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A light-promoted metal-free protocol for the amination of imidazo[1,2-a]pyridines with N-aminopyridinium salt by the assis-
tance of surfactants in water was reported, charactering mild and environmentally benign conditions, as well as great functional 
group tolerance. Micelles with negative charge polar surface and hydrophobic core formed from sodium dodecyl sulfate serve 
as an ideal medium for visible-light mediated radical reaction of cationic pyridine salt and midazo[1,2-a]pyridine in aqueous 
phase. The electrostatic interaction between positively charged of N-aminopyridinium and negatively charged on the micelles is 
of great significance in this method. 
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Background and Originality Content 

As a high-frequent and key structural motify in 
N-heteroarenes, imidazo[1,2-a]pyridine has extensively ex-
isted in many pharmaceutical, such as zolpidem, zolimidine, 
olprinone, saripidem, alpidem, and minodronic acid, etc,[1] 
showing anticancer, anti-inflammatory, antiviral, and other 
biological activities.[2] Due to the importance of this promising 
scaffold, great achievements for the building of various func-
tionalized imidazo[1,2-a]pyridines have been made in recent 
years (Scheme 1, (1)).[1a, 2a-c, 3] However, the amination of 
imidazo[1,2-a]pyridines is rare.[3g, 3i-k, 3m, 3p] Despite these 
achievements, developing methodologies with mild and sus-
tainable conditions using new N-radical for the selective C−H 
functionalization of imidazo[1,2-a]pyridines is still highly de-
sired. 

  In the meantime, as a novel radical precursor, pyridinium 
salt has been widely used for regioselective functionalization 
of substituted arenes and heteroarenes for the past few 
years (Scheme 1, (2)).[4] Significantly, N-aminopyridinium salts 
were used for introduce amino groups for compounds under 
the irradiation of visible-light.[5] However, all of these reac-
tions in relate to aminopyridinium salts were conducted only 
in organic phase, and there was no one reported in green 
solvent water.  

Though water as a solvent bears many merits, such as be-
ing safe, nontoxic, environmentally benign, and inexpensive, 
etc, but the big problem is the insolubilization of substrates 
and catalysts.[6] Our laboratory’s long-term enrichment of the 
water phase reaction experience shows that the matter of 
mass transfer from insoluble substrates and catalyst in water 
can be settled by introducing amphiphilic surfactant into wa-
ter to form aggregates as micro reactors.[7] 

 

Scheme 1 Selective C−H functionalization of imidazo[1,2-a]pyridines 
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Figure 1 Micellar free radical reactions involving ionic substrates 

Studies have shown that micelles formed by self-assembly 
of ionic surfactants with polar hydrophilic surfaces and hy-
drophobic cores can be used as an ideal media for visible 
light reactions.[6e, 6f, 7a, 8] In the hydrophilic area of micelles, 
the charged surface can adsorb ionic substrates with oppo-
site charges, and the hydrophobic core can dissolve 
fat-soluble catalysts and substrates, which greatly increase 
both the ionic and hydrophobic compounds in micelles. 
What’s more, the micelle effect may activate the substrates, 
especially the hydrophobic interaction.[7c, 7d] Thus, with these 
effects in micelle, the reaction between ionic and hydropho-
bic substrates could be processed well in water under visi-
ble-light conditions (Figure 1). Hence, a green protocol that 
combines visible-light as energy and water as a solvent to 
realize C-H amination of imidazole compounds has been 
proposed (Scheme 1, (3)), accomplishing the reaction be-
tween the polar cationic N-aminopyridinium salts amino rad-
ical precursor and nonpolar imidazo[1,2-a]pyridines in water 
for the first time. 

