¹⁵N CIDNP investigations of the peroxynitric acid nitration of L-tyrosine and of related compounds

Manfred Lehnig*a and Michael Kirsch*b

Received 8th November 2005, Accepted 4th January 2006 First published as an Advance Article on the web 20th January 2006 DOI: 10.1039/b515856g

Peroxynitric acid (O₂NOOH) nitrates L-tyrosine and related compounds at pH 2–5. During reaction with O₂¹⁵NOOH in the probe of a ¹⁵N NMR spectrometer, the NMR signals of the nitration products of L-tyrosine, N-acetyl-L-tyrosine, 4-fluorophenol and 4-methoxyphenylacetic acid appear in emission indicating a nitration via free radicals. Nuclear polarizations are built up in radical pairs [15NO₂*, PhO']^F or [15NO₂*, ArH**]^F formed by diffusive encounters of 15NO₂* with phenoxyl-type radicals PhO* or with aromatic radical cations ArH*+. Quantitative 15N CIDNP investigations with N-acetyl-Ltyrosine and 4-fluorophenol show that the radical-dependent nitration is the only reaction pathway. During the nitration reaction, the ¹⁵N NMR signal of ¹⁵NO₃⁻ also appears in emission. This is explained by singlet-triplet transitions in radical pairs [15NO2*, 15NO3*]s generated by electron transfer between O₂15NOOH and H15NO₂ formed as a reaction intermediate. During reaction of peroxynitric acid with ascorbic acid, ¹⁵N CIDNP is again observed in the ¹⁵N NMR signal of ¹⁵NO₃⁻ showing that ascorbic acid is oxidized by free radicals. In contrast to this, O215NOOH reacts with glutathione and cysteine without the appearance of ¹⁵N CIDNP, indicating a direct oxidation without participation of free radicals.

Introduction

Peroxynitric acid $(O_2NOOH/O_2NOO^-; pK_a 5.9)$ is known as an unstable intermediate during reaction of H₂O₂ with either N₂O₅ or HNO2 since about 100 years.1 It has found growing interest after detection in the Earth's atmosphere as the recombination product of free radicals HO₂ and NO₂.² Furthermore, it may be generated under physiological conditions as the recombination product of superoxide, $O_2^{\bullet-}$ (HO₂/O₂⁻; pK_a 4.8), and NO₂•.3 In living organisms, this reaction has been suggested to be an effective detoxification pathway for NO₂. During the last years, its formation and decomposition have been studied in greater detail, see Scheme 1.5-9

```
2H_2O_2 + HNO_2
                                    2 H_2O + O_2NOOH
      O2NOOH
                                     HO2 + NO2
     HO2 + NO2
                                         O2NOOH
                                                                  (k = 6.5 \cdot 10^7 \,\mathrm{M}^{-1} \mathrm{s}^{-1})
  2NO_2 + H_2O
                                 NO_2^- + NO_3^- + 2 H^+
                                                                  (k = 8.6^{\circ}10^5 \text{ M}^{-1}\text{s}^{-1})
       2HO<sub>2</sub>
                                       H_2O_2 +
O2NOOH + HNO2
                                            2 HNO<sub>3</sub>
```

Scheme 1 Formation and decay reactions of peroxynitric acid (see ref. 8b, 9c, 10 and 11).

Peroxynitric acid is expected to exhibit nitrating as well as oxidizing properties. Tyrosine nitration and the nitration of tyrosine residues in proteins are used as markers for the activity of reactive nitrogen species (RNS) in living systems.¹² The most important RNS seem to be peroxynitrite and nitrite in the presence of peroxydase or hypochlorite. 12,13 Concerning peroxynitrite, an indirect nitration pathway via NO2 and tyrosinyl radicals is generally accepted. 14 Peroxynitric acid might also be considered as a possible nitration agent of tyrosine residues in biological systems. 4c,15

Nitration of L-tyrosine (Tyr) with peroxynitric acid has not been observed at pH 7.4b The purpose of the present paper is to look for nitration reactions with peroxynitric acid at lower pH values. ¹⁵N CIDNP investigations during the nitration of N-acetyl-L-tyrosine (Tyrac), 4-fluorophenol (4-F-C₆H₄OH) and 4-methoxyphenylacetic acid (4-MeO-C₆H₄-CH₂-COOH) will be described for the study of the nitration mechanism of peroxynitric acid. In preceding communications, ¹⁵N CIDNP has been applied in proving the radical mechanism of the nitration reactions of L-tyrosine and N-acetyl-L-tyrosine with peroxynitrite at pH 4–5 as well as with nitrite in the presence of peroxydase or hypochlorite at physiological pH values.16

A few oxidizing reactions with peroxynitric acid have been reported. 9a,b They were proposed to occur via different mechanisms, a direct one and an indirect one via free radicals formed during the decomposition of peroxynitric acid (Scheme 1). For demonstrating the possibility of different mechanisms, ¹⁵N CIDNP studies during oxidation of ascorbic acid, glutathione and cysteine will be described, too. These compounds act as scavengers for oxidants in biological systems, especially for free radicals.¹⁷

CIDNP is used for evaluating reaction mechanisms in organic chemistry. It leads to emission (E) and/or enhanced absorption (A) signals in the NMR spectra of products formed during fast radical reactions running in the probe of an NMR spectrometer and proves the occurrence of free radicals. 18-21 Especially, 15 N CIDNP has been applied to study nitration reactions of activated aromatics by nitric acid, nitrous acid and peroxynitrous acid. 16,22,23

^aOrganische Chemie, Universität Dortmund, Otto-Hahn-Strasse 6, D-44221 Dortmund, Germany. E-mail: lehnig@chemie.uni-dortmund.de ^bInstitut für Physiologische Chemie, Universitätsklinikum Essen, Hufelandstrasse 55, D-45117 Essen, Germany. E-mail: michael.kirsch@uni-essen.de

CIDNP is generated in radical pairs formed by the homolysis of diamagnetic compounds from singlet states (S pairs) or by diffusive encounters of independently generated free radicals (F pairs). Free radicals reacting within the pairs give cage (c) products. Free radicals which do not react within the pairs form escape (e) products. If ¹⁵N nuclei are observed, the phase of CIDNP effects (E, A) in the reaction products of free radicals generated by homolysis of diamagnetic compounds ¹⁵NO₂-R and by reactions of ¹⁵NO₂ with free radicals R is given in Scheme 2 assuming $g(R^*) > g(NO_2^*)^{22}$

Homolysis:

$$^{15}NO_2$$
-R
 →
 $^{15}NO_2$ · +
 R'
 singlet precursor (S pair)

 ↓
 cage (c) product (A,E)
 ←
 $[^{15}NO_2$ ·, R·]^{S,F}
 →
 escape (e) product (E,A)

 ↑
 ↑

 Diffusion:
 $^{15}NO_2$ · +
 R'
 free radical precursor (F pair)

Scheme 2 ¹⁵N CIDNP effects in the reaction products of free radicals ¹⁵NO₂ and R generated by homolysis of diamagnetic compounds ¹⁵NO₂-R (S pairs) and free radical encounters (F pairs) assuming $g(\mathbf{R}^{\bullet})$ > g(NO₂*). E: emission, A: enhanced absorption.

