ChemComm

COMMUNICATION

RSCPublishing

View Article Online View Journal | View Issue

Cite this: Chem. Commun., 2013, 49, 517

Received 18th October 2012, Accepted 19th November 2012 **presence of base**[†] Feng Wang,^a Haijun Yang,^b Hua Fu*^{bc} and Zhichao Pei*^a

Efficient copper-catalyzed Michael addition of acrylic derivatives with primary alcohols in the

DOI: 10.1039/c2cc37595h

www.rsc.org/chemcomm

A novel and efficient copper-catalyzed Michael addition of acrylic derivatives with primary alcohols in the presence of base has been developed. The protocol uses readily available acrylic derivatives and primary alcohols as the starting materials, inexpensive CuCl₂ as the catalyst, and the corresponding addition products were obtained in moderate to excellent yields.

Compounds containing carbon-oxygen bonds widely occur in chemicals and biologically active molecules. Classical construction of carbon-oxygen bonds is from nucleophilic substitution of highly nucleophilic alkoxides to halogenate compounds. Recently, Michael addition of α , β -unsaturated carbonyl compounds with alcohols has attracted much attention,¹ and some efficient methods have been developed, such as organocatalytic,² Lewis or Brønsted base (or acid) catalyzed,³ N-heterocyclic carbine-catalyzed,⁴ DNA-based catalyzed,⁵ transition metal catalyzed,⁶ and tetra-n-butylammonium fluoride (TBAF) promoted⁷ protocols. In the past few decades, coppercatalysts have become popular because of their low-cost and low-toxicity, and great achievement has been made through copper-catalyzed coupling reactions by other groups^{8,9} and us.¹⁰ Herein, we report a novel and efficient copper-catalyzed Michael addition of acrylic derivatives with primary alcohols in the presence of base.

Copper-catalyzed Michael addition of *N*-phenylacrylamide (1a) with phenylmethanol (2f) leading to 3-(benzyloxy)-*N*-phenyl-propanamide (3f) was used as the model to optimize conditions including the catalysts, bases, solvents and temperature without

^a College of Science, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China **Table 1** Copper-catalyzed Michael addition of *N*-phenylacrylamide (**1a**) with phenylmethanol (**2f**) leading to 3-(benzyloxy)-*N*-phenylpropanamide (**3f**): optimization of conditions^{*a*}

PhHN	0 1a + H0 1a 2f	cat., base, solve temp., 12 h	PhHN 3f	\bigcirc
Entry	Cat.	Base (equiv.)	Solvent	$\operatorname{Yield}^{b}(\%)$
1	$CuCl_2$	$Cs_2CO_3(1)$	CH_2Cl_2	78
2	$CuCl_2$	$K_2 CO_3 (1)$	CH_2Cl_2	52
3	$CuCl_2$	$K_3PO_4(1)$	CH_2Cl_2	76
4	CuCl ₂	KOBu ^t (1)	CH_2Cl_2	21
5	$CuCl_2$	_	CH_2Cl_2	Trace
6	CuCl ₂	Cs_2CO_3 (0.2)	CH_2Cl_2	18
7	CuCl ₂	$Cs_2CO_3(0.5)$	CH_2Cl_2	41
8	CuCl ₂	Cs_2CO_3	ClCH ₂ CH ₂ Cl	57
9	CuCl ₂	Cs_2CO_3	CH ₃ CN	8
10	CuCl ₂	Cs_2CO_3	Toluene	36
11	CuCl ₂	Cs_2CO_3	1,4-Dioxane	40
12	CuCl	Cs_2CO_3	CH_2Cl_2	38
13	CuBr	Cs_2CO_3	CH_2Cl_2	33
14	CuI	Cs_2CO_3	CH_2Cl_2	50
15	$Cu(OAc)_2$	Cs_2CO_3	CH_2Cl_2	20
16	CuSO ₄	Cs_2CO_3	CH_2Cl_2	28
17	_	Cs_2CO_3	CH_2Cl_2	23
18	CuCl ₂	Cs_2CO_3	CH ₂ Cl ₂	82 ^c
19	$CuCl_2$	Cs_2CO_3	CH_2Cl_2	55^d
20	$CuCl_2$	Cs_2CO_3	CH_2Cl_2	38 ^e

^{*a*} Reaction conditions: *N*-phenylacrylamide (**1a**) (0.5 mmol), phenylmethanol (**2f**) (0.5 mmol), catalyst (0.05 mmol), solvent (1.0 mL) under reflux, reaction time (12 h). ^{*b*} Isolated yield. ^{*c*} Phenylmethanol (**2a**) (1.0 mmol). ^{*d*} Reaction temperature (25 °C). ^{*e*} Catalyst (0.025 mmol).

