The Effect of Lewis Acids on the Pinacol Homocoupling Reaction of Aldehydes Promoted by Samarium Diiodide

Rita Annunziata,^[a] Maurizio Benaglia,^[a] Mauro Cinquini,^[a] and Laura Raimondi^{*[a]}

Keywords: Pinacol reaction / Lewis acid / Samarium diiodide / 1,2-diols / Carbonyl compounds

The effect of various Lewis acids on the samarium diiodide promoted pinacol homocoupling of aldehydes was investigated. The reaction of benzaldehyde proceeded with fair to good 1,2-anti-stereoselectivity, while in the case of

other aromatic and aliphatic aldehydes syn-stereoselectivity was generally observed. Chiral α -alkylaldehydes allowed for an almost complete stereocontrol favoring syn-1,2-diols.

Introduction

The pinacol coupling reaction is receiving renewed attention because of the recent availability of mild and selective reducing agents.^[1] Among these, samarium diiodide has been successfully employed in the synthesis of several natural and nonnatural products.^{[1][2]} While the intramolecular coupling procedure is well established, less is known about the intermolecular reaction: since the pioneering work of Kagan et al.,^[3] only a few studies have dealt with the stereochemical outcome of the pinacol homocoupling of aldehydes promoted by Sm^{II} species.^[1,2,4]

A great deal of effort has been devoted to make SmI2promoted reactions more convenient.^[2] Interesting procedures have recently been proposed for the generation of SmI2 from metallic samarium.^[5] SmI2 can be regenerated from Sm^{III} species employing electrochemical procedures^[6a] or metallic species as coreductants,^[6b,6c] and in the presence of metallic magnesium a catalytic cycle was proposed.^[6b,7] Sm(Hg) was very recently shown to promote pinacol homocoupling of aromatic aldehydes.^[8] Metal ketyl complexes have been characterized by X-ray techniques,^[9] while the reducing power of SmI2 in THF in the presence of cosolvents such as HMPA has been measured.[10][11]

An increasing amount of studies also deals with the effect of added Lewis acids on the intermolecular pinacol coupling.^[4,12-14] The stereoselection of the pinacol coupling is often attributed to the capability of the metal to complex both reactants in the transition state; the use of Lewis acids more coordinating than the samarium(III) species is thus likely to influence the synlanti ratio. Very recently, we published some preliminary results on the SmI2-promoted homocoupling of imines in the presence of Yb(OTf)₃,^[15] and wish now to report on our studies on the effect of Lewis acids on the homocoupling reaction of aldehydes to give syn and anti 1,2-diols.

Results and Discussion

SmI₂-Promoted Homocoupling of Benzaldehyde in the Presence of Lewis Acids

The SmI₂-promoted homocoupling reaction of benzaldehyde was chosen to screen the behavior of different Lewis acids. All reactions were run in THF under an argon atmosphere; two molar equivalents of a 0.1M THF solution of SmI2 were added dropwise to a 0.1M THF solution of benzaldehyde and the required additive (reaction conditions, additives, chemical yields and diastereoisomeric ratios are collected in Table 1). Assignment of the relative configuration to the known diols 1a,b was based on the chemical shift values of the CHOH proton that resonates at 4.65 and 4.80 ppm in the *syn* and *anti* isomer, respectively.^[16]

Table 1. SmI₂-promoted homocoupling of benzaldehyde

PhCHO <u>2</u>	SmI ₂ / additive	Ph Ph +	Ph Ph OH OH
		1a (syn)	1b (anti)

#	T (°C)	t	additives (eq)[a]	yield %	syn/anti
1	-78	2 h30'	_	90	50/50
2	-78	2 h30'	CF ₃ COOH (2.2)	58	50/50
3	78	2 h30'	MeOH (2.2)	45	50/50
4	-78	1 h15'	BF ₃ Et ₂ O (2.2)	90	50/50
5	-78	5h	$Ti(OiPr)_4(1)$	_	-
6	-30	12h	$Ti(OiPr)_4(1)$	55	25/75
7	0	12h	$Ti(OiPr)_4(1)$	62	27/73
8	20	12h	$Ti(OiPr)_4(1)$	94	27/73
9	60	18h	$Ti(OiPr)_4(1)$	61	25/75
10	20	12h	$TiCl_2(OiPr)_2(1)$	60	33/67
11	20	20h	Ti(TADDOL) ₂ (1)	57	30/70
12	-78/0	18h	$NiCl_2(1)$	-	-
13	20	12h	$NiCl_2(1)$	70	30/70
14	-78 up to 20	18h	$NiCl_2(1)$	85	25/75
15	-78	1 h30'	$Yb(OTf)_3(1)$	79	40/60
16	-30	5h	$Yb(OTf)_3(1)$	55	38/62
17	-78	5h	$ZnCl_{2}(1)$	90	30/70
18	-30	12h	$ZnCl_{2}(1)$	70	36/64
19	78	5h	$MgBr_2(1)$	96	31/69
20	-78	5h	$Cu(OTf)_2(1)$	96	33/67
21	20	18h	$Ti(OiPr)_4(1) + HMPA(8)$	27	34/66
22	78	2 h30'	HMPA (8)	[b]	_
23	78	2 h30'	HMPA (4)	80	40/60