The appearance of CIDNP proves the occurrence of radical reactions, which does not exclude non-radical reactions leading to the same product. To prove this, quantitative experiments have been performed. CIDNP intensities are proportional to the product rate formation. For quantitative investigations, the dependence of reaction time and product concentrations is eliminated by determining an enhancement factor E which is the ratio between the intensity of the NMR signal immediately after formation of the polarized product and the intensity of the NMR signal of the product after finishing the reaction.24 The value is compared with ¹⁵N CIDNP data obtained from various nitrating systems^{17,23} and calculations based on quantitative formulations of the radical pair theory.25 This procedure will be applied during reactions of peroxynitric acid-15N with N-acetyl-L-tyrosine and with 4fluorophenol, not with L-tyrosine and 4-methoxyphenylacetic acid because of low product concentrations.

Experimental

¹⁵N CIDNP experiments

Authentic peroxynitric acid-15N or a mixture of Na15NO2 and H₂O₂ was dissolved in H₂O/D₂O containing phosphoric acid (0.3 M) and NaHCO₃ (0.05 M) at pH 2. After putting the reactants into the 10 mm NMR tube, it was transferred into the probe of the ¹⁵N NMR spectrometer (Bruker DPX 300) within 5 s and then locked. A single pulse spectrum of the peroxynitric acid was then taken with a pulse angle of 90° 2 or 3 min later. After that, the tube was replaced, and the reactant was added to the solution. ¹⁵N NMR spectra were then taken every 2 or 3 min until the reaction was completed. For detecting the reaction products, ¹⁵N NMR spectra were taken with several hundred pulses. ¹⁵N NMR intensities I were taken directly from the spectra. During single runs, signal intensities are proportional to concentrations within about 5%. Signal intensities taken during different runs differ within about 20%. An E value was determined from eqn (1).²³

$$E = \sum I_i \Delta t(i, i+1) / I_o T_1 \tag{1}$$

 I_i is the intensity of the CIDNP signal during the i^{th} measurement and $\Delta t(i, i + 1)$ is the time interval (2 or 3 min) between the i^{th} and the $(i + 1)^{th}$ measurement. I_0 is the intensity of the ¹⁵N NMR signal of the reaction product after finishing the reaction and T_1 is the longitudinal relaxation time of the nucleus investigated. For determining E, eqn (1) is a good approximation if the reaction time exceeds T_1 by more than about one order of magnitude. This procedure cancels differences between various runs which can therefore be compared directly. Values determined from different runs differ by about 15%. Chemical shifts are given in δ values relative to nitrobenzene-15N dissolved in acetonitrile as an external reference. 15N CIDNP experiments using nitric acid or nitrous acid as nitrating agents were performed in an analogous manner.²³

Materials

O₂¹⁵NOOH solutions (1.57 M) were freshly prepared prior to use as described.4a O215NOOH was also prepared in situ by addition of H₂O₂ (1 M) to a solution of Na¹⁵NO₂ (0.3 M or 0.15 M) in H₂O.^{8c,15b} All the other compounds and solvents were commercial. Nitric acid was 0.4 M in H₂O and labelled with 60.3 atom% ¹⁵N (Isotec Inc.). NaNO2 was labelled with 99.3 atom% ¹⁵N (Isotec Inc.).

Solutions

For preparing the buffer solutions, doubly distilled water was bubbled (2 L min⁻¹) with synthetic air at room temperature for 20 min. Traces of transition metal ions were removed from the buffer solutions by treatment with the heavy metal scavenger resin Chelex 100 by gentle shaking for 18 h in the dark.²⁶ The pH value was adjusted with sulfuric acid and sodium hydroxide using a pH Meter CG 825.

Capillary zone electrophoresis measurement

L-Tyrosine and 3-nitro-L-tyrosine were quantified on a Beckman P/ACE 5000 apparatus. Separation conditions for L-tyrosine and 3-nitro-L-tyrosine were as follows: fused silica capillary (50 cm effective length, 75 m internal diameter), hydrodynamic injection for 5 s, temperature 30 °C, voltage 18 kV, normal polarity, UV detection at 214 nm. A mixture of 50 mM sodium phosphate, 25 nM sodium borate, and 50 mM sodium dodecyl sulfate (pH 9.0) was used as the electrolyte system. To each sample, 0.2 mM of *p*-hydroxybenzoic acid was added as an internal standard.

Quantum chemical calculations

Complete basis set (CBS-Q) computations were carried out with the Gaussian 03 (Revision A.11.3) suite of programs.²⁷ Molecular interactions were evaluated on the optimized gas-phase geometries with the PCM^{28a} procedure incorporated in Gaussian 03. Both the PCM/(U)HF/6-31(+)G(d) and the CBS-Q methodology are known to provide estimates within "chemical accuracy" (±1 kcal mol-1), as has also been demonstrated for O2NOOH-derived reactions.^{28b} Isotropic absolute shielding constants of the nitrogen nucleus in a couple of compounds were calculated with the gaugeincluding atomic orbital (GIAO) protocol29 at the DFT/augcc-pVDZ (DFT = B1LYP and B3LYP) level of theory. The optimization of the structure and molecular interactions with the solvent were respected at the same level of theory.

Table 1 Effect of pH on nitration of L-tyrosine (1 mM) with peroxynitric acid (1 mM)

рН	NO ₂ –Tyr (µM) ^a	
7	0_{p}	
6	0	
5	13 ± 1.2	
4	101.5 ± 5.6	
3	118.5 ± 6.2	

^a Determined using capillary zone electrophoresis (detection limit 8 μM).

Results and discussion

Nitration of L-tyrosine with peroxynitric acid

During reaction of peroxynitric acid with L-tyrosine (Tyr) in acidic solution, the nitration product 3-nitro-L-tyrosine (3-NO₂-Tyr) is formed [eqn (2)]. The product yield increases with decreasing pH values from zero at pH 7 to 118.5 mM at pH 3, see Table 1.

$$Tyr + O_2NOOH \rightarrow 3-NO_2-Tyr + HOOH$$
 (2)

The unprotonated form, which is present at pH 7, is not able to nitrate Tyr.

¹⁵N CIDNP during decomposition of peroxynitric acid-¹⁵N at pH 2

Peroxynitric acid decomposes to nitric acid in acidic solution (Scheme 1), half-life times of 30–60 min have been found. 8a,c A typical ¹⁵N NMR spectrum taken during the decay of O₂ ¹⁵NOOH in H₂O is given in Fig. 1a. The time dependence of ¹⁵N NMR signal intensities I of $O_2^{15}NOOH$ (0.54 M) and $^{15}NO_3^{-}$ and details of this reaction are given in the Tables 2 and 3. The assignment of

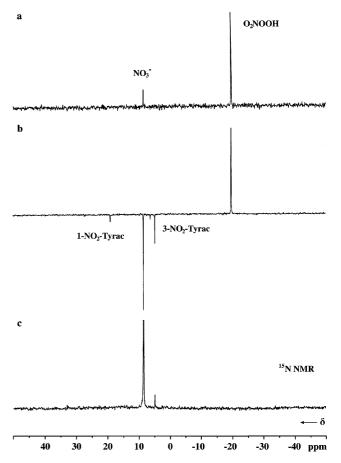


Fig. 1 ¹⁵N NMR spectra of solutions of peroxynitric acid-¹⁵N in H₂O at pH 2 and 298 K taken (a) 3 min after putting the tube in the probe (1 pulse), (b) 3 min after adding N-acetyl-L-tyrosine (1 pulse), (c) 300 min after adding N-acetyl-L-tyrosine (500 pulses).