extrusion of air. As shown in Table 1, four bases were tested using 10 mol% CuCl₂ as the catalyst, CH_2Cl_2 as the solvent under reflux (39 °C) (entries 1–4), and Cs_2CO_3 provided the highest yield (entry 1). Only trace amount of product was observed in the absence of base (entry 5). Yields decreased when the amount of base was reduced (entries 6 and 7). The effect of solvents was investigated (compare entries 1 and 8–11), and CH_2Cl_2 was the most suitable (entry 1). Other copper salts were screened (entries 12–16), and they were inferior to $CuCl_2$. Only 23% yield was afforded in the absence of the copper-catalyst (entry 17).

^b Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China. E-mail: fuhua@mail.tsinghua.edu.cn, peizhichao18@yahoo.com; Fax: +86 10-62781695

^c Key Laboratory of Chemical Biology (Guangdong Province), Graduate School of Shenzhen, Tsinghua University, Shenzhen 518057, P. R. China

[†] Electronic supplementary information (ESI) available: General procedure for synthesis, characterization data, and ¹H and ¹³C NMR spectra of compounds **3a-x**. See DOI: 10.1039/c2cc37595h

The yield increased from 78% to 82% when 2 equiv. of phenylmethanol (2a) was used as the partner of *N*-phenylacrylamide (1a). The reaction provided 55% yield when it was carried out at room temperature (25 °C). When 5 mol% CuCl₂ was used as the catalyst, the yield decreased to 38% (entry 20). Therefore, the optimized copper-catalyzed conditions are as follows: 10 mol% CuCl₂ as the catalyst, one equiv. of Cs₂CO₃ as the base, CH₂Cl₂ as the solvent at 39 °C without extrusion of air.

With the optimized copper-catalyzed conditions in hand, the scope for Michael addition of acrylic derivatives with primary alcohols was investigated. As shown in Table 2, the examined substrates provided moderate to excellent yields. For substituted acrylamides (1a-h), their reactivity was affected by steric hindrance and electronic effect of the substrates. The substrates containing bigger groups and higher electronic density exhibited lower reactivity. A stronger base, CH₃ONa, was required for the reaction of (E)-N-phenylhex-2-enamide (1f) with CH₃OH (entry 18), and 1-(piperidin-1-yl)prop-2-en-1-one (1g) gave lower yield (48%) under the standard conditions (entry 19). For acrylic esters (1i and 1j), the Michael addition afforded higher yields (entries 21-23). Unfortunately, the ester bonds were hydrolyzed into the corresponding acids because of addition of water from the solvent and reagents. For primary alcohols, steric hindrance was a key factor. For example octan-1-ol (2d) gave lower yield (entry 4). The reactions could tolerate some functional groups including amide bond (entries 1–20), CF₃ (entry 5), ether (entry 8), C–Br bond (entry 9), nitro (entry 10), alkenyl (entry 11), alkyne group (entry 12) and oxygen heterocycle (entry 13) in the substrates.

According to the above results, a possible mechanism for copper-catalyzed Michael addition of acrylic derivatives with primary alcohols in the presence of base is proposed in Scheme 1. Treatment of primary alcohol (2) with CuCl_2 in the presence of Cs_2CO_3 provides I, and coordination of I with 1 leads to II.¹¹ Michael addition of the alkoxyl anion to the acrylic derivative provides III, and reaction of III with 2 gives IV leaving the copper catalyst–alkoxyl complex I that enters the catalytic cycle again. Finally, isomerization of IV affords the target product (3).

We attempted the copper-catalyzed Michael addition of (E)-but-2-enenitrile (1k) with phenylmethanol (2f) under the standard conditions, and the corresponding product (3x) was obtained in 96% yield (Scheme 2). Therefore, the present method can be used in the Michael addition of other alkenes containing α -electron-withdrawing groups.

In conclusion, we have developed an easy and efficient copper-catalyzed Michael addition of acrylic derivatives with primary alcohols in the presence of base. The protocol uses readily available acrylic derivatives and primary alcohols as the starting materials, $CuCl_2$ as the catalyst, Cs_2CO_3 as the base, and CH_2Cl_2 as the solvent, the reactions were performed well under mild conditions without extrusion of air, and the corresponding addition products with carbon–oxygen bonds were obtained in moderate to excellent yields. The method could tolerate some functional groups in the substrates. This is the first example for copper-catalyzed Michael addition with weak primary alcohols thus far. Therefore, the present method will find wide applications in various fields.