^[a] Molar equivalents with respect to benzaldehyde. - ^[b] Only benzyl alcohol was isolated.

[[]a] Centro CNR and Dipartimento di Chimica Organica e Industriale, Università di Milano, via Golgi 19, I-20133 Milano, Italy

As can be seen from the literature, [1-3] the coupling reaction also proceeds smoothly at -78 °C in the absence of additives with excellent chemical yields, but with no stereoselection (entry 1). The addition of proton donors (entries 2,3) did not affect the stereoselection, but lowered the chemical yield,^[3] leading to the formation of benzyl alcohol as the only by-product. On passing from protic acids to BF₃·Et₂O, the diols **1a.b** were obtained in good yields, but the reaction was completely stereorandom (entry 4). More interestingly, in the presence of titanium(IV) a predominance of the anti diastereoisomer was observed.[5a] Addition of Ti(OiPr)4 slowed the reaction and higher temperatures were required for the coupling to proceed (entries 5-9), the best results being achieved at 20 °C (entry 8). The stereoselection was independent of the reaction temperature. More acidic Ti^{IV} species, such as Ti(OiPr)₂Cl₂, led to less satisfactory results (entry 10). The use of the more hindered Ti(TADDOL)₂ did not allow for significant improvements (entry 11); unfortunately, only racemic syn-1a was observed.

The reaction performed in the presence of NiCl₂^[12] showed an analogous behavior to the one observed when Ti(OiPr)₄ was employed: higher temperatures (20 °C) were required for the reaction to proceed, and *anti* selectivity was observed (entries 12–14).^[17] All the other Lewis acids we tested allowed for modest to good *anti* stereoselectivity, but with no significant improvement (entries 15–20).

HMPA is indeed the most commonly used cosolvent in SmI₂-promoted reactions, including pinacol coupling,^{[1][2]} and influences both the chemical yield and the stereoselectivity of the reaction.^[11] Addition of HMPA to SmI₂ solutions is known to lead to the formation of species with an increased reducing power. In fact, the oxidation potential of a 0.5M solution of SmI₂ in THF (-1.33 V) rises to -1.46 V for SmI₂(HMPA)₂, and to -2.05 V for SmI₂(HMPA)₄.^[10] The combined use of 2 molar equivalents of SmI₂(HMPA)₄ (generated in situ from SmI₂ and HMPA) together with one equivalent of Ti(O*i*Pr)₄ allowed for the formation of only a small quantity of diols (27%) with a modest *anti* stereoselectivity (entry 21). As by-products, benzyl alcohol and various deoxygenated and unsaturated compounds were observed.^[18]

This disappointing result prompted us to investigate the effect of HMPA alone as an additive. In fact, the reaction performed with $SmI_2(HMPA)_4$ led to the formation of benzyl alcohol as the only product (entry 22). With 2 molar equivalents of HMPA per SmI_2 , **1a**,**b** were recovered in good chemical yield, but the reaction was almost stereorandom (entry 23).

A few comments can be added concerning the SmI₂/ Lewis acid-promoted pinacol coupling of benzaldehyde (Table 1, entries 5–20). First of all, the significant decrease of the reaction rate observed when Ti^{IV} (entries 5–11) or Ni^{II} (entries 12–14) species were added, could be due to the presence of complexation equilibria in solution. Before addition of SmI₂, benzaldehyde is complexed with the Lewis acid; decomplexation and complexation with Sm^{II} is probably needed for the reaction to take place.^{[2][19]} If a direct reduction by SmI_2 of the Lewis acid-complexed benzaldehyde was possible, the reaction rate should be increased due to the more electrophilic character of the complexed C=O bond. However this was not the case (Table 1, entries 5–9).

