tert-Amino effect in heterocyclic chemistry. Synthesis of hydrogenated spiro derivatives of quinolines*

E. V. D'yachenko,^a T. V. Glukhareva,^a E. F. Nikolaenko,^a A. V. Tkachev,^b and Yu. Yu. Morzherin^a*

^aUrals State Technical University, 19 ul. Mira, 620002 Ekaterinburg, Russian Federation. E-mail: morjerine@htf.ustu.ru ^bN. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akad. Lavrent 'eva, 630090 Novosibirsk, Russian Federation. E-mail: atkachev@nioch.nsc.ru

A new method was developed for the one-step synthesis of spiro derivatives of fused quinolines by the reactions of *ortho*-amino derivatives of benzaldehyde with Meldrum's acid, cyclohexane-1,3-dione, or N,N'-disubstituted barbituric acids.

Key words: *tert*-amino effect, cyclization, nitrogen-containing heterocycles, spiro derivatives, quinoline.

The term "tert-amino effect" was proposed by Meth-Cohn and Suschitzky¹ to generalize cyclization reactions of certain derivatives of ortho-substituted N,N-dialkylanilines.² Cyclizations occurring at the α -carbon atom in the dialkylamino group were described for compounds with an unsaturated ortho-substituent including at least one heteroatom (nitroso, nitro, azo, azomethino, imino, or carbonyl groups).^{3–9} It was found that N,N-dialkylanilines containing vinyl substituents in the ortho position also undergo cyclization.¹⁰ These reactions provide an original way of forming C—C bonds with the practically nonactivated NCH₂ group.^{11,12}

The aim of the present study was to develop a method for the synthesis of spiro derivatives of heterocycles based on the reactions proceeding by the mechanism of the "*tert*-amino effect". Earlier, we have proposed¹³ to use the strategy of the "*tert*-amino effect" for the synthesis of spiro compounds starting from *o*-aminobenzaldehyde and cyclic CH-active compounds, *viz.*, cyclic β -diketo compounds, such as cyclohexane-1,3-dione, Meldrum's acid, and barbituric acid derivatives.

X = O(a); NMe (b); $(CH_2)_n (c-e)$, n = 1 (c), 2 (d), 0 (e)

The starting aminobenzaldehydes 1a-e were prepared in 60-80% yields by the replacement of the fluorine atom in 2-fluorobenzaldehyde with cyclic amines as nucleophiles (Scheme 1).

Knoevenagel condensation of 2-dialkylaminobenzaldehydes 1a-e with cyclohexanedione (refluxing in toluene for 15 h) afforded individual compounds 2a-e(Scheme 2).

i. Toluene, Δ .

The mass spectra of the reaction products (Table 1) have a peak corresponding to the calculated weight of

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1191-1198, June, 2004.