Table 2 15N CIDNP during reaction of O₂15NOOH with organics at pH 2 and 295 K

Reactant	Assignment	$\delta (\text{ppm})^a$	$CIDNP^b$	Yield (%) ^c	$t_{\frac{1}{2}}$ (min) ^d
None ^{15b} (Fig. 1a)	O ₂ ¹⁵ NOOH (0.54 M)	-18	A		20
N-Acetyl-L-tyrosine (0.2 M) (Fig. 1b,c)	¹⁵ NO ₃ ⁻ O ₂ ¹⁵ NOOH (0.3 M)	9 -18	N A	100	4
	3- ¹⁵ NO ₂ -Tyrac (?)	4 6	E E	2.0	
	¹⁵ NO ₃ -	9	E	98.0	
4-Fluorophenol (0.1 M) (Fig. 3)	1- ¹⁵ NO ₂ -Tyrac O ₂ ¹⁵ NOOH ^e	18 -18	E A	_	4
, , , , ,	2- ¹⁵ NO ₂ -4-F-C ₆ H ₄ OH	3	E	0.2	
	$4^{-15}NO_2$ - 4 - F - C_6H_4 = O 3- NO_2 - 4 - F - C_6H_4 OH	$\frac{13}{14}$	E E	_	
	¹⁵ NO ₃ ⁻	9	E	100	
Ascorbic acid (0.15 M) (Fig. 2a)	(?) O ₂ ¹⁵ NOOH ^f	4 -18	E A E		3
Glutathione (0.1 M)	¹⁵ NO ₃ - O ₂ ¹⁵ NOOH ^f	9 -18	_	100	N. o.g
Cysteine (0.1 M)	¹⁵ NO ₃ - O ₂ ¹⁵ NOOH ^f	9 -18	N A	100	0.15
4-Methoxyphenylacetic acid (0.02 M) (Fig. 2b)	¹⁵ NO ₃ ⁻ O ₂ ¹⁵ NOOH [/] 3- ¹⁵ NO ₂ -4-MeO-C ₆ H ₄ -CH ₂ -COOH	9 -18 3	N A E	100 — <0.1	8
	¹⁵ NO ₃ ⁻	8	Ē	100	

^a δ values against Ph¹⁵NO₂, positive δ values downfield. ^b E: emission, A: enhanced absorption, N: no CIDNP. ^c Product yields determined from ¹⁵N NMR spectra taken after reaction. ^d Half-life time of the ¹⁵NMR signal decay of O₂ ¹⁵NOOH. ^e Generated in situ from Na¹⁵NO₂ (0.3 M) and H₂O₂ (1 M). ^fGenerated in situ from Na¹⁵NO₂ (0.15 M) and H₂O₂ (1 M). ^g Not observed.

^b Recovery of L-tyrosine 96.1%.

Table 3 ¹⁵N NMR intensities I^a (a) during decay of O₂ ¹⁵NOOH (0.54 M), (b) during reaction of O₂ ¹⁵NOOH (0.3 M) with N-acetyl-L-tyrosine (0.2 M), (c) during reaction of O₂¹⁵NOOH^b with 4-fluorophenol (0.1 M), (d) during reaction of O₂¹⁵NOOH^c with ascorbic acid (0.15 M) at pH 2 and 295 K

(a)											
t^d	0	3	6	12	18	28	40	60	100	300	
$I(O_2^{15}NOOH)$	400	400	360	300	240	150	80	33	17	0	
$I(^{15}NO_3^-)$	10	14	17	25	41	53	55	67	67	70	
(b)											
t^d	0	3	6	9	12	15	18	21	30	300	
$I(O_2^{15}NOOH)$	750	500	330	125	100	60	30	20	3	0	
$I(^{15}NO_3^-)$	-310	-200	-150	-70	-55	-22	-5	2	20	40	
$I(3-^{15}NO_2-Tyrac)$	-50	-26	-19	-10	-7	-4	-2	0	0	0.8^{e}	
$I(1-^{15}NO_2-Tyrac)$	-17	-12	-12	-3	-3	-2	0	0	0	0	
(c)											
t^{d}	0	2	4	6	8	10	12	14	18	22	300
$I(O_2^{15}NOOH)$	60	200	150	100	60	30	15	9	3	0	0
$I(^{15}NO_3^-)$	10	-140	-150	-70	-30	-10	4	15	25	40	40
$I(2^{-15}NO_2-4-F-C_6H_4OH)$	_	-32	-26	-12	-5	-3	-2	0	0	0	0.08^{f}
$I(4^{-15}NO_2-4-F-C_6H_4=O)$	_	-4	-3	-2	0	0	0	0	0	0	0
(d)											
t^d	0	2	4	6	8	10	14	22			
$I(O_2^{15}NOOH)$	40	250	150	30	7	2	_	_			
$I(^{15}NO_3^{-})$	5	-75	-30	-4	7	12	20	20			

^a I values determined from the signal-to-noise ratios using single 90° pulses. ^b O₂ ¹⁵NOOH generated in situ from Na¹⁵NO₂ (0.3 M) and H₂O₂ (1 M). c O₂ 15 NOOH generated in situ from Na 15 NO₂ (0.15 M) and H₂O₂ (1 M). d t: time after starting the reaction (in min). The spectrum at t = 0 has been taken before adding the reactant to the solution of O₂¹⁵NOOH. Determined from ¹⁵N NMR spectra taken after reaction (625 scans, 90° pulses, delay time 2 min). Determined from ¹⁵N NMR spectra taken after reaction (400 scans, 90° pulses, delay time 3 min).

the ¹⁵NMR signals is supported by results of quantum-chemically calculated ¹⁵N chemical shifts, see Table 4.

The ¹⁵N NMR signal intensity of ¹⁵NO₃⁻ increases from 10 to 70 units during reaction showing that it is proportional to the ¹⁵NO₃ concentration. The half-life time of 20 min taken from the spectra is smaller than the values given in the literature (30-60 min). We think that this is of no importance for the nitration experiments. It follows that 15% of O₂¹⁵NOOH decomposed before taking the first spectrum, and furthermore, that the intensity of the ¹⁵N NMR signal of O₂ ¹⁵NOOH should be about 60 units which is much less than the 400 units observed, indicating that it shows enhanced absorption (CIDNP of A type, Scheme 2). It decreases with a half-time of about 20 min too; the magnitude of the effect is about the same during reaction. The reaction is finished, 95% complete, in 100 min. The 15N CIDNP effect has also been observed at higher pH values and is built up in radical pairs [15NO₂; O₂H]^S (Scheme 3) formed during homolysis of O₂15NOOH (Scheme 1).15b

The formation of O₂¹⁵NOOH by recombination of ¹⁵NO₂• and HO₂· via radical pairs [15NO₂·, O₂H]^F leads to an E type effect 16b which is not observed under the given conditions. The 15N NMR signal of ¹⁵NO₃⁻ appears in emission at pH 3.1. ^{15b} This has been explained by electron transfer between O₂¹⁵NOOH and O₂¹⁵NOO⁻ (Scheme 3), which has no importance at pH 2. The reaction of

Table 4 Quantum-chemically calculated isotropic absolute shielding constants and ¹⁵N chemical shifts (δ , in ppm)

	Isotropic shield	ling constants ^a	Isotropic chemical shifts			
Molecule	B1LYP	B3LYP	B1LYP	B3LYP	Exp ^b	
Nitrobenzene	-125.2	-121.5	0.0	0.0	0	
NO_3^-	-134.9	-130.2	9.7	8.7	9	
O ₂ NOOH	-105.6	-105.8	-19.6	-15.7	-18	
trans-ONONO ₂	-90.6	-92.0	184.2	180.0		
_	-309.4	-301.5	-34.6	-29.5		
2-NO ₂ -4-F-C ₆ H ₄ OH	-125.9	-121.5	0.7	0.0	3	
$4-NO_2-4-F-C_6H_4=O$	-142.2	-141.8	17.0	20.3	13/14	
3-NO ₂ -4-F-C ₆ H ₄ OH	-121.0	-117.0	-4.2	-4.5	-2	
$4-F-C_6H_4-O-NO_2$	-103.3	-102.8	-21.9	-18.7		
2-ONO-4-F-C ₆ H ₄ OH	-343.6	-344.3	218.4	222.8		
3-ONO-4-F-C ₆ H ₄ OH	-344.6	-339.3	219.4	217.8		
4-F-C ₆ H ₄ -O-ONO	-291.6	-283.1	166.4	161.6		
N_2O_5	-72.3	-71.4	-52.9	-50.1		

^a Isotropic absolute shielding constants were calculated using the GIAO protocol at the DFT/aug-cc-pVDZ/DFT/aug-cc-pVDZ level of theory. During these calculations, solvation corrections (CH₃CN for nitrobenzene, H₂O for all others) with the PCM solvation model were performed at the same level of theory. ^b Experimental values, see Table 2 and Fig. 1–3.