In Figure 1 we indicate two possible transition structures to account for the observed stereoselectivity. In the presence of Ti^{IV} or Ni^{II} species, the Sm^{III}-ketyl radical complex reacts immediately with the strongly electrophilic Lewis acidcomplexed aldehyde before the chelation equilibrium takes place. In TS **A**, leading to the *anti* diol, steric and electrostatic interactions are minimized. The *syn* isomer, on the other hand, may be derived from the chelated TS **B**. The intervention of different reducing agents, generated in situ from the Lewis acid by SmI₂, can be ruled out. Sm^{II} is not likely to reduce all the added metal species. Moreover, several low-valent titanium species are known to promote the coupling reaction, but with significant *syn* selectivity.^{[1][19]}

Figure 1. Proposed TS for the formation of 1a,b

SmI₂-Promoted Coupling of Aldehydes in the Presence of Ti^{IV} Species

The homocoupling reaction of aldehydes other than benzaldehyde in the presence of SmI_2 and Lewis acids was then investigated. These aldehydes, however, were either nonreactive, or reacted with low selectivity, and only $Ti(OiPr)_4$ was an efficient additive in this reaction. As for the coupling of benzaldehyde, the presence of the Ti^{IV} species slowed the reaction, so that higher temperatures and sometimes longer reaction times were required for the reaction to proceed. Some significant data are collected in Table 2.

Both in the absence or in the presence of $Ti(OiPr)_4$, *ortho*substituted electron-rich aromatic aldehydes did not couple to give the corresponding diols (entries 1,2), with the significant exception of salicylaldehyde.^[20] In the absence of a Lewis acid the coupling is stereorandom, while when $Ti(OiPr)_4$ was added an 80:20 selectivity was observed, favoring the *syn* isomer.

2-Thienylcarboxaldehyde led to decomposition products in the presence of SmI_2 ; upon addition of $Ti(OiPr)_4$ only

Table 2. SmI₂-promoted homocoupling of aldehydes

	RCHO	2 SmI ₂	/ addit	$\xrightarrow{\text{ive}} R \xrightarrow{\text{OH}} R + OH + $	R ~ 2-6	OH R ŌH Sob (anti)	
#	R	T (°C)	t	additives (eq) ^[a]	diol	yield%	syn/anti
1	2-MeOPh	-78 or 20	15h	_		-	-
2	2,4-(MeO) ₂ Ph	20	15h	$Ti(OiPr)_4(1)$		-	-
3	2-HOPh	-78	3h	_	2a,b	55	50/50
4	2-HOPh	20	15h	$Ti(OiPr)_4(1)$	2a,b	91	80/20
5	2-thiophenyl	-30 or 20	15h	-	-	-	-
6	2-thiophenyl	20	15h	$Ti(OiPr)_4(1)$	3a,b	10	n.d.
7	2-furyl	-30	15h	_	4a,b	63	60/40
8	2-furyl	20	15h	$Ti(OiPr)_4(1)$	4a,b	31	55/45
9	PhCH ₂	20	15h	_	5a,b	40	86/14
10	PhCH ₂	20	15h	$Ti(OiPr)_4(1)$	-	[b]	-
11	$c-C_6H_{11}$	20	15h	$Ti(OiPr)_4(1)$	6a,b	25	60/40 ^[c]
12	$c-C_6H_{11}$	20	40h	$Ti(OiPr)_4$ (1)+HMPA (8)	6a	21	>98/2[c]
13	$c-C_6H_{11}$	60	40h	Ti(OiPr) ₄ (1)+HMPA (8)	6a	27	>98/2[0]
14	$c-C_6H_{11}$	20	15h	HMPA (8)	6a,b	27	61/39
15	$c-C_6H_{11}$	60	15h	HMPA (8)	6a	61	>98/2[0]

^[a] Molar equivalents with respect to benzaldehyde. - ^[b] Only 2-phenylethanol was isolated. - ^[c] Determined by ¹³C NMR spectroscopy, see ref.^[22]

traces of diols **3a**,**b** were recovered (entries 5,6).^{[2][21]} 2-Furylcarboxaldehyde, on the other hand, underwent the pinacol reaction in both cases affording diols **4a**,**b**, but with no significant stereoselectivity (entries 7,8).