1066-5285/04/5306-1240 © 2004 Plenum Publishing Corporation

Table 1. Physicochemical characteristics of fused quinolines 2, 4, 6, and 7a-e

Compound	Yield (%)	M.p. /°C	Found Calculated	Molecular formula	IR (KBr), v/cm^{-1}		MS, <i>m/z</i>
			N (%)		СН	C=0	$(I_{\rm rel}(\%))$
1,2,4,4a,5,6-Hexahydrospiro[[1,4]oxazino[4,3- <i>a</i>]-	73	100	<u>5.00</u>	$\mathrm{C}_{17}\mathrm{H}_{19}\mathrm{NO}_3$	3010,	1740,	285
quinoine-5,2 -cyclonexanej-1,5 -dione ($2a$)		150	4.91		2910	1725	(90)
2,3,4,4a,5,0-Hexanydro-o H -spiro[denzo] c]	00	150	<u>5.08</u>	$C_{18}H_{21}NO_2$	3010, 2015	1735,	283
quinonizine-5,2 -cyclonexane-1, 3 -dione (2c)	72	140 150	4.94	C II NO	2915	1723	(85)
5,0,0a,7,8,9,10,11-Octanydro- $5H$ -spiro[azepino	/3	149—130	$\frac{4.70}{4.71}$	$C_{19}H_{23}NO_2$	3010,	1740,	(05)
[1,2-a]quinonne-0,2 -cyclonexanej-1,5 -dione (2 u)	60	100 102	4./1	C II NO	2910	1723	(93)
1,2,3,3a,4,5-Hexanydrospiro[pyrroio[$1,2-a$]-	60	100-102	<u>5.20</u>	$C_{17}H_{19}NO_2$	3000,	1740,	1/5
quinoine-4,2 -cyclonexane -1 , 5 -dione (2e)	26	120	5.20	C II NO	2913	1723	(90)
[[1,3]dioxane-5,5'-[1,4]oxazino[4,3- <i>a</i>]quinoline]–	30	150	<u>4.00</u> 4.41	$C_{17} \Pi_{19} \Pi O_5$	3000, 2915	1740, 1725	(64)
4,6-dione (4a)	22	1 7 0	0.00		2000	1 = 40	220
2,2,3 - I rimethyl-2, $3,4$, $4a$ -tetrahydro-6 <i>H</i> -	32	170	<u>8.09</u>	$C_{18}H_{22}N_2O_4$	3000,	1740,	330
spiro[[1,3]dioxane-5,5 -pyrazino[1,2- a]quinoline]-			8.48		2940	1/25	(100)
4,6-alone (40)	(0	150	4.92		2010	1725	215
2, 2 -Dimethyl-2, 3, 4, 4a, 5, 6 - nexanydro-6 <i>H</i> -	08	150	$\frac{4.82}{4.44}$	$C_{18}H_{21}NO_4$	3010,	1735,	315
spiro[benzo[c]quinolizine-5,5 -[1,3]dioxane]- 4',6'-dione ($4c$)			4.44		2915	1725	(95)
2',2'-Dimethyl-5,6,6a,7,8,9,10,11-octahydro-5 <i>H</i> -	53	170	4.40	$C_{19}H_{23}NO_4$	3000,	1740,	329
spiro[azepino[1,2-a]quinoline-6,5'-[1,3]dioxane]-			4.25		2940	1725	(100)
4′,6′-dione (4d)							
2,2-Dimethyl-1´,2´,3´,3a´,4´,5´-hexahydrospiro-	56	139-141	<u>5.12</u>	$C_{17}H_{19}NO_4$	2975,	1780,	301
[[1,3]dioxane-5,4'-pyrrolo[1,2-a]quinoline]-			4.65		2940	1730	(81)
4,6-dione (4e)							
1',3'-Dimethyl-1,2,4,4a,5,6-hexahydrospiro-	36	130	4.60	$C_{17}H_{19}NO_5$	3000,	1740,	317
[[1,4]oxazino[3,4- <i>a</i>]quinoline-5,5'-pyrimidine]-			4.41		2915	1725,	(64)
2',4',6'-trione (6a)						1680	
1',3,3'-Trimethyl-2,3,4,4a-tetrahydro-6 <i>H</i> -	55	180	<u>16.33</u>	$C_{18}H_{22}N_4O_3$	3000,	1760,	342
spiro[pyrazino[1,2- <i>a</i>]quinoline-5,5'-pyrimidine]-			16.37		2940	1700,	(100)
2',4',6'-trione (6b)	•	100	10.04		2010	1680	225
$1^{,3}$ -Dimethyl-2,3,4,4a,5,6-hexahydro-6 <i>H</i> -	30	190	<u>12.84</u>	$C_{18}H_{21}N_3O_3$	3010,	1735,	327
spiro[benzo[c]quinolizine-5,5 -pyrimidine]-			12.84		2915	1/25,	(100)
2,4,6 -trione (bc)	22	200	12 (0		2000	1085	241
1, 3 -Dimethyl-5,6,6a, $7,8,9,10,11$ -octanydro-5 <i>H</i> -	33	200	12.60	$C_{19}H_{23}N_3O_3$	3000,	1740,	341
spiro[azepino[1,2- a]quinoine-6,5 -pyrimidine]-			12.31		2940	1/25,	(100)
2,4,0 -those (60)	(0	1(0	12 77		2020	1095	212
I,S-Dimethyl-1, 2, 3, 3a, 4, 5 -nexanydrospiro-	60	160	$\frac{13.77}{12.41}$	$C_{17}H_{19}N_3O_3$	3020, 2055	1/43,	313
$\frac{1}{2} 4.6 \text{ trians (6a)}$			13.41		2933	1660	(100)
2,4,0-mont (0c) 1' 3' Dinhanul 1 2 4 4a 5 6 havabudrospiro	50	120	0.50	СНИО	3000	1740	453
[1, 3 - Diplicity1-1,2,4,4a,5,0-licxallydiospilo-	50	120	9.39	$C_{27}\Pi_{23}\Pi_{3}O_{4}$	2015	1740,	(100)
$2^{\prime} \Lambda^{\prime} 6^{\prime}$ trione (7a)			9.27		2915	1605	(100)
2,4,0 -thole $(7a)$ 3 Methyl 1'3' dinhenyl 2,34 4a tetrahydro	25	150	11.00	CHNO	3060	1095	166
$6H_{\rm spiro}[nyrazino[1, 2-a]auinoline_$	25	150	$\frac{11.90}{12.00}$	$C_{28}\Pi_{26}\Pi_{4}O_{3}$	3000,	1700,	(100)
5.5'-pyrimidinel-2' 4' 6'-trione (7b)			12.00		2940	1685	(100)
1' $3'$ -Dinhenvl-2 3 4 4a 5 6-hevahydro-6 <i>H</i> -	42	177-180	9.28	CarHarNaOa	3090	1735	451
spiro[benzo[c]auinolizine-	12	177 100	9 31	028112511303	3010	1725	(100)
55'-nyrimidine]-2' 4' 6'-trione (7c)			2.51		2915	1685	(100)
$1'_{.3}$ - Diphenyl-5.6.6a, 7, 8, 9, 10, 11-octahydro-5 <i>H</i> -	60	200	9.20	CaoHazNaOa	3000.	1740.	465
spiro[azepino[1,2-a]quino]ine-6,5´-pyrimidine]-	00	200	9.03	029112/11303	2900.	1725	(100)
2'.4'.6'-trione (7d)					2750	1690	()
1.3-Diphenyl-1'.2'.3'.3a'.4'.5'-hexahvdrospiro-	40	200	9.57	CarHaaNaOa	3035	1750	437
[pvrimidine-5,4'-pvrrolo[1.2-alauinoline]-		_00	9.60	2123- 3 - 3	2985.	1695.	(90)
2,4,6-trione (7e)					2920	1685	. /