O215NOOH

Scheme 3 15N CIDNP during formation and decay of peroxynitric acid-15 N.

O₂¹⁵NOOH with H¹⁵NO₂ (Schemes 1 and 3) might lead to emission in the ¹⁵N NMR signal of ¹⁵NO₃ - too, which is not observed under the applied conditions either.

Reaction of peroxynitric acid-15N with N-acetyl-L-tyrosine and 4-fluorophenol

For elucidating the mechanism of the nitration reaction, ¹⁵N CIDNP studies have been performed at pH 2. During the reaction of O₂¹⁵NOOH with Tyr, emission has been observed in 3-¹⁵NO₂-Tyr, but the product yield is too low for quantitative studies. Therefore, N-acetyl-L-tyrosine (Tyrac) has been used. ¹⁵N NMR spectra taken during the reaction of O₂¹⁵NOOH (0.3 M) with Tyrac (0.2 M) at 295 K and after reaction are given in Fig. 1b,c, details of the reaction in Table 2. The ¹⁵N NMR signal of O₂ ¹⁵NOOH shows enhanced absorption, as described, signals at $\delta = 4$ ppm and $\delta =$ 18 ppm are due to 3-nitro-*N*-acetyl-L-tyrosine (3-15NO₂-Tyrac) and 1-nitro-N-acetyl-L-tyrosine (1-15NO₂-Tyrac) and appear in emission. Additionally, the ¹⁵N NMR signal of ¹⁵NO₃⁻ shows E, in contrast to the results during the decay of O₂¹⁵NOOH. A signal at $\delta = 6$ ppm could not be assigned. After reaction, only the ¹⁵N NMR signals of 3-15NO₂-Tyrac and 15NO₃ are observed indicating that 1-15NO₂-Tyrac and the unassigned product are unstable reaction intermediates.

The time dependence of the 15N NMR signals reveals further details of the reaction (Table 3b). After addition of Tyrac, the

¹⁵N NMR signal of O₂ ¹⁵NOOH is enhanced, the half-time of the reaction is shortened from 20 to 4 min and the overall reaction time (95% yield progress) from 100 to 18 min. After reaction, the signal due to 3-15NO2-Tyrac can only be observed by taking a large number of scans (Fig. 1c). By taking 170 scans, a yield of 2.0% has been determined in relation to the ¹⁵NO₃⁻ yield.

Nitric acid and nitrous acid are effective nitration agents of Tyrac in acidic solution. 16b,22d Both are formed during the decomposition of peroxynitric acid (Scheme 1). With the aim of excluding them as nitrating agents, experiments were performed with H¹⁵NO₃ (0.1 M) and Na¹⁵NO₂ (0.3 M) at pH 2. Tyrac is not nitrated under these conditions, and 15N CIDNP effects are not observed either.

The occurrence of 15N CIDNP indicates that the nitration proceeds via free radicals. The 15N CIDNP effects are identical to those using peroxynitrous acid-15N as the nitrating agent and are explained as described earlier by reactions of radical pairs [15NO₂*, Tyrac'] formed by diffusive encounters of 15NO₂ and phenoxyltype radicals Tyrac*, (Scheme 4).16 NO2* is known to generate radicals GlyTyr* very efficiently from GlyTyr;30 HO2* might readily be oxidized by phenolic compounds.31a The conclusions are supported by calculations of Gibbs energies of the reaction of NO₂ with phenol (8.7 kcal mol⁻¹) and of HO₂ with phenol $(1.4 \text{ kcal mol}^{-1})$ (Table 5, entries 1 and 2).

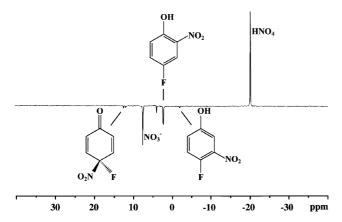
Scheme 4 15N CIDNP during reaction of peroxynitric acid-15N with N-acetyl-L-tyrosine.

The enhancement factor E of the nuclear polarization has been determined using eqn (1), see Table 6. An E value of -1100 is derived from the ¹⁵N NMR signals of 3-¹⁵NO₂-Tyrac (Table 3b). It is comparable with that found during nitration of Tyrac with peroxynitrous acid-15 N in the presence of sodium bicarbonate (E =-1350). 16b

Table 5 Quantum-chemically calculated Gibbs energies and aqueous solvation energies

Entry	Reaction ^a	$\Delta_{ extsf{R}} G_{ extsf{g}}^{\ \ b}$	$\Delta_{ m R} E_{ m solv}^{\ \ c}$	$\Delta_{\mathbf{R}} G_{\mathrm{aq}}{}^{d}$
1	$PhOH + NO_{2} \rightarrow PhO' + HNO_{2}$	7.6	1.1	8.7
2	$PhOH + HO_2^{\bullet} \rightarrow PhO^{\bullet} + H_2O_2$	-1.3	2.7	1.4
3	$O_2NOOH + HNO_2 \rightarrow H_2O + N_2O_5$	-25.9	7.2	-18.6
4	$O_2NOOH + HNO_2 \rightarrow H_2O + NO_2 + NO_3$	-8.4	7.3	-1.1
5	NO_2 + NO_3 $\rightarrow NO_2$ + NO_3	127.7	-139.8	-12.1
6	$O_2NOOH + N_2O_3^e \rightarrow HNO_2 + NO_2 + NO_3$	-7.4	3.7	-3.7
7	$O_2NOOH + N_2O_3^f \rightarrow HNO_2 + NO_2^{\bullet} + NO_3^{\bullet}$	-11.8	5.6	-6.2
8	$O_2NOOH + HNO_2 + H_2O \rightarrow O_2NOOH^{\bullet-} + NO_2^{\bullet} + H_3O^{\bullet}$	196.6	-146.6	50.0
9	$PhOCH_3 + HO_2 \rightarrow PhOCH_2 + H_2O_2$	8.1	-2.6	5.4
10	$PhOCH_3 + NO_2 \rightarrow PhOCH_2 + HNO_2$	18.5	-4.1	14.4
11	$O_2NOOH + PhOCH_3 \rightarrow O_2NOOH^{\bullet-} + PhOCH_3^{\bullet+}$	159.7	-95.0	64.7
12	$PhOCH_3 + NO_2 \rightarrow PhOCH_3^{++} + NO_2^{}$	138.6	-109.1	29.6
13	$PhOCH_3 + NO^+ \rightarrow PhOCH_3^{\bullet+} + NO^{\bullet}$	-25.2	38.2	12.9
14	$PhOCH_3 + N_2O_5 \rightarrow PhOCH_3^{\bullet +} + NO_3^- + NO_2^{\bullet}$	111.0	-106.3	4.7
15	$PhOCH_3 + NO_3 \rightarrow PhOCH_3 + NO_3$	93.6	-106.4	-12.9

[&]quot;Thermodynamic properties were calculated using the complete basis set (CBS-Q) methodology. "Gas phase data (kcal mol-1). "Solvation corrections from (U)HF/6-31(+)G(d)//CBS-Q single point calculations with the PCM-UAHF solvation model for water (kcal mol⁻¹). $^d\Delta_R G_{aq} = \Delta_R G_g + \Delta_R G_{solv}$ (kcal mol⁻¹). e trans-trans-ONONO. f cis-trans-ONONO.


