 4 mol equiv.) and ammonium chloride (0.102 g, 4 mol equiv.). The resulting mixture was stirred and heated to 100 °C for 12 h, the reaction being monitored by TLC with n-hexane-AcOEt (1:1) since diazide 14 produced a typical brownish colour after charring with dil. sulfuric acid (H₂SO₄-MeOH, 1:1); the reaction product was cooled to room temp., DMF was evaporated off in vacuo, and the residue was dissolved in CH₂Cl₂ (50 cm³). The solution was washed with distilled water $(2 \times 15 \text{ cm}^3)$, decanted, dried over MgSO₄, and purified by chromatography on silica with n-hexane-AcOEt (3:1) to yield title compound 14 (0.300 g, 95%) as a homogeneous wax, $[a]_{D}$ +57.3 (c 1.3, CHCl₃); v_{max} (NaCl)/cm⁻¹ 1724 and 2102; δ_{H} (250 MHz; CDCl₃) 3.28 (2 H, dd, J_{gem} 13, J_{1,2} 6, 1-, 6-H), 3.59 (2 H, dd, J_{1',2} 3, 1-, 6-H'), 3.76–4.06 (14 H, 6 × OCH₂, 2-, 5-H), 4.22 (4 H, m, 2 × OCH₂ near catechol ring), 5.66 (2 H, d, J_{2,3} 6, 3-, 4-H), 6.73 (4 H, br s, catechol ring), 7.32 (4 H, t, ArH), 7.5 (2 H, t, ArH) and 7.91 (4 H, d, ArH); δ_c(62.896 MHz; CDCl₃) 165.54 (2 × PhC=O), 149.27 (C-1, -2 catechol ring), 133.47 (C-4, -4', Ph), 129.76 (C-2, -2', -6, 6', Ph), 129.12 (C-1, -1', Ph), 128.49 (C-3, -3', -5, -5', Ph), 121.76 (C-4, -5, catechol ring), 115.11 (C-3, -6, catechol ring), 78.80 (C-2, -5), 70.78 (2 × OCH₂), 70.45 (C-3, -4), 70.34, 70.13 and 69.18 (6 × OCH₂) and 50.71 (C-1, -6).

2,5-*O*-[Benzene-1,2-diylbis(oxyethyleneoxyethyl)]-3,4-di-*O*-dibenzoyl-1,6-dideoxy-1,6-diphthalimido-D-mannitol 15

To a stirred solution of crown ether 13 (0.285 g, 0.37 mmol) in abs. DMF (20 cm³) was added 0.206 g (1.37 mmol, 6 mol equiv.) of potassium phthalimide and the reaction mixture was heated immediately to 120 °C for 2.5 h, the reaction being monitored by TLC with n-hexane-AcOEt (1:1). After the mixture had cooled to room temp., the DMF was evaporated off in vacuo and the residue was dissolved in CH_2Cl_2 (50 cm³). The solution was washed with distilled water $(3 \times 15 \text{ cm}^3)$, decanted, dried over MgSO₄, and purified by chromatography on silica with n-hexane-AcOEt (2:1) to yield title compound 15 (0.100 g, 30%) as a waxy solid; $[a]_{D}$ +49.3 (c 1.4, CHCl₃); v_{max} (NaCl)/ cm⁻¹ 1715; *m*/*z* 900 (M + 2H)⁺; $\delta_{\rm H}$ (2D; 250 MHz; CDCl₃) 3.57-3.71 (8 H, br t, $4 \times OCH_2$), 3.76-3.87 (2 H, m, $2 \times \text{OCHH}$), 3.88–4.03 (6 H, m, $2 \times \text{OCHH}$, $2 \times \text{OCH}_2$), 4.16 $(2 \text{ H}, J_{\text{gem}} 13.5, J_{1,2} 4, 1-, 6-\text{H}), 4.28 (2 \text{ H}, \text{m}, 2-, 5-\text{H}), 4.38 (2 \text{ H}, 1-, 6-\text{H}), 4.28 (2 \text{ H}, 1-, 6-\text{H}), 4.38 (2 \text{ H}, 1-, 6-\text{H}))$ dd, J_{1',2} 6.5, 1-, 6-H'), 5.76 (2 H, s, 3-, 4-H), 6.78 (2 H, m, catechol ring), 6.87 (2 H, m, catechol ring), 7.22 (4 H, m, ArH), 7.38 (2 H, m, ArH), 7.63 (4 H, m, phthal.), 7.74 (4 H, m, phthal.) and 7.83 (4 H, d, ArH); δ_C(62.896 MHz; CDCl₃) 168.18 $(4 \times NC=O)$, 165.87 (2 × PhC=O), 149.13 (C-1, -2, catechol ring), 133.76 (C-4, -4', Ph), 132.97 (C-4, -4', -5, -5', phthal.), 132.15 (C-1, -1', -2, -2', phthal.), 129.66 (C-2, -2', -6, -6', Ph), 129.38 (C-1, -1', Ph), 128.15 (C-3, -3', -5, -5', Ph), 123.14 (C-3, -3', -6, -6', phthal.), 121.52 (C-4, -5, catechol ring), 114.89 (C-3, -6, catechol ring), 77.7 (C-2, -5), 71.03 (2 × OCH₂), 70.75 (C-3, -4), 69.87, 69.64 and 69.0 (6 × OCH₂) and 30.38 (C-1, -6).