Results and Discussion 

Table 1 Optimization of the reaction conditionsa 
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Entry Photocatalyst Surfactant (equiv) 
Yield 
(%)b 

1 Ir(ppy)3 SDS 72 

2 (Ir[dF(CF3)ppy]2 SDS 66 
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(dtbpy))PF6 

3 Ru(bpy)3Cl2 SDS Trace 

4 4CzIPN SDS 86 

5 4CzIPN SDBS 72 

6 4CzIPN Sodium laurylsulfonate 56 

7 4CzIPN Bromohexadecyl pyridine NR 

8 4CzIPN 
Dihexadecyldime-

thylammonium bromide 
NR 

9 4CzIPN CTAB NR 

10 4CzIPN Tween 80 32 

11 4CzIPN 
Polyoxyethylene lauryl 

ether 
36 

12 4CzIPN None trace 

13 None SDS trace 

14c 4CzIPN SDS NR 

15d 4CzIPN SDS trace 

16 4CzIPN SDS(0.25) 66 

17 4CzIPN SDS(0.5) 48 

a Reaction conditions (unless otherwise stated): 0.2 mmol of 1a, 1.2 
eq of 2a, 2 mol% of photocatalyst, 0.15 eq surfactant in water 4 mL, 
5 W Blue LEDs, at N2 atmosphere and room temperature reaction for 
24 h; NR = No reaction; CTAB = Cetyltrimethylammonium bromide; 
SDS = Sodium dodecyl sulfate; SDBS = Sodium dodecylbenzene sul-
fonate. b Isolated yield. c Without light. d At air atmosphere. 

 

To test our hypothesis, we initiated our exploration by employ-
ing 2-phenylimidazo[1,2-a]pyridine 1a and N-aminopyridinium 2a 
as the model substrates under the atmosphere of N2 and the irra-
diation of 5 W blue LEDs at room temperature (Table 1). Firstly, 
several photocatalysts including 4CzIPN, Ir(ppy)3, 
(Ir[dF(CF3)ppy]2(dtbpy))PF6, and Ru(bpy)3Cl2 were explored in the 
presence of SDS (entries 1−4). We were pleased to find that 
4CzIPN was the best photocatalyst, delivering the desired product 
3a in excellent isolated yield (86%, entry 4). Then, several surfac-
tants including both nonionic and ionic surfactants were screened 
(entries 4-11). All the anionic surfactants have achieved good re-
sults (entries 4-6), and the SDS gave the best results (entriy 4). It is 
worth noting that cationic surfactants worked poorly due to the 
electrostatic repulsion between positive charge surface and 
N-aminopyridinium salt (entries 7-9), which lowered the concen-
tration of substrates 2a in micelles. Lower yield was given when 
nonionic surfactants were used (entries 10, 11). The yield was not 
increased when the concentration of SDS was up to 0.25 or 0.5 eq 
(entries 16-17). Expectedly, desired product was not given in the 
absence of photocatalyst, surfactant, light, or N2 (entries 12-15).  

Table 2 Scope of imidazo[1,2-a]pyridinea, b 
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a Reaction conditions (unless otherwise stated): 0.2 mmol of 1, 1.2 eq 
of 2a, 2 mol% of 4CzIPN, 0.15 eq SDS in water 4 mL, 5 W Blue LEDs, 
at N2 atmosphere and room temperature reaction for 24 h. b Isolated 
yield.  

 

With optimized conditions in hand, we next explored the sub-
strate scope of this protocol. As shown in Table 2, substituents 1 
(−CH3, −OMe, −CH2CH3, −COOCH3 −F, −Cl, −CF3) on the pyridyl ring 
could proceeded smoothly with N-aminopyridinium 2a, leading to 
the target products 3a−3h in moderate to good yields (66%−86%). 
Furthermore, 2-aryl imidazo[1,2a]pyridines 1 bearing elec-
tron-donating groups (−CH3, −OMe, −OH) or electron-withdrawing 
groups (−CN, −CF3, −Br, −F, −Cl) all reacted smoothly to give the 
target amination imidazo[1,2-a]pyridines 3i−3q with good yields 
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(72−88%) in phenyl moiety. It should be noted that imid-
azo[1,2-a]pyridines substituted by heterocyclic groups could still 
proceed well with the optimized conditions (3r-3t). To our delight, 
the corresponding thiomethylated products (3u-3w) could be ob-
tained in satisfactory yields. 

Table 3 Scope of N-aminopyridinium salt.a, b 
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a Reaction conditions (unless otherwise stated): 0.2 mmol of 1a, 1.2 
eq of 2, 2 mol% of 4CzIPN, 0.15 eq SDS in water 4 mL, 5 W Blue LEDs, 
at N2 atmosphere and room temperature reaction for 24 h. b Isolated 
yield. 