Table 6 Enhancement factors E of ¹⁵N CIDNP in nitration products of N-acetyl-L-tyrosine and 4-fluorophenol

Compound	Nitrating agent	T_1 value (s)	E value	Reference
3-NO ₂ -Tyrac	O¹5NOOCO₂-	24	-1350	16 <i>b</i>
- ,	O ₂ 15NOOH	24	-1100	This work
$2-NO_{2}-4-F-C_{6}H_{4}OH$	H ¹⁵ NO ₂	96	-1090	23d
2 0 1	H15NO3	96	-1202	23d
	O ¹⁵ NOOH	96	-890	16 <i>a</i>
	O ¹⁵ NOOCO ₂ -	96	-1110	16 <i>a</i>
	O ₂ 15NOOH	96	-1250	This work
	- <u>-</u>		-1222^{a}	23 <i>d</i>

^a Calculated following Pedersen's treatment of the radical pair theory.^{25d}

The nitration of 4-fluorophenol (4-F–C₆H₄OH) has been investigated by ¹⁵N CIDNP using different nitrating agents like nitrous acid and nitric acid, ^{23d} peroxynitrous acid and its CO₂ adduct. ^{16d} Additionally, an *E* value has been calculated using quantitative treatments of the radical pair theory. ²³ Furthermore, the nitration reaction of 4-F–C₆H₄OH by nitrous acid has been thoroughly investigated. ^{31b}

O₂¹⁵NOOH has been generated in situ using Na¹⁵NO₂ (0.3 M) and H₂O₂ (1 M). After that, 4-F-C₆H₄OH has been added to the solution. The ¹⁵N CIDNP effects are shown in Fig. 2 and described in the Tables 2 and 3. They are similar to those observed during the reaction of O₂¹⁵NOOH with Tyrac. After adding 4-F-C₆H₄OH, the intensity of the ¹⁵N NMR signal of O₂ ¹⁵NOOH is enhanced by a factor of 3, the half-life time for the decay of peroxynitric acid is 4 min and the reaction time 15 min (at 95% completion). The enhancement is smaller than during reaction with authentic peroxynitrite-¹⁵N which might be the consequence of a O₂¹⁵NOOH formation yield of less than 50% under the given conditions. The ¹⁵N NMR signal of ¹⁵NO₃⁻ also appears in emission. The ¹⁵N NMR spectra of the stable product 2-nitro-4-fluorophenol (2-15NO₂-4-F-C₆H₄OH) and of the intermediate 4-nitro-4-fluorocyclohexadien-1-one (4-15NO₂-4-F-C₆H₄=O) show emission as was observed earlier. Additionally, two small emission lines at $\delta = -2$ and $\delta = 4$ appear. The first one is tentatively assigned to 3-15NO₂-4-F-C₆H₄OH. After reaction, only the ¹⁵N NMR signals due to ¹⁵NO₃⁻ and 2-¹⁵NO₂-4-F-C₆H₄OH are observed. The assignment of the ¹⁵N NMR signals is supported by calculating the ¹⁵N NMR chemical shifts with the gauge-including atomic orbitals method performed at the DFT/aug-cc-pVDZ level of theory (Table 4).

Fig. 2 ¹⁵N NMR spectrum of peroxynitric acid-¹⁵N in H₂O at pH 2 and 298 K taken 4 min after adding 4-fluorophenol to the solution (1 pulse).

From ^{15}N NMR spectra taken after reaction, the yield of $2^{-15}NO_2$ -4-F- C_6H_4OH has been determined to be 0.2% in relation to $^{15}NO_3$ -indicating that nitration of 4-F- C_6H_4OH with O_2NOOH is only a side reaction.

The 15 N CIDNP effects in the nitration products are explained in an analogous manner as described 23d (Scheme 5). From the time dependence of the 15 N NMR signal of 2^{-15} NO₂- 4 -F-C₆H₄OH, an E value of -1250 is deduced which agrees well with those found during nitration reactions with nitrous acid, nitric acid and peroxynitrous acid with and without bicarbonate as well as a calculated one using Pedersen's formulation of the radical pair theory^{25d} (Table 6).

Scheme 5 ¹⁵N CIDNP during reaction of peroxynitric acid-¹⁵N with 4-fluorophenol.

Recombination of free radicals NO₂* and 4-F–C₆H₄O* might lead to 4-F–C₆H₄–O–NO₂ or nitrite-type products like 4-F–C₆H₄–O–ONO, 2-ONO-4-F–C₆H₄OH, 3-ONO-4-F–C₆H₄OH and 4-ONO-4-F–C₆H₄=O. The unassigned signal at $\delta=4$ ppm might be due to one of these products. Calculations of the ¹⁵N chemical shift values show that this can be excluded, see Table 4.

The enhancement of the A type effect observed in the ¹⁵N NMR signal of O₂¹⁵NOOH in the presence of Tyrac and 4-F–C₆H₄OH is explained by scavenging of free radicals ¹⁵NO₂• and HO₂• (Schemes 4 and 5) which cancels the E type polarization built up in radical pairs [¹⁵NO₂•,.O₂H]^F formed by free radical encounters of ¹⁵NO₂• and HO₂• (Scheme 3).

The E type effect in the ¹⁵N NMR signal of ¹⁵NO₃⁻ has not been observed in the absence of phenolic compounds and must therefore be due to a reaction of O₂¹⁵NOOH with Tyrac and 4-F–C₆H₄OH or one of the reaction products (Schemes 4 and 5). It will be explained as a consequence of the reaction of O₂¹⁵NOOH with H¹⁵NO₂ which is a reaction intermediate. This reaction is described in the literature.^{8α} Nuclear polarization is generated in radical pairs [¹⁵NO₂·, ¹⁵NO₃·]s formed by disproportionation between H¹⁵NO₂ and O₂¹⁵NOOH followed by electron transfer between radicals ¹⁵NO₂· and ¹⁵NO₃· (Scheme 3). ¹⁵N₂O₅ might be an intermediate of the reaction, since it has been reported that the dissociation

of N_2O_5 in aqueous solution to NO_2^+ and NO_3^- ($k > 10^4$ s⁻¹) is about 5 times faster than the direct hydrolysis reaction.³² However, no signal could be observed which might be assigned to N₂O₅ (Table 4). In any case, NO₂⁺ is not stable under these conditions.³³ Following this interpretation, the nuclear polarization in the ¹⁵N nuclei of ${}^{15}NO_3^-$ is of c type giving emission (Scheme 2, $R = {}^{15}NO_3^-$) because of $g(NO_3^{\bullet}) > g(NO_2^{\bullet})^{34}$ An e type polarization built up in radical pairs [15NO₂*,.O₂H]⁸ might be transferred to 15NO₃⁻ by radicals ¹⁵NO₂• leading to emission in the ¹⁵N NMR signal of ¹⁵NO₃⁻ too. ¹⁵N CIDNP effects of this type have been observed. ¹⁶c However, they are much weaker than c type effects. 16c,24b