2,5-*O*-[Benzene-1,2-diylbis(oxyethyleneoxyethyl)]-3,4-di-*O*-benzoyl-1,6-dideoxy-1,6-bis(4,5-diphenyl-1,2,3-triazol-1-yl)-D-mannitol 16

To a stirred solution of diphenylacetylene (0.81 g, 5 mol equiv.) in CH_2Cl_2 (4 cm³) was added diazide **14** (0.31 g, 0.45 mmol) and the reaction vessel was heated gradually to 120 °C, the reaction

being monitored by TLC with n-hexane-AcOEt (1:1). After 48 h, the reaction mixture being cooled to room temp., the DMF was evaporated off in vacuo, and the residue was purified by chromatography on silica with n-hexane-AcOEt (7:3) to yield title compound 16 (0.357 g, 76%) as a solid; mp 103-105 °C; $[a]_{\rm D}$ +38.1 (c 1.5, CHCl₃); $v_{\rm max}$ (KBr)/cm⁻¹ 1724; m/z 1047 (M)⁺; $\delta_{\rm H}(2D; 250 \text{ MHz}; \text{CDCl}_3) 3.28 (2 \text{ H}, \text{m}, 2 \times \text{OCHH}), 3.45-3.72$ (6 H, m, $2 \times \text{OCH}_2$, $2 \times \text{OCH}_H$), 3.77 (4 H, br t, $2 \times \text{OCH}_2$), 3.98–4.18 (4 H, m, 2 × OCH₂), 4.23–4.40 (4 H, m, $J_{1,2}$ ~8, 2-, 5-H, 1-, 6-H'), 4.53 (2 H, m, $J_{\rm gem}$ 10.5, 1-, 6-H), 5.49 (2 H, d, J_{2.3} 3.5, 3-, 4-H), 6.86 (4 H, m, catechol ring), 7.17–7.31 (20 H, m, $4 \times ArH + 16$ H Ph on triazole), 7.42–7.53 (6 H, m, $2 \times \text{ArH} + 4$ H Ph on triazole) and 7.72 (4 H, d, ArH); $\delta_{\rm C}$ (62.896 MHz; CDCl₃) 165.25 (2 × Ph*C*=O), 148.96 (C-1, -2, catechol ring), 143.98 (2 × C-1, triazole), 134.69 (2 × C1', triazole), 133.31 (2 × C-4, Ph), 130.21 (2 × C-2, -6, Ph), 129.74 (C-1, -1', Ph), 129.57 (2 × C-3, -5, Ph), 129.41 (2 × C-4, Ph on triazole), 129.09 (2 × C-2, -6, Ph on triazole), 128.56 (2 × C=C), 128.23 (2 × C-3, -5, -3', -5', Ph on triazole), 127.46 (2 × C-4', Ph on triazole), 127.39 (2 × C=C), 126.59 (2 × C-2', -6', Ph on triazole), 121.51 (C-4, -5, catechol ring), 114.81 (C-3, -6, catechol ring), 78.19 (C-2, -5), 70.99 (2 × OCH₂), 70.57 (C-3, -4), 70.36, 69.64 and 68.89 (6 × OCH₂) and 48.99 (C-1, -6).