The behavior of aliphatic aldehydes was less puzzling. 2-Phenylacetaldehyde in the presence of SmI₂ gave diols 5a,b with good syn selectivity, while in the presence of $Ti(OiPr)_4$ only the corresponding alcohol was isolated (entries 9,10). Aliphatic aldehydes, such as cyclohexancarboxyaldehyde, were known to give the corresponding pinacols in good yields and with no selectivity by reaction with SmI₂.^{[1][3]} Addition of Ti(OiPr)4 slowed the reaction, and even at higher temperatures diols 6a,b were isolated in low yields and with little syn selectivity (entry 11). When performed in the presence of $SmI_2(HMPA)_4$ and $Ti(OiPr)_4$ the reaction was completely syn selective, although in low chemical yield, and was independent of the reaction temperature (entries 12,13). The stereoselectivity is due to $SmI_2(HMPA)_4$: in the absence of added Lewis acid, pinacol 6a was formed with complete stereoselection at 60°C, while at room temperature the reaction is stereorandom (entries 14,15). Addition of Ti(OiPr)4 allows complete stereoselectivity also at room temperature, but at the expense of longer reaction times.^{[22][23]}

From the data reported in Table 2, it can clearly be seen that the reaction conditions need to be tuned to the particular substrate. However, we preferred to use standard reaction conditions in order to compare the behavior of different substrates. When the coupling was stereoselective (entries 9,12,13,15), a preference for the *syn* isomer was observed in all cases, while for benzaldehyde reactions *anti* diol was favored. Complexation equilibria can take place before the actual coupling reaction occurs; in these conditions, TS **B** (Figure 1) is the most favored and well accounts for the preferential *syn* stereoselectivity.^[24] The reactions of salicylaldehyde to give **2a,b** probably proceed through chelated TS's **C** and **D**, depicted in Figure 2.

Figure 2. Proposed TS for the formation of 2a,b

SmI₂-Promoted Coupling of Chiral Aldehydes

Despite its major drawbacks, we tested this procedure to the pinacol coupling of chiral aldehydes. Reaction of optically active α -alkoxy-aldehydes in the presence of SmI₂, with or without Ti(OiPr)₄, led only to deoxygenation of the substrates,^[2] while the reaction performed on α -amino-aldehydes gave only the corresponding α -amino alcohols. Better results were obtained with α -methylaldehydes such as rac-2-phenylpropanal (Table 3). The coupling reaction performed in the presence of 2 molar equivalents of SmI₂ at 0°C led to the formation of only three out of the six (two meso and four d,l couples) possible diastereoisomers of diol 8 (entry 1; cf. Figure 3), namely 3,4-syn-8a and 8b and 3,4anti-8c in a 56:22:22 ratio (see below for structural assignment). Upon raising the reaction temperature to 20°C, both chemical yield and reaction stereoselectivity improved, and only 8a and 8b (in a 90:10 ratio) were formed in 55% chemical yield (entry 2). At this temperature and in the presence of 1 molar equivalent of Ti(OiPr)₄, only 8b was detected and isolated in 77% yield (entry 3). Other reaction conditions, i.e. higher reaction temperature (entry 4), addition of HMPA (entries 5,6) and of Ti(OiPr)₄ and HMPA (entry 7) were detrimental to yield but not to stereoselection. Interestingly, in the presence of HMPA the reaction temperature seems to exert a major influence (entries 5,6), but

Table 3. SmI₂-promoted homocoupling of rac-2-phenylpropanal

Ph	Сно	2 Sr addi	$\frac{nI_2}{tive} Ph + \frac{OH}{OH} Ph^+ $	$Ph \underbrace{\downarrow}_{OH} Ph $			$Ph \underbrace{\downarrow}_{e} \stackrel{OH}{\underset{OH}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\bullet$		
#	T(°C)	t	additives (eq) ^[c]	yield%	8a	8b	8c	3,4-syn/anti	
1	0	15h	_	45	56	22	22	78/22	
2	20	1 5 h	-	55	90	10		>98/2	
3	20	15h	$Ti(OiPr)_4(1)$	77	-	>98	-	>98/2	
4	60	15h	_	[d]	-	-	-	-	
5	20	15h	HMPA (8)	18	>98	-	_	>98/2	
6	60	40h	HMPA (8)	25	-	>98	-	>98/2	
7	20	15h	$Ti(OiPr)_{4}(1) + HMPA(8)$	10	7	93	-	>98/2	

^[a] rac-diol **8a** possesses C_2 symmetry; relative configuration at C-2 and C-3 was not assigned (see text). - ^[b] Only one enantiomer is indicated for sake of simplicity. - ^[c] Molar equivalents with respect to benzaldehyde. - ^[d] Only 2-phenyl-1-propanol was isolated.

FULL PAPER

[a] only one enantiomer is shown for simplicity.

Figure 3. All possible diastereomeric structures for diols 8

the extremely low chemical yields don't allow for further speculation.