The explanation is supported by the results of quantum chemical calculations (Table 5). The reactions of HNO₂ with O_2 NOOH leading to either N_2O_5 or NO_2 and NO_3 are predicted to be exergonic as well as the reaction of NO₂ with NO₃ (entries 3-5). From an energetical point of view, the reaction of O₂NOOH with N₂O₃, which is always present in solutions containing nitrous acid, might give radical pairs [NO₂, NO₃]^S too (entries 6 and 7). A possible contribution of N₂O₃ to the radical pair formation cannot be proven but it follows from the equilibrium constant of the reaction between nitrous acid and its corresponding anhydride (3·10⁻³ M⁻¹) that the concentration of N_2O_3 is some orders of magnitude lower than the concentration of HNO₂.35 The reaction of O₂15NOOH with H15NO₂ might form radicals O₂¹⁵NOOH^{•-} and ¹⁵NO₂[•] leading to radical pairs [¹⁵NO₂•, O₂¹⁵NOOH•-]^S and emission in the ¹⁵N NMR signal of ¹⁵NO₃-. We reject this possibility because of energetic reasons (entry 8).

The ¹⁵N NMR signal of ¹⁵NO₃⁻ is generally expected to show emission during reaction of O215NOOH with reducing agents if free radicals 15NO2 and/or HO2 are involved. For proving this, reactions of O215NOOH with the radical scavengers ascorbic acid, glutathione and cysteine have been studied. Qualitative ¹⁵N CIDNP investigations during reactions of these compounds with O215NOOH will be described. Nitration reactions of activated non-phenolic aromatics might occur via free radicals too.22,23 To set about proving this, the reaction of O₂¹⁵NOOH with 4methoxyphenylacetic acid has been performed in the probe of a ¹⁵N NMR spectrometer too.

Reaction of peroxynitric acid-15N with ascorbic acid, glutathione and cysteine

Ascorbic acid AH₂ and its anion AH⁻ (p K_a 4.25) are known to react with HO2 as well as with NO2 to give the dehydrogenated radical AH \cdot (p K_a –0.45) and dehydroascorbic acid A (Scheme 6).³⁶ It should therefore be oxidized by peroxynitric acid in an indirect manner. After adding ascorbic acid to a solution of O215NOOH in H₂O at pH 2, the ¹⁵N NMR signals of O₂ ¹⁵NOOH and of ¹⁵NO₃ ⁻ show A and E as described during reaction of O₂¹⁵NOOH with phenolic compounds. A ¹⁵N NMR spectrum taken 3 min after starting the reaction of O₂¹⁵NOOH with ascorbic acid is shown in Fig. 3a, the assignment of the signals and their time dependencies in Tables 2 and 3. Additional ¹⁵N CIDNP signals are not observed.

$$HO_2$$
 + AH_2 \rightarrow H_2O_2 + A^- + H^+ $(k = 1.6 \cdot 10^4 M^{-1} s^{\cdot 1} \cdot ^{36s})$
 NO_2 + AH \rightarrow HNO_2 + $A^ (k = 1.8 \cdot 10^7 M^{-1} s^{\cdot 1} \cdot ^{36b})$
 HO_2 + $A^ \rightarrow$ HO_2 + A $(k = 5.9 \cdot 10^9 M^{-1} s^{-1} \cdot ^{36a})$

Scheme 6 Reaction of peroxynitric acid-15N with ascorbic acid.

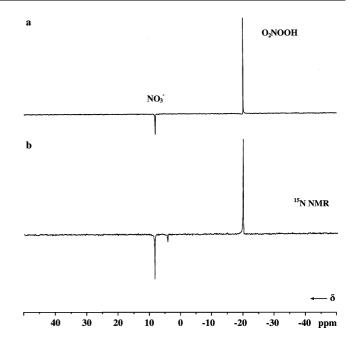


Fig. 3 ¹⁵N NMR spectra of solutions of peroxynitric acid-¹⁵N in H₂O at pH 2 and 298 K taken (a) 3 min after adding ascorbic acid (1 pulse), (b) 3 min after adding 4-methoxyphenylacetic acid (1 pulse).

After 6 min, the ¹⁵N NMR signal of ¹⁵NO₃ - changes from emission to absorption. 9 min later, the ¹⁵N NMR signal of O₂ ¹⁵NOOH disappears. The ¹⁵N CIDNP effects observed in the presence of ascorbic acid are explained as described (Schemes 2 and 6).

The kinetic constants of the scavenging reactions are known (Scheme 6). This allows us to compare the ¹⁵N CIDNP effects with the progress of the reaction. HO₂ should be scavenged efficiently by ascorbic acid at pH 2, and the half-life time of O₂NOOH should therefore be about 0.7 min (Schemes 1 and 6). The reaction should be finished before taking the first spectrum after adding ascorbic acid to the solution. The time behaviour of the 15N NMR signal of $^{15}NO_3^-$ is therefore caused by nuclear relaxation ($T_1 = 140 \text{ s}^{37}$) and not by the reaction. We think that this is also the case for the decay of the signal of O₂¹⁵NOOH. The relaxation time of the ¹⁵N nucleus is unknown; it should be of the same order of magnitude $(T_1 = 140 \text{ s}).$

The reaction of O₂¹⁵NOOH with glutathione is finished before it is possible to take a 15N NMR spectrum. It is much faster than the radical decay of O215NOOH. It follows that a direct oxidation without participation of free radicals occurs. During reaction of O₂¹⁵NOOH with cysteine, a spectrum could be taken before peroxynitric acid-15N completely disappeared. The 15N NMR signal of ¹⁵NO₃⁻ does not show emission during this reaction. It is concluded that there is a direct oxidation of glutathione and cysteine by peroxynitric acid, too. More detailed conclusions concerning the reaction mechanism cannot be drawn. Radical reactions as described before seem not to be of any importance.

Reaction of peroxynitric acid-15N with 4-methoxyphenylacetic acid

During reaction of O₂¹⁵NOOH with 4-methoxyphenylacetic acid (MeO-C₆H₄-CH₂-COOH) the ¹⁵N NMR signals of O₂¹⁵NOOH and ¹⁵NO₃⁻ appear in A and E, respectively, and the decay rate of O₂¹⁵NOOH is enhanced (half-life time 8 min) as was observed during reaction of peroxynitric acid with Tyrac, 4-F–C₆H₄OH and ascorbic acid. Additionally, an emission signal is observed at $\delta = 3$, see Fig. 3b and Table 2, which is assigned to 3-nitro-4-methoxyphenylacetic acid (3–¹⁵NO₂-4-MeO–C₆H₄–CH₂–COOH). After reaction, the product could not be observed by ¹⁵N NMR spectroscopy, indicating a product yield <0.1% in relation to ¹⁵NO₃⁻. At the beginning, the concentration of MeO–C₆H₄–CH₂–COOH is much smaller than that of peroxynitric acid. Nevertheless, the emission in the ¹⁵N NMR signal of ¹⁵NO₃⁻ is observed throughout the reaction, indicating that the nitration of the aromatic is only a side reaction. This is confirmed by the low yield of the nitration product.