Table 2 Copper-catalyzed Michael addition of acrylic derivatives with primary $alcohols^{\alpha}$

	$R^1 $ $R^2 $ R^2	- HOR ³ CuCl ₂ , Cs ₂ CO ₃ CH ₂ Cl ₂ , reflux	$R^1 \xrightarrow{Q} R^2 OR^3$
Entry	1	2	3 (Yield ^b)
1	PhHN 1a	CH₃OH 2a	PhHN 3a (89%)
2	1a	СН ₃ СН ₂ ОН 2 Ь	PhHN 3b (88%)
3	1a	СН ₃ (СН ₂) ₃ ОН 2с	PhHN 3c (58%)
4	1a	CH ₃ (CH ₂) ₇ OH 2d	PhHN 3d (37%)
5	1a	CF ₃ CH ₂ OH 2e	$\frac{0}{3e(86\%)}OCH_2CF_3$
6	1a	HO 2f	PhHN 3f (82%)
7	1a	HO 2g Me	PhHN 3g (76%) Me
8	1a	HO 2h OMe	PhHN 3h (62%) OMe
9	1a	HO 2i	PhHN 3i (60%)
10	1a	Zj NO ₂	PhHN NO2 O 3j (68%)
11	1a	HO 2k	PhHN 3k (78%)
12	1a	H0 21	PhHN 31 (70%)
13	1a	H0 2m 0-	PhHN 3m (73%)
14	Me O N Ib	2b	Me O OC ₂ H ₅ H 3n (60%)
15		2b	∩ N H 30 (84%)
16	PhHN 1d	2b	PhHN 3p (83%)
17 ^c	N H 1e	2b	N 3q (70%)
18^d	PhHN 0 PhHN C ₃ H	<i>a</i> ″ 2a	PhHN Gr (77%)
19	N 1g	2b	OC2H5 3s (48%)

Table 2 (continued)

^{*a*} Reaction conditions: **1** (2.0 mmol), **2** (4.0 mmol), $CuCl_2$ (0.2 mmol), Cs_2CO_3 (2.0 mmol), CH_2Cl_2 (4.0 mL) under reflux, reaction time (12 h). ^{*b*} Isolated yield. ^{*c*} Under a nitrogen atmosphere. ^{*d*} CH₃ONa (2.0 mmol) as the base, CH₃OH (4.0 mL) as the solvent under reflux.

Scheme 1 A possible mechanism for copper-catalyzed Michael addition of acrylic derivatives with primary alcohols.

Scheme 2 Copper-catalyzed Michael addition of (*E*)-but-2-enenitrile (1k) with phenylmethanol (2f).

The authors wish to thank the Scientific Research Foundation of Northwest A&F University (Z111020903), the National Natural Science Foundation of China (Grant No. 21105054, 20972083 and 21172128) and the Ministry of Science and Technology of China (Grant No. 2012CB722605) for financial support.

Notes and references

 For oxa-Michael reaction, see reviews: (a) C. F. Nising and S. Bräse, Chem. Soc. Rev., 2012, 41, 988; (b) C. F. Nising and S. Bräse, Chem. Soc. Rev., 2008, 37, 1218; (c) L. Hintermann, Top. Organomet. Chem., 2010, 3, 123.