2,5-*O*-[Benzene-1,2-diylbis(oxyethyleneoxyethyl)]-1,6-dideoxy-1,6-bis(4,5-diphenyl-1,2,3-triazol-1-yl)-D-mannitol 17

To a solution of dibenzoate 16 (110 mg, 0.105 mmol) in abs. MeOH (25 cm³) was added MeONa (~5 mg, 0.5 mol equiv.) and the mixture was magnetically stirred for 1 h at room temp. under argon. The reaction, which was monitored by TLC (n-hexane-AcOEt, 1:1), was stopped by addition of Amberlyst 15 resin (~300 mg). After 30 min of gentle stirring, the beads were removed by filtration on sintered glass, rinsed with methanol (~25 cm³), and the solvents were evaporated off under reduced pressure. The residue was purified by elution through a neutral alumina column (EtOH-CH2Cl2, 1:1; 75 cm3) to yield the diol 17 (79 mg, 90%) as a waxy solid from which an analytical sample could be obtained by preparative TLC (SiO₂; AcOEt); $[a]_{D}$ +25.7 (c 0.6, CHCl₃); m/z 838 (M)⁺; δ_{H} (2D; 250 MHz; CDCl₃) 1.27 (2 H, br s, 2 × OH), 3.16–3.28 (2 H, m, 2 × OCHH), 3.39-3.45 [m, 6 H, 2 × (OCH₂, OCHH)], 3.63-3.88 (6 H, m, 2 × OCH₂, 3-, 4-H), 3.94–4.10 (4 H, m, 2-, 5-H, $2 \times OCH_2$), 4.22 (2 H, dd, $J_{1,1'}$ 14, 1-, 6-H'), 4.58 (2 H, dd, $J_{1,2}$ 3, 1-, 6-H), 6.86 (4 H, m, catechol ring), 7.19-7.30 (6 H, m, Ph on triazole), 7.31-7.48 (10 H, Ph on triazole) and 7.52 (4 H, dd, Ph on trazole); $\delta_{\rm C}$ (62.896 MHz; CDCl₃) 148.86 (C-1, -2, catechol ring), 144.08 (2 × C-1, Ph on triazole), 135.19 (2 × C-1', Ph on triazole), 131.01 (2 × C=C), 130.50 (2 × C-2, -6, Ph on triazole), 129.66 (2 × C-4, Ph on triazole), 129.27 (2 × C-3, -5, Ph on triazole), 128.49 (2 × C-3', -5', Ph on triazole), 129.09 (2 × C-2, -6, Ph on triazole), 127.85 (2 × C=C), 127.71 (2 × C-4', Ph on triazole), 126.88 (2 × C-2', -6', Ph on triazole), 121.92 (C-4, -5, catechol ring), 115.00 (C-3, -6, catechol ring), 80.18 (C-2, -5), 70.64, 70.23 and 69.75 (6 × OCH₂), 69.09 (C-3, -4), 68.81 $(2 \times \text{OCH}_2)$ and 48.66 (C-1, -6).

3,4-Di-O-acetyl-2,5-O-[benzene-1,2-diylbis(oxyethyleneoxyethyl)]-1,6-dideoxy-1,6-bis(4,5-diphenyl-1,2,3-triazol-1-yl)-D-mannitol 18

To a solution of the diol **17** (35 mg, 42 mm³) in abs. pyridine (0.5 cm³) were added acetic anhydride (1.5 cm³) and 4-DMAP (~1 mg) and the mixture was stirred at room temp. under argon for 1 h. Usual work-up¹ and chromatography on silica gel with *n*-hexane–AcOEt (3:7) yielded diacetate **18** (40 mg, 95%) as a homogeneous wax, mp < 50 °C; $[a]_D$ +23.4 (*c* 0.6, CHCl₃); *m/z* 922 (M)⁺; δ_H (250 Hz; CDCl₃) 2.01 (6 H, s, 2 × CH₃), 3.12–3.27 (2 H, m, 2 × *O*CH*H*), 3.4–3.62 [6 H, m, 2 × (OCH₂ + *O*C*H*H)], 3.71 (4 H, t, 2 × OCH₂), 4.0–4.12 (6 H, m, 2-, 5-H, 2 × OCH₂), 4.22 (2 H, dd, $J_{1,1'}$ 14, 1'-, 6'-H), 4.43 (2 H, dd, $J_{1,1'}$