The assignment of the relative configuration at C-3 and C-4 of compounds **8a**-c was carried out on converting **8** to acetonides **9** and then using a combination of spectroscopic evidence and symmetry considerations.^[25] The reduced number of signals observed in both the ¹H and ¹³C spectra of **8a** suggested a C_2 or C_8 symmetry for this compound. Acetonide **9a**, readily obtained from **8a** (2,2-DMP, BF₃·Et₂O) also showed ¹H and ¹³C NMR spectra compatible with these symmetries (Figure 4). The observed isochronicity of the two geminal methyls (homotopic in the C_2 -symmetric structure, diastereotopic in the C_8 one) strongly supported the 4,5-*trans* configuration of **9a**, and hence the

 C_2 -symmetric acetonide 9a derived from diol 8a^[a]

 C_1 -symmetric action des **9b,c** derived from diols **8b,c**^[a]

^[a] Only one enantiomer is shown for simplicity.

Figure 4. All possible diastereomers for acetonides 9

3,4-*syn* configuration of **8a**. Assignment of the relative configuration at C-2 and C-5 (which can be either 2,3-*syn*/4,5-*syn* or 2,3-*anti*/4,5-*anti*) was not possible.

Conversion of an 80:10 mixture of **8b** and **8c** into the corresponding acetonides gave the asymmetric (C_1) compounds **9b** and **9c** (Figure 4). The coupling constant values observed for the hydrogens at C-4 and C-5 of the dioxolanyl moiety (J = 7.5 and < 0.5 Hz for **9b** and **9c**, respectively) supported the *trans* configuration for **9b** and the *cis* configuration for **9c**. On the basis of these observations and of the asymmetric (C_1) structure of **9b** and **9c** the 2,3-*syn*-3,4-*syn*-4,5-*anti* configuration was assigned to diol **8b**, and the 2,3-*anti*-3,4-*anti*-4,5-*syn* configuration to diol **8c**.

It is tempting to discuss the stereochemical outcome of the homocoupling of 2-phenylpropanal; however, reliable suggestions can be advanced only for the reaction performed in the presence of $Ti(OiPr)_4$ as additive (Table 3, entry 3).^[26] Only in this case could the stereoselectivity be unambiguously assigned as 2,3-*syn*-3,4-*syn*-4,5-*anti* – only **8b** was formed – and chemical yields were satisfactory (77%). A rationale is tentatively depicted in Figure 5.

Figure 5. Proposed TS for the formation of 8b

The complete 3,4-*syn* stereoselectivity arises from coordination of both reagents to the Ti^{IV} species, as shown in Figure 1 (TS **B**). The well-known tendency of 2-phenylpropanal to react with nucleophiles in a Felkin-Ahn mode can account for the 2,3-*syn* relative stereochemistry.^[27] In the corresponding radical-anion species, however, the increased steric requirements of the alkoxide changes its reactivity to an *anti*-Felkin mode,^[28] thus a 4,5-*anti* relative stereochemistry is favored. In the proposed TS, moreover, all steric interactions are minimized.^[24]

Conclusion

The major pitfall of the SmI_2 -based pinacolic homocoupling lies in the great versatility of this reagent: the reaction conditions need to be tuned carefully for each substrate in order to achieve the best results each time. The intermolecular homocoupling reaction of benzaldehyde upon addition of Lewis acids stronger than SmIII allows for synthesis of the anti diol, while syn diastereoisomers are always favored with different, achiral aldehydes.

The presence of chiral substituents on the aldehyde has a major influence on the reaction selectivity. The intermolecular coupling of chiral α-methylaldehydes is extremely stereoselective, and syn stereoselectivity is often complete. Further investigation is needed in order to extend this methodology to substrates of greater synthetic interest.

Experimental Section

CHN Analyses: Perkin-Elmer 240 instrument. ¹H and ¹³C NMR: Bruker AM300 at 300.133 and 75.47 MHz, respectively; CDCl₃ as solvent; ¹H chemical shifts are reported in δ relative to TMS; ¹³C chemical shifts and J_{H-H} coupling constants are reported in Hz. Silica gel (230-400 mesh) was used for flash chromatography. Organic extracts were dried over Na2SO4 and filtered before removal of the solvent. Dry solvents were distilled as follows: THF from Na and benzophenone (twice), CH₂Cl₂ from CaH₂; HMPA from CaH₂ (in vacuo). Distilled HMPA was stored under a nitrogen atmosphere over 4A molecular sieves. All reactions employing dry solvents were performed under an argon atmosphere. Ti(OiPr)4 and all aldehydes were distilled before use. ZnCl2 was dried by subsequent fusions in vacuo. TiCl₂(OiPr)₂ was prepared from TiCl₄ (1 mol. equiv.) and Ti(OiPr)₄ (1 mol. equiv.); Ti(TADDOL)₂ from Ti(OiPr)₄ (1 mol. equiv.) and TADDOL (2 mol. equiv.). Commercially available (Aldrich) 0.1M solution of SmI2 in dry THF was used in the coupling procedure.