- 2 (a) E. Reyes, G. Talavera, J. L. Vicario, D. Badía and L. Carrillo, Angew. Chem., Int. Ed., 2009, 48, 5701; (b) J. E. Murtagh, S. H. McCooey and S. J. Connon, Chem. Commun., 2005, 227; (c) T. Kano, Y. Tanaka and K. Maruoka, Tetrahedron Lett., 2006, 47, 3039.
- 3 (a) P. B. Kisanga, P. Illankumaran, B. M. Fetterley and J. G. Verkade, J. Org. Chem., 2002, 67, 3555; (b) I. C. Stewart, R. G. Bergman and F. D. Toste, J. Am. Chem. Soc., 2003, 125, 8696; (c) Q. Gu, Z. Q. Rong, C. Zheng and S. L. You, J. Am. Chem. Soc., 2010, 132, 4056.
- 4 (a) E. M. Phillips, M. Riedrich and K. A. Scheidt, J. Am. Chem. Soc., 2010, 132, 13179; (b) M. B. Lalonde, O. K. Farha, K. A. Scheidt and J. T. Hupp, ACS Catal., 2012, 2, 1550.
- 5 R. P. Megens and G. Roelfes, Chem. Commun., 2012, 48, 6366.
- 6 (a) T. Hosokawa, T. Shinohara, Y. Ooka and S. Murahashi, *Chem. Lett.*, 1989, 2001; (b) C. S. Yi, S. Y. Yun and Z. J. He, *Organometallics*, 2003, 22, 3031; (c) M. V. Farnworth, M. J. Cross and J. Louie, *Tetrahedron Lett.*, 2004, 45, 7441; (d) C. Munro-Leighton, S. A. Delp, E. D. Blue and T. B. Gunnoe, *Organometallics*, 2007, 26, 1483; (e) C. D. Vanderwal and E. N. Jacobsen, *J. Am. Chem. Soc.*, 2004, 126, 14724; (f) J. H. Xie, L. C. Guo, X. H. Yang, L. X. Wang and Q. L. Zhou, *Org. Lett.*, 2012, 14, 4758; (g) H. Fuwa, K. Noto and M. Sasaki, *Org. Lett.*, 2010, 12, 1636.
- 7 I. N. Lykakis, I. P. Zaravinos, C. Raptis and M. Stratakis, J. Org. Chem., 2009, 74, 6339.
- 8 For recent reviews on copper-catalyzed cross couplings, see: (a) K. Kunz, U. Scholz and D. Ganzer, Synlett, 2003, 2428; (b) S. V. Ley and A. W. Thomas, Angew. Chem., Int. Ed., 2003, 42, 5400; (c) I. P. Beletskaya and A. V. Cheprakov, Coord. Chem. Rev., 2004, 248, 2337; (d) G. Evano, N. Blanchard and M. Toumi, Chem. Rev., 2008, 108, 3054; (e) D. Ma and Q. Cai, Acc. Chem. Res., 2008, 41, 1450; (f) F. Monnier and M. Taillefer, Angew. Chem., Int. Ed., 2009, 48, 6954; (g) D. S. Surry and S. L. Buchwald, Chem. Sci., 2010, 1, 13; (h) H. Rao and H. Fu, Synlett, 2011, 745; (i) T. Liu and H. Fu, Synthesis, 2012, 2805 and references cited therein.
- 9 For selected papers: (a) A. Klapars, J. C. Antilla, X. Huang and S. L. Buchwald, J. Am. Chem. Soc., 2001, 123, 7727; (b) A. Klapars, X. H. Huang and S. L. Buchwald, J. Am. Chem. Soc., 2002, 124, 7421; (c) J. C. Antilla, A. Klapars and S. L. Buchwald, J. Am. Chem. Soc., 2002, 124, 11684; (d) K. Okano, H. Tokuyama and T. Fukuyama, Org. Lett., 2003, 5, 4987; (e) R. K. Gujadhur, C. G. Bates and D. Venkataraman, Org. Lett., 2001, 3, 4315; (f) A. S. Gajare, K. Toyota, M. Yoshifuji and F. Yoshifuji, Chem. Commun., 2004, 1994; (g) D. Ma, Y. Zhang, J. Yao, S. Wu and F. Tao, J. Am. Chem. Soc., 1998, 120, 12459; (h) D. Ma, Q. Cai and H. Zhang, Org. Lett., 2003, 5, 2453; (i) L. Zhu, L. Cheng, Y. Zhang, R. Xie and J. You, J. Org. Chem., 2007, 72, 2737.
- For selected papers: (a) D. Jiang, H. Fu, Y. Jiang and Y. Zhao, J. Org. Chem., 2007, 72, 672; (b) Q. Jiang, D. Jiang, Y. Jiang, H. Fu and Y. Zhao, Synlett, 2007, 1836; (c) L. Zeng, H. Fu, R. Qiao, Y. Jiang and Y. Zhao, Adv. Synth. Catal., 2009, 351, 1671; (d) X. Liu, H. Fu, Y. Jiang and Y. Zhao, Angew. Chem., Int. Ed., 2009, 48, 348; (e) F. Wang, H. Liu, H. Fu, Y. Jiang and Y. Zhao, Org. Lett., 2009, 11, 2469; (f) J. Lu, X. Gong, H. Yang and H. Fu, Chem. Commun., 2010, 46, 4172; (g) X. Yang, H. Fu, R. Qiao, Y. Jiang and Y. Zhao, Adv. Synth. Catal., 2010, 352, 1033; (h) T. Liu, R. Wang, H. Yang and H. Fu, Chem.-Eur. J., 2011, 17, 6765; (i) T. Liu, C. Zhu, H. Yang and H. Fu, Adv. Synth. Catal., 2012, 354, 1579.
- (a) F. C. Sequeira and S. R. Chemler, Org. Lett., 2012, 10, 1636;
 (b) C. Munro-Leighton, S. A. Delp, E. D. Blue and T. B. Gunnoe, Organometallics, 2007, 26, 1483.