J. Chem. Soc., Perkin Trans. 1, 1998, 3845–3850 3849

14, $J_{1,2}$ 4.5, 1-, 6-H), 5.13 (2 H, d, $J_{2,3}$ 4, 3-, 4-H), 6.85 (4 H, m, catechol ring), 7.20–7.28 (6 H, m, Ph on triazole), 7.42 (10 H, br s, Ph on triazole) and 7.53 (4 H, dd, Ph on triazole); $\delta_{\rm C}$ (62.896 MHz; CDCl₃) 169.77 (2 × COCH₃), 149.02 (C-1, -2, catechol ring), 144.12 (2 × C-1, Ph on triazole), 134.86 (2 × C-1', Ph on triazole), 130.87 (2 × C=C), 130.45 (2 × C-2, -6, Ph on triazole), 129.64 (2 × C-4, Ph on triazole), 129.23 (2 × C-3, -5, Ph on triazole), 128.40 (2 × C-3', -5', Ph on triazole), 127.62 (2 × C-4', Ph on triazole), 127.59 (2 × C=C), 126.72 (2 × C-2', -6', Ph on triazole), 121.61 (C-4, -5, catechol ring), 114.85 (C-3, -6, catechol ring), 78.25 (C-2, -5), 70.78 and 70.38 (4 × OCH₂), 70.23 (C-3, -4), 69.69 and 68.98 (4 × OCH₂), 48.78 (C-1, -6) and 20.62 (2 × CH₃).

1,6-Diazido-2,5-O-[benzene-1,2-diylbis(oxyethyleneoxyethyl)]-1,6-dideoxy-3,4-O-methylene-D-mannitol 19

To a solution of the diester 14 (100 mg, 0.145 mmol) in CH₂Br₂ (8 cm^3) were added 50% aq. NaOH (6 cm³) and NBu₄HSO₄ (51 mg, 1 mol equiv.) and the reaction mixture was vigorously stirred at room temp. for 12 h. Usual work-up¹ and chromatography on silica gel with n-hexane-AcOEt (3:1) yielded unchanged starting material 14 (70 mg, 70% recovery) and then title compound 19 (10 mg, 14%) as a homogeneous wax, mp < 50 °C; $[a]_{D}$ +2.1 (c 1.6, CHCl₃); m/z 494 (M)⁺; $\delta_{H}(250$ MHz; CDCl₃) 3.45 (2 H, m, J_{1,1'} 13, J_{1,2} 6.5, 1-, 6-H), 3.52–3.67 (4 H, m, 2-, 5-H, 1-, 6-H'), 3.71-3.80 (6 H, m, 2 × OCH₂, 2×OCHH), 3.81–4.01 (6 H, m, 2×OCH₂, 2×OCHH), 4.07 (2 H, d, J_{2,3} 5, 3-, 4-H), 4.18 (4 H, t, 2 × OCH₂), 4.93 (2 H, s, OCH₂O) and 6.9 (4 H, s, catechol ring); $\delta_{\rm C}$ (62.896 MHz; CDCl₃) 149.35 (C-1, -2, catechol ring), 121.84 (C-4, -5, catechol ring), 114.47 (C-3, -6, catechol ring), 95.3 (OCH₂O), 79.40 (C-2, -5), 77.65 (C-3, -4) 70.81, 70.12 and 69.98 (6 × OCH₂), 68.95 $(2 \times \text{OCH}_2)$ and 50.68 (C-1, -6).

2,5-*O*-[Benzene-1,2-diylbis(oxyethyleneoxyethyl]-1,6-dideoxy-1,6-bis(4,5-diphenyl-1,2,3-triazol-1-yl)-3,4-*O*-ethylene-Dmannitol 20