General Procedure for the Homocoupling Reaction of Aldehydes: Synthesis of Diols 1, 6a-b and 8a-c: To a stirred 0.1M solution of the required aldehyde in dry THF, kept at the desired temperature (see Tables 1-3), were added the appropriate additive (see Tables 1-3) and SmI₂ (0.1M solution in THF, 2 equiv.). The reaction was monitored by TLC, and quenched with 10% aqueous HCl. The two phases were separated, and the water layers were extracted twice with Et₂O. The crude product was purified by flash chromatography (Et₂O/ hexanes $50:50 \rightarrow 80:20$). Reaction conditions, chemical yields and diastereoisomeric ratios are reported in Tables 1-3.

Diols 1, 3-6a,b are known compounds.^[16,22,23]

2a,b: C₁₄H₁₄O₄ (246.262): calcd. C 68.28, H 5.73; found C 68.35, H 5.70. $- {}^{1}$ H NMR: $\delta = 7.13$ (dt, J = 7.6, 1.7 Hz, 2 H), 6.86 (dd, J = 7.1, 1.1 Hz, 2 H), 6.60 (dt, J = 7.1, 1.1 Hz, 2 H), 6.45 (dd, J = 7.6, 1.7 Hz, 2 H), 5.05 (s, 2 H, **2b**), 5.02 (s, 2 H, **2a**).

8a-c: C₁₈H₂₂O₂ (270.372): calcd. C 79.96, H 8.20; found C 79.91, H 8.24. For significant ¹H and ¹³C NMR resonances, see Table 4 [25]

Synthesis of 7a,b From 2a,b: To a stirred solution of 2a,b (1 mmol) in dry THF (10 mL) was added K₂CO₃ (5 mmols) at room temperature. After 45 min., methyl iodide (3 mmols) was added dropwise; the mixture was stirred overnight, then diluted with water (10 mL) and Et₂O (10 mL). The two phases were separated, and the aqueous layers extracted twice with Et₂O. The crude product was purified by flash chromatography (Et₂O/hexanes 90:10), affording known 7a,b^[23] in 70% yield.

Synthesis of 9a-c From 8a-c: To a stirred solution of 8 (1 mmol) in dry CH₂Cl₂ (10 mL) were added 2,2-dimethoxypropane (3

Eur. J. Org. Chem. 1999, 3369-3374

mmols) and BF₃·Et₂O (0.1 mmols) at 0°C, and the reaction kept at that temperature for 2 h. The reaction was quenched with saturated aqueous NH₄Cl, and extracted twice with Et₂O. The crude product was purified by flash chromatography (Et₂O/hexanes 90:10). Compound 9a was obtained from 8a in 81% yield; 9b,c were obtained from **8b,c** in 95% yield. C₂₁H₂₆O₂ (310.437): calcd. C 81.25, H 8.44; found C 81.31, H 8.46. Significant ¹H and ¹³C NMR resonances are reported in Table 4.

Table 4. Significant ¹H and ¹³C NMR spectroscopic data for compounds 8a-c and 9a-c

		1	6	2	_ 5	3	4	<u>Me-</u> 7	J_{2-3}	J_{3-4}	J_{4-5}
8 a	'Η	1.23		2.88		3.33		-	-	-	-
	¹³ C	18.05		42.8		75.6		-	_	-	
8b	۱H	1.	32	2.	97	3.	72			-	-
	¹³ C	18	.4	43.2		74.9		-	-	-	-
8c ^[a]	'H	1.	37	2.97		3.33				-	-
9a	'Η	1.28		2.33		3.90		1.47	-	-	-
	¹³ C	16.8		43.2		84.0		27.9	-	-	-
9b	$^{1}\mathrm{H}$	1.35	1.13	2.77	2.09	3.64	3.98	1.27; 1.42	7.5	7.5	4.0
	13С	18.3 ^(b)	19.3 ^[b]	45.0 ^[c]	41.8 ^[c]	83.1 ^[d]	84.7 ^[d]	28.0; 27.8	-		-
9c	ΉH	1.42 ^[b]	1.18 ^(b)	3.	00	3.37	3.73	1.28; 1.43	7.0	< 0.5	7.0
	¹³ C	$18.5^{[b]}$	18.8 ^[b]	43.2 ^[c]	43.9 ^[c]	76.0	75.0	28.0	_	_	_

[a] ¹³C NMR spectrum not measured. - ^[b] Resonances cannot be assigned unambiguously to C(H)-1 or C(H)-6. $- {}^{[c]}$ Resonances cannot be assigned unambiguously to C-2 or C-5. $- {}^{[d]}$ Resonances cannot be assigned unambiguously to C-3 or C-4.