The generation of the nuclear polarization in the ¹⁵N NMR signals of O₂¹⁵NOOH and ¹⁵NO₃⁻ is explained as above. Hydroperoxy radicals HO₂* are trapped by 4-methoxyphenylacetic acid leading to the accelerated decay of O₂¹⁵NOOH and the formation of H¹⁵NO₂ (Schemes 1 and 7). To our knowledge, the reactions are not described in the literature. Calculations concerning the reaction of HO₂* with anisole show that the reaction might be exergonic (Table 5, entry 9). The reaction of NO₂* with MeO–C₆H₄–CH₂–COOH which might inhibit the decay of peroxynitric acid, too, seems to be less probable (Table 5, entry 10).

$$HO_2$$
' + MeO - C_6H_4 - CH_2 - $COOH$ \rightarrow H_2O_2 + MeO - C_6H_4 - CH - $COOH$
 HO_2 ' + MeO - C_6H_4 - CH_2 - $COOH$ \rightarrow H_2O_2 + CH_2O - C_6H_4 - CH_2 - $COOH$
 ArH - $e^ \rightarrow$ ArH^{-+}
 (E)
 $^{15}NO_2$ ' + ArH^{-+} \rightarrow $^{15}NO_2$ ' ArH^{-+} $^{15}NO_2$ ' ArH^{-+}

Scheme 7 ¹⁵N CIDNP during reaction of peroxynitric acid-¹⁵N with 4-methoxyphenylacetic acid (ArH).

The E type effect observed in the nitration product is explained by analogy with the ¹⁵N CIDNP effects observed during nitration reactions of activated aromatic compounds with nitric acid or nitrous acid.^{22a,b,23} The nuclear polarization is built up in radical pairs formed by diffusive encounters of ¹⁵NO₂• and radical cations of MeO-C₆H₄-CH₂-COOH, ArH⁺ (Scheme 7).

Radical cations ArH*+ are generated by oxidation of the aromatic compound with reactive nitrogen species. Oxidation by O₂NOOH is excluded because of energetical reasons (Table 5, entry 11). Additionally, the possibility of nitration reactions with H¹⁵NO₂ and H¹⁵NO₃ has been investigated. At pH 1.5, no reaction has been found using Na¹⁵NO₂ (0.3 M) or H¹⁵NO₃ (0.1 M). Under strong acidic conditions (~10% sulfuric acid), 4-methoxyphenylacetic acid is nitrated with Na¹⁵NO₂ (0.3 M) as well as with H¹⁵NO₃ (0.1 M), in a similar manner as has been observed with anisole.²³⁶ The nitration product also shows ¹⁵N CIDNP. It follows that reactive nitrogen species other than O₂NOOH and HNO₂ must be responsible for the formation of the aromatic radical cations at pH 2.

Aromatic radical cations ArH^{•+} might be formed by intermediate nitrogen species like NO₂•, NO₂+, NO⁺, N₂O₅ or NO₃• which are discussed as electron acceptors in the literature. The oxidation by NO₂• is energetically not favoured which follows from the reported oxidation potentials of anisole ($E_o = 1.76 \text{ V}^{38a}$) and NO₂• ($E_o = 0.9-1.0 \text{ V}^{38b}$) as well as from our calculations (Table 5, entry 12). The oxidation by NO₂+ might be energetically possible ($E_o = 1.51 \text{ V}^{39}$), but is unlikely as the addition of NO₂+ to aromatic

systems is favoured over the electron transfer. ^{22b,23a} NO⁺, N₂O₅ and NO₃⁺ should be capable of oxidizing anisole (Table 5, entries 13–15) and one of them might be responsible for the formation of ArH⁺. NO⁺ is the oxidating species under strong acidic conditions using nitrous acid or nitric acid as nitrating agents. ^{22a} It might also be formed in slow concentrations at pH 2. N₂O₅ and NO₃⁺ are postulated to be present under our conditions, see Scheme 3, and are the most probable electron acceptors.

Conclusions

Reactions of peroxynitric acid with activated aromatic compounds and with ascorbic acid, glutathione and cysteine have been described at pH 2 showing nitration and oxidation. They may occur without or with participation of free radicals which has been demonstrated by ¹⁵N CIDNP. L-Tyrosine, *N*-acetyl-L-tyrosine, 4-fluorophenol and 4-methoxyphenylacetic acid are nitrated. The quantitative analysis of the ¹⁵N CIDNP effects shows that nitration occurs exclusively *via* free radicals. ¹⁵N CIDNP is observed during reaction with ascorbic acid indicating an indirect oxidation *via* free radicals. In contrast to this, the reaction with glutathione and cysteine is faster than the decay of peroxynitric acid and does not show ¹⁵N CIDNP indicating a direct oxidation without the involvement of free radicals.

At pH 7, the deprotonated peroxynitric acid does not nitrate *in situ* which makes it unlikely that peroxynitric acid has any pathophysiological importance at pH 7. However, the pH value is significantly lower in both the stomach and the lysosomes, and the reaction with glutathione might be fast enough to occur in living cells. In any case, peroxynitric acid must be discussed as a "reactive oxygen species (ROS)" as well as a "reactive nitrogen species (RNS)".⁴⁰

Acknowledgements

The present investigation would have been impossible without the skilled technical assistance of A. Wensing.

References

- (a) J. D'Ans and W. Friederich, Z. Anorg. Chem., 1911, 73, 325–359;
 (b) R. Schwarz, Z. Anorg. Chem., 1948, 256, 3–9.
- 2 (a) C. A. Cantrell, in N-centered Radicals, ed. Z. B. Agassi, J. Wiley, Chichester, UK, 1998, p. 371; (b) T. J. Wallington and O. J. Nielsen, in Peroxyl Radicals, ed. Z. B. Agassi, J. Wiley, Chichester, UK, 1997, p. 457.
- 3 (a) S. Goldstein and G. J. Czapski, J. Am. Chem. Soc., 1998, 120, 3458–3463; (b) G. J. Hodges and K. U. Ingold, J. Am. Chem. Soc., 1999, 121, 10695–10701.
- 4 (a) M. Kirsch and H. de Groot, *J. Biol. Chem.*, 2000, **275**, 16702–16708; (b) M. Kirsch, M. Lehnig, H.-G. Korth, R. Sustmann and H. de Groot, *Chem. Eur. J.*, 2001, **7**, 3313–3320; (c) M. Kirsch, H.-G. Korth, R. Sustmann and H. de Groot, *Biol. Chem.*, 2002, **383**, 389–399.
- 5 R. A. Kenley, P. L. Trevor and B. Y. Lan, J. Am. Chem. Soc., 1981, 103, 2203–2206.
- 6 H. C. Sutton, W. A. Seddon and F. C. Sopchyshyn, Can. J. Chem., 1978, 56, 1961–1964.
- 7 G. Lammel, D. Perner and P. Warneck, J. Phys. Chem., 1990, 94, 6141–6144.
- 8 (a) T. Logager and J. Sehested, J. Phys. Chem., 1993, 97, 10047–10052;
 (b) J.-M. Regimbal and M. Mosurkewich, J. Phys. Chem. A, 1997, 101, 8822–8829;
 (c) H. Appelmann and J. D. Gosztola, Inorg. Chem., 1995, 34, 787–791.