Next, we commenced exploring the scope of pyridinium salts 2. 
As it is seen in Table 3, the amidyl radicals (RSO2N•R1, RCON•Me, 
tBuOCON•H) stemmed from the corresponding 
N-aminopyridinium salts involved in the amination to give the 
desired imidazo[1,2-a]pyridines (2a-2k) in moderate to excellent 
yields. Interestingly, compared with pyridinium salts 2a, the sub-
strate 2b without methyl substitution gave a lower yield, indicating 
that the methyl substitution on nitrogen may have the function of 
stabilizing N-radicals. It is worth mentioning that there are some 
pyridinium salts showing no activity with this method, as shown in 
Table 3. 

 

Scheme 2 Mechanism study. 
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In order to explore the mechanism of the reaction, several con-
trol experiments were accomplished (Scheme 2). The results of (1) 
and (3) indicated that micellar catalysis was involved. These re-
sults showed that photocatalyst (4), surfactant (3), light (2), and N2 

(5) were the necessary conditions. Moreover, this transformation 
could be terminated completely by introducing TEMPO 
(2,2,6,6-tetramethylpiperidin-1-oxyl) (7), suggesting the reaction 
was proceeded via radical pathway. And also the addition of BHT 
(butylated hydroxytoluene) gave rise to a sharp decrease of the 
yield (16%) (6). 

Based on the above investigations and previous reports,[3a, 4, 7a, 

7d] a possible mechanism was provided (Figure 2). As shown in 
Figure 2a, as an excellent precursor of N-radical, water-soluble 
N-aminopyridinium salt with cationic polar structure could be 
embedded on the polar surface of micelles with negative charge 
due to electrostatic attraction, which greatly increased the con-
centration of pyridinium salt in micelles. Simultaneously, the con-
centration of all nonpolar reactants, including imid-
azo[1,2-a]pyridine and photocatalyst, in the hydrophobic core of 
micelles significantly increased due to the hydrophobic interaction 
in the core of micelle.  

Thus, with this micelle effect, N-radical could be generated eas-
ily under the visible-light irradiation in water, followed by a pho-
toredox process in micelle to finish the follow-up reaction. The 
Figure 2b showed the detailed process. Firstly, 4CzIPN is excited by 
blue light to form 4CzIPN*. Pyridinium salt 2a is reduced by excit-
ed species 4CzIPN*, giving N-radical A and pyridine B. Then, 
N-radical A selectively attacks imidazo[1,2-a]pyridine to afford 
radical C. After SET oxidation of C, cationic species D was given, 
followed by deprotonating to yield the final product 3a.  
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(a) Micellar catalysis  
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(b) Photoredox process  

Figure 2 Proposed mechanism. 

Conclusions 

In conclusion, we have firstly reported a versatile and environ-
mentally benign stragety for the amination of diverse imid-
azo[1,2-a]pyridines by employing N-aminopyridinium salt as radi-
cal precursors in aqueous, which accelerated by anion surfactant. 
Micelles formed from amphiphilic anion surfactant SDS not only 
increased the concentration of polar cation N-aminopyridinium 
salt on the negative charge surface of micelle, but also the li-
pid-soluble imidazo[1,2-a]pyridine and photocatalyst in the hy-
drophobic core of micelles, which effectively addressed the mass 
transfer problem in water and promoted the reaction greatly. The 
using of water as a solvent and visible-light as energy source to 
develop a more environmentally friendly synthesis method for 
amino-imidazo[1,2-a]pyridines shows significant research value. 

Experimental 

In a reaction tube equipped with a magnetic stir bar was 
charged with 40 mg (0.20 mmol) of 
2-phenylimidazo[1,2-a]pyridine 1a, 83.5 mg (0.24 mmol) of 
N-aminopyridinium 2a, 9.2 mg of sodium dodecyl sulfate (SDS) 
and 3.2 mg (2 mol %) 4CzIPN were added in 4 mL of water at room 
temperature, N2 atmosphere, under irradiation with 5W blue LED 
for 24 h. After completion of the reaction, the mixture was ex-

tracted with EtOAc and dried over anhydrous Na2SO4, after re-
moval of EtOAc under vacuum, crude mixture left out was purified 
by column chromatography (silica gel 300-400 mesh size) using 
petroleum ether and ethyl acetate, the product 3a was isolated. 
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