To a solution of the diester **16** (80 mg, 75 µmol) in 1,2dichloroethane (7 cm³) were added 50% aq. NaOH (7 cm³) and NBu₄HSO₄ (26 mg, 1 mol equiv.) and the reaction mixture was vigorously stirred at room temp. for 24 h. Usual work-up¹ and preparative TLC on silica gel with *n*-hexane–AcOEt (1:3) yielded title compound **20** (~40 mg, 60%) as a homogeneous gum, $[a]_D$ +23.6 (*c* 0.5, CHCl₃); *m/z* 864 (M + 2)⁺; δ_H (250 MHz; CDCl₃) 3.24–3.86 (18 H, m, 4 × OCHH, 4 × OCH₂, 2 × CH₂ dioxane, 3-, 4-H), 4.05 (4 H, br t, 2 × OCH₂), 4.18– 4.45 (4 H, m, 2-, 5-H, 1-, 6-H'), 4.56 (2 H, dd, $J_{1,1'}$ 14, $J_{1,2}$ 4, 1-, 6-H), 6.85 (4 H, m, catechol ring), 7.18–7.36 (6 H, m, Ph on triazole), 7.44 (10 H, br s, Ph on triazole) and 7.53 (4 H, dd, Ph on triazole); $\delta_{\rm C}(62.896 \text{ MHz}; \text{CDCl}_3)$ 149.07 (C-1, -2, catechol ring), 144.0 (2 × C-1, Ph on triazole), 135.06 (2 × C-1', Ph on triazole), 131.19 (2 × C=C), 130.54 (2 × C-2, -6, Ph on triazole), 129.61 (2 × C-4, Ph on triazole), 129.33 (2 × C-3, -5, Ph on triazole), 128.48 (2 × C-3', -5', Ph on triazole), 127.86 (2 × C=C), 127.66 (2 × C-4', Ph on triazole), 126.86 (2 × C-2', -6', Ph on triazole), 121.74 (C-4, -5, catechol ring), 114.85 (C-3, -6, catechol ring), 79.27 (C-2, -5), 76.28 (C-3, -4), 70.4 and 69.65 (8 × OCH₂), 65.79 (2 × C, dioxane) and 48.76 (C-1, -6).

Acknowledgements

We thank Dr Nicolas Moitessier for critically reading the original manuscript and making several useful remarks.

References

- 1 M. Nazhaoui, J.-P. Joly, B. J. Jean-Claude, V. Del Duca, A. Aubry and (in part) M. Boubouh, *J. Chem. Soc.*, *Perkin Trans. 1*, 1995, 2919.
- 2 M. Nazhaoui, B. Gross and J.-P. Joly, *Tetrahedron Lett.*, 1993, 34, 1287.
- 3 Y. Chapleur, P. Bockel and F. Chrétien, J. Chem. Soc., Perkin Trans. 1, 1989, 703.
- 4 (a) P. Di Cesare and B. Gross, Synthesis, 1979, 458; (b) D. Géhin,
 P. Di Cesare and B. Gross, J. Org. Chem., 1986, 51, 1906; (c)
 A. Courtois, L. El Masdouri, D. Géhin and B. Gross, Acta Crystallogr, Sect. C, 1986, 42, 850; (d) J.-P. Joly and B. Gross, Tetrahedron Lett., 1989, 32, 4231; (e) J.-P. Joly and N. Moll, J. Chromatogr., 1990, 521, 134; (f) J.-P. Joly, M. Nazhaoui and
 B. Dumont, Bull. Soc. Chim. Fr., 1994, 131, 369; (g) B. Dumont,
 M.-F. Schmitt and J.-P. Joly, Tetrahedron Lett., 1994, 35, 4773; (h) B. Dumont, J.-P. Joly, Y. Chapleur and A. Marsura, Bioorg. Med. Chem. Lett., 1994, 4, 1123.
- 5 J. Dale and P. O. Christiansen, Acta Chem. Scand., 1972, 26, 1471.
- 6 D. N. Reinhoudt, F. de Jong and H. P. M. Tomassen, *Tetrahedron Lett.*, 1979, 2067.
- 7 E. P. Kyba, J. M. Timko, L. J. Kaplan, F. de Jong, G. W. Gokel and D. J. Cram, *J. Am. Chem. Soc.*, 1978, **100**, 4555.
- 8 M. Hébrant, P. Mettelin, C. Tondre, J.-P. Joly, C. Larpent and X. Chasseray, *Colloids Surfaces A*, 1993, **75**, 257.
- 9 E. B. Kyba, K. Koga, L. R. Sousa, M. G. Siegel and D. J. Cram, J. Am. Chem. Soc., 1973, 95, 2692.
- 10 A. M. Costero and S. Rodriguez, Tetrahedron Lett., 1992, 33, 623.
- (a) B.-L. Poh and C. M. Tan, *Tetrahedron*, 1994, **50**, 3453; (b)
 H. Miyake, T. Yamashita, Y.Kojima and H. Tsukube, *Tetrahedron Lett.*, 1995, **36**, 7669; (c) K. Araki, K. Inada and S. Shinkai, *Angew. Chem., Int. Ed. Engl.*, 1996, **35**, 72; (d) X. X. Zhang, J. S. Bradshaw and R. M. Izatt, *Chem. Rev.*, 1997, **97**, 3313; (e) M. Pietraszkiewicz, M. Kozbial and O. Pietraszkiewicz, *Enantiomer*, 1997, **2**, 319.

Paper 8/04873H