- 9 (a) S. Goldstein and G. Czapski, Inorg. Chem., 1997, 36, 4156-4162; (b) S. Goldstein, D. Meyerstein, R. van Eldik and G. Czapski, J. Phys. Chem. A, 1997, 101, 7114–7118; (c) S. Goldstein, G. Czapski, J. Lind and G. Merenyi, *Inorg. Chem.*, 1998, 37, 3943–3947; (d) S. Goldstein, J. Lind and G. Merenyi, Chem. Rev., 2005, 105, 2457–2470.
- 10 A. B. Ross, W. G. Mallard, W. P. Helman, G. V. Buxton, R. E. Huie and P. Neta, NIST Standard Reference Database 40, Version 2,0, National Institute of Standard And Technology, Gaithersburg, MD, 1994.
- 11 G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, J. Phys. Chem. Ref. Data, 1988, 17, 513-886.
- 12 (a) J. S. Beckman, T. W. Beckman, J. Chen, P. A. Marshall and B. A. Freeman, Proc. Natl. Acad. Sci. U. S. A., 1990, 87, 1620-1624; (b) H. Ischiropoulos, L. Zhu, J. Chen, M. Tsai, J. C. Martin, C. D. Smith and J. S. Beckman, Arch. Biochem. Biophys., 1992, 298, 431-437.
- 13 (a) A. van der Vliet, J. P. Eiserich, B. Halliwell and C. E. Cross, J. Biol. Chem., 1997, 272, 7617-7625; (b) J. P. Eiserich, C. E. Cross, A. D. Jones, B. Halliwell and A. van der Vliet, J. Biol. Chem., 1996, 271, 19199-19208.
- 14 (a) S. V. Lymar and L. K. Hurst, J. Am. Chem. Soc., 1995, 117, 8867-8868; (b) C. E. Richeson, P. Mulder, V. W. Bowry and K. U. Ingold, J. Am. Chem. Soc., 1998, 120, 7211-7219.
- 15 (a) O. Augusto, M. G. Bonini, A. M. Amanso, E. Linares, C. C. X. Santos and S. L. De Meneces, Free Radical Biol. Med., 2002, 32, 841-859; (b) M. Lehnig, M. Kirsch and H.-G. Korth, *Inorg. Chem.*, 2003, **42**, 4275-4287.
- 16 (a) M. Lehnig, Arch. Biochem. Biophys., 1999, 368, 303-318; (b) M. Lehnig and K. Jakobi, J. Chem. Soc., Perkin Trans. 2, 2000, 2016–2021; (c) M. Lehnig, Arch. Biochem. Biophys., 2001, 393, 245-254; (d) M. Kirsch and M. Lehnig, Org. Biomol. Chem., 2005, 3, 2085–2090.
- 17 (a) B. Halliwell, Free Radical Res., 1999, 31, 261-272; (b) M. Kirsch and H. de Groot, FASEB J., 2001, 15, 1569-1574.
- 18 J. Bargon, H. Fischer and U. Johnsen, Z. Naturforsch., A: Astrophys. Phys. Phys. Chem., 1967, 22a, 1551–1555.
- 19 H. R. Ward and R. G. Lawler, J. Am. Chem. Soc., 1967, 89, 5518–5519.
- 20 R. Kaptein, J. Chem. Soc. D, 1971, 732-733.
- 21 G. L. Closs and A. D. Trifunac, J. Am. Chem. Soc., 1969, 91, 4552-4554.
- 22 (a) J. H. Ridd, Chem. Soc. Rev., 1991, 20, 149-165; (b) J. H. Ridd, Acta Chem. Scand., 1998, **52**, 11–22; (c) A. R. Butler, T. J. Rutherford, D. M. Short and J. H. Ridd, *Chem. Commun.*, 1997, 669–670; (d) A. R. Butler, T. J. Rutherford, D. M. Short and J. H. Ridd, Nitric Oxide, 2000, 4,
- 23 (a) M. Lehnig, J. Chem. Soc., Perkin Trans. 2, 1996, 1943-1948; (b) M. Lehnig, Acta Chem. Scand., 1997, 51, 211-213; (c) M. Lehnig and K. Schürmann, Eur. J. Org. Chem., 1998, 913-918; (d) M. Lehnig, Tetrahedron Lett., 1999, 40, 2299-2302.
- 24 (a) G. L. Closs, C. E. Doubleday and D. R. Paulson, J. Am. Chem. Soc., 1970, **92**, 2185–2187; (b) M. Lehnig and H. Fischer, Z. Naturforsch., A: Phys. Phys. Chem. Kosmophys., 1972, 27a, 1300–1307.

- 25 (a) G. T. Evans, P. D. Fleming and R. G. Lawler, J. Chem. Phys., 1973, 58, 2071–2078; (b) K. M. Salikhov, F. S. Sarvarov, R. Z. Sagdeev and Yu. N. Molin, Kinet. Katal., 1975, 16, 279-287; (c) K. Vollenweider and H. Fischer, Chem. Phys., 1988, 124, 333-339; (d) J. B. Pedersen, J. Chem. Phys., 1977, 67, 4097-4102.
- 26 M. Kirsch, E. E. Lomonosova, H.-G. Korth, R. Sustmann and H. de Groot, J. Biol. Chem., 1998, 273, 12716-12724.
- 27 M. J. Frisch, G. W. Trucks, H.B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, GAUSSIAN 03, Gaussian, Inc., Pittsburgh, PA, 2003.
- 28 (a) V. Barone, M. Cossi and J. Tomasi, J. Chem. Phys., 1997, 107, 3210-3221; (b) C. E. Miller, J. I. Lynton and D. M. Keevil, J. Phys. Chem. A, 1999, **103**, 11451–11459,
- 29 J. R. Cheeseman, G. W. Trucks, T. A. Keith and M. J. Frisch, J. Chem. Phys., 1996, 104, 5497-5509.
- 30 W. A. Prütz, H. Mönig, J. Butler and E. J. Land, Arch. Biochem. Biophys., 1985, 243, 125-134.
- 31 (a) A. D. Nadezhdin and H. B. Dunford, Can. J. Chem., 1979, 57, 3017; (b) B. D. Beake and R. B. Moodie, J. Chem. Soc., Perkin Trans. 2, 1998. 1.
- 32 W. Behnke, C. George, V. Scheer and C. Zetzsch, J. Geophys. Res., D: Atmos., 1997, 102, 3795-3804.
- 33 (a) E. D. Hughes, C. K. Ingold and R. E. Reed, J. Chem. Soc., 1950, 2400-2440; (b) R. B. Moodie, K. Schofield and P. G. Taylor, J. Chem. Soc., Perkin Trans. 2, 1979, 133-136; (c) T. F. Mentel, M. Sohn and A. Wahner, A., Phys. Chem. Chem. Phys., 1999, 1, 5451-5457; (d) M. Schütze and H. Herrmann, Phys. Chem. Chem. Phys., 2002, 4, 60-67.
- 34 J. R. Morton and K. F. Preston, in Landolt-Börnstein, Magnetic Properties of Free Radicals, ed. H. Fischer, Springer, Berlin, New Series, vol. 17a, 1987, p. 5.
- 35 G. Y. Markovits, S. E. Schwartz and L. Newman, Inorg. Chem., 1981, 20, 445-450.
- 36 (a) D. E. Cabelli and H. B. J. Bielski, J. Phys. Chem., 1983, 87, 1809-1812; (b) L. G. Forni, V. O. Mora-Arellano, J. E. Packer and R. L. Willson, J. Chem. Soc., Perkin Trans. 2, 1986, 1-6.
- 37 D. Schweitzer and H. W. Spiess, J. Magn. Reson., 1974, 15, 529.
- 38 (a) A. Zweig, W. G. Hodgson and W. H. Jura, J. Am. Chem. Soc., 1964, 86, 4124–4125; (b) L. Eberson, Electron Transfer Reactions in Organic Chemistry, Springer, Berlin, 1987, p. 91.
- 39 D. M. Stanbury, in Advances in Inorganic Chemistry, ed. A. G. Sykes, Academic Press, San Diego, 1989, vol. 33, p. 69.
- 40 L. P. Olson, M. D. Bartberger and K. N. Houk, J. Am. Chem. Soc., 2003, **125**, 3999–4006.