Acknowledgments

Special thanks are due to Prof. Franco Cozzi for helpful stereochemical discussion, to Marco Covini and Valerio Chiroli for their collaboration. Partial financial support by MURST (60%) and CNR is gratefully acknowledged.

- [1] [1a] G.M. Robertson, "Pinacol Coupling Reactions", in Compre-hensive Organic Synthesis Vol. 3 (Eds.: B. M. Trost, I. Fleming), Pergamon Press, Oxford, 1991, pp. 563-611. [1b] M. Benag-lia, L. Paira and "Strangelegion in Pinacol Coupling Reaclia, L. Raimondi, "Stereoselection in Pinacol Coupling Reac-tions of C=O and C=N Double Bonds", in *Seminars in Or*ganic Synthesis (Ed.: F. Cozzi), Società Chimica Italiana, 1998, pp. 225-250.
- [2] G. A Molander, C. R. Harris, Chem. Rev. 1996, 96, 307-338.
- ^[3] [^{3a]} J. L Namy, J. Souppe, H. B. Kagan, *Tetrahedron Lett.* 1983, 24, 765-766. [^{3b]} J. Souppe, L. Danon, J. L. Namy, H. B. Kagan, *J. Organomet. Chem.* 1983, 250, 227-236.
 ^[4] H. D. L. Kagan, *J. Organomet. Chem.* 1983, 250, 227-236.
- [4] H. L. Pedersen, T. B. Christensen, J. Enemærke, K. Daasbjerg,
- T. Skrydstrup, Eur. J. Org. Chem. 1999, 565-572.
 ^[5] [^{5a]} R. Yanada, N. Negoro, K. Yanada, T. Fujita, Tetrahedron Lett. 1997, 38, 3271-3274. [^{5b]} Y. Nishiyama, E. Shinomiya, Kimura, K. Itoh, N. Sonoda, Tetrahedron Lett. 1998, 39, S.
- 3705-3708.
 ^[6] ^[6a] E. Léonard, E. Duñach, J. Périchon, J. Chem. Soc., Chem. Commun. 1989, 276-277. ^[6b] R. Nomura, T. Matsuno, T. T. Matsun Hélion, J.-L. Namy, J. Org. Chem. 1999, 64, 2944-2946.
- In our hands, however, metallic Mg promoted the pinacol homocoupling of benzaldehyde also in the absence of Sm^{II} species. See also: W.-C. Zhang, C.-J. Li, J. Org. Chem. 1999, 64, 3230-3236.

FULL PAPER

- ^[8] L. Wang, Y. Shang, Synth. Commun. 1998, 28, 3991-3997.
- ^[9] [^{9a]} Z. Hou, T. Miyano, H. Yamazaki, Y. Wakatsuki, J. Am. Chem. Soc. 1995, 117, 4421-4422. [^{9b]} Z. Hou, A. Fujita, Y. Zhang, T. Miyano, H. Yamazaki, Y. Wakatsuki, J. Am. Chem. Soc. 1998, 120, 754-766.
 ^[10] [^{10]} [
- [10] [10a] M. Shabangi, R. A. Flowers II, *Tetrahedron Lett.* 1997, *38*, 1137–1140. ^[10b] M. Shabangi, J. M. Sealy, J. R. Fuchs, R. A. Flowers II, *Tetrahedron Lett.* 1998, *39*, 4429–4432. ^[10c] J. D. K. Flowers II, *Tetrahedron Lett.* 1998, *39*, 4429–4432. ^[10c] J. D. K. Flowers II, *Tetrahedron Lett.* 1998, *39*, 4429–4432. ^[10c] J. D. K. Flowers II. *100*. B. Shotwell, J. M. Sealy, R. A. Flowers II, J. Org. Chem. 1999, 64, 5251–5255. – ^[10d] For X-ray structure of SmI₂ complexes with HMPA, see: Z. Hou, Y. Wakatsuki, J. Chem. Soc., Chem. Commun. 1994, 1205-1206.
- ^[11] Some extremely interesting papers have recently been published regarding the stereoselectivity in the homocoupling of benzaldehyde tricarbonylchromium complexes in THF, and its depen-dence on the presence of HMPA as cosolvent: ^[11a] N. Tanigu-chi, N. Kaneta, M. Uemura, *J. Org. Chem.* **1996**, *61*, 6088–6089. – ^[11b] N. Taniguchi, M. Uemura, *Tetrahedron* **1998**, 54, 12755-12788.
- ^[12] F. Machrouhi, B. Hamann, J.-L. Namy, H. B. Kagan, Synlett **1996**, 633–634
- ^[13] J. R. Fuchs, M. L. Mitchell, M. Shabangi, R. A. Flowers II, *Tetrahedron Lett.* **1997**, *38*, 8157–8158.
- ^[14] For a review on the use of Lewis acids in free radical reactions, see: P. Renaud, M. Gerster, Angew. Chem. Int. Ed. 1998, 37, 2562-2579.
- ^[15] R. Annunziata, M. Benaglia, M. Cinquini, F. Cozzi, L. Rai-mondi, *Tetrahedron Lett.* 1998, 39, 3333–3336.
- ^[16] A. Clerici, O. Porta J. Org. Chem. 1985, 50, 76-81.
- ^[17] In the presence of a Ni⁰ species [Ni(PPh₃)₄], **1a**,**b** was obtained in 15% yield and a 35/65 *syn/anti* ratio.
- ^[18] In the presence of NiCl₂ and HMPA, only unsaturated products were detected by NMR spectroscopy.
- ^[19] Precomplexation of the reducing species before formation of the ketyl radical was demonstrated for some low-valent titaniumpromoted couplings: A. Fürstner, B. Bogdanovic, Angew. Chem. Int. Ed. Engl. 1996, 35, 3442-3469.
- ^[20] The outstanding importance of a free hydroxyl to coordinate the samarium species, although in reactions other than pinacol coupling, is well-known in the literature.^[2] Surprisingly enough, Yanada et al. observed some pinacol coupling in the reaction of the o-methoxybenzaldehyde (SmI₂ was generated from Sm and I_2 in methanol), with good yields but low syn selectivity.

Addition of $Ti(OiPr)_4$ completely inhibited the reaction, in agreement with our results (ref.^[5a]).

- ^[21] Desulfurization was the major (or only) reaction path allowed in this case. While working on a different research project, we tested the reactivity of aromatic aldehydes ortho-substituted with sulfur-bearing residues in the presence of SmI₂: we never observed diol formation, but only desulfurization products together with substitution reaction at the aromatic ring in some particular substrates.
- ^[22] Diols 3a, 4a, 5a,b and 6a are known compounds.^[23] Diols 2a,b were chemically correlated to the known o-methoxyderivatives $7a_b$.^[23] Stereochemical assignment to diols $2-6a_b$ was performed on the basis of both ¹H and ¹³C NMR spectra and chemical correlation. The CH(OH) resonance of the *syn* products ucts often overlapped with the CH_2OH singlet of the corresponding alcohol (the most common by-product of these reac-
- tions). ^[23] ^[23a] T. W. Wallace, I. Wardell, K.-D. Li, P. Leeming, Distribution Trans. L1 ¹¹ W. Wallace, I. Wardell, K.-D. Ll, P. Leeming, A. Redhouse, S. R. Challand, J. Chem. Soc., Perkin Trans. I 1995, 2293–2308. – ^{123b} K. R. K. Prasad, N. N. Joshi, J. Org. Chem. 1996, 61, 3888–3889. – ^{123c} J. B. Lambert, H. W. Mark, E. Stedman Magyar, J. Am. Chem. Soc. 1977, 99, 3059–3067. – ^{123d} R. W. Hoffmann, K. Ditrich, G. Köster, R. Stürmer, Chem. Ber. 1989, 122, 1783–1789.
 We have no existence of bott the maction machanism ensembles.
- [24] We have no evidences about the reaction mechanism operating in the different cases. Figure 1 shows a nucleophilic addition of the ketyl radical to a carbonyl, but direct coupling of two ketyls or nucleophilic addition of a C,O-dianion to the C=O cannot be ruled out. Complexation and/or chelation by the different metal species complicates the picture. For details on the differochemical discussion, see ref.^{[1][4]}
- ^[25] Comparison of ¹H NMR spectra of diols 8a-c with those reported in the literature was ambiguous; see: T. Hirao, M. Asah-ara, Y. Muguruma, A. Ogawa, J. Org. Chem. 1998, 63, 2812-2813.
- [26] Interestingly enough, **8b** arises from the coupling of two different enantiomers (S* + R*) of rac-2-phenylpropanal.
 [27] E. L. Eliel, S. H. Wilen, L. N. Mander, Stereochemistry of Or-
- [28] [28a] Y. Yamamoto, K. Matsuoka, H. Nemoto, J. Am. Chem. Soc. 1988, 110, 4475-4476. [28b] Y.-D. Wu, K. N. Houk, J. Am. Chem. Soc. 1992, 114, 1656-1661.

Received July 4, 1999 [099407]