Table 2. ¹H NMR spectra of fused quinolines 2, 4, 6, and 7a-e

Com-							δ, <i>J</i> /Hz			
pound	H(1)	H(2)	H(3)	H(4)	ArC(5)H	ArC(5)H	NC(6)H	NC(7)H	NC(8)H	Other signals
2a*	6.85 (d,	7.01	6.66	7.06 (d,	3.03 (d,	2.69 (d,	4.43	3.98	2.99	2.00–2.10 (m, 1 H, C(5')H); 2.40 (dddd,
	J = 8.0)	(dd,	(dd,	J = 7.4)	J = 16.8)	J = 16.8)	(dm,	(ddd,	(ddd,	1 H, C(4')H, $J = 15.1, 3.6, 2.1, 4.9$;
		J = 8.2,	J = 7.4,				J = 9.6)	J = 12.6,	J = 12.6,	2.56 (dddd, 1 H, C(6')H, $J = 15.0, 3.6,$
		8.0)	8.2)					9.1, 1.6)	8.6, 8.6)	2.2, 5.6); 3.30–3.40 (m, 6 H, C(9)H,
										C(6')H, C(4')H); 3.57 (ddd, 1 H, C(10)H)
										J = 9.1, 8.4, 2.2)
2c*	6.78 (d,	6.97	6.62	7.04 (d,	3.11 (d,	2.66 (d,	4.38	3.99	3.12	1.02-1.15 (m, 2 H, 2 C(X)H); 1.25-1.41 (m,
	J = 8.0)	(dd,	(dd,	J = 7.4)	J = 16.6)	J = 16.6)	(dm,	(dm,	(ddd,	2 H, C(5')H, C(10)H); 1.48–1.56 (m, 1 H,
		J = 8.5,	J = 7.4,				J = 9.9)	J = 14.2)	J = 14.2,	C(5')H; 1.65–1.82 (m, 2 H, C(9)H, C(10)H);
		8.0)	8.5)						8.6, 2.6)	2.05–2.15 (m, 1 H, C(5')H); 2.29 (dm, 1 H,
										C(4')H, J = 13.7); 2.44 (dm, 1 H, C(6')H,
										J = 14.6); 3.06 (ddd, 1 H, C(9)H, $J = 12.0$,
						/ -				5.6, 2.0); 3.30–3.40 (m, 2 H, C(6')H, C(4')H)
2d**	6.53 (d,	7.00	6.67	7.12 (d,	3.30 (d,	2.92 (d,	4.06	3.98	3.03	$1.30-1.70 \text{ (m, 8 H, C(10)H, C(9)H, 2 C(X)H}_2,$
	J = 8.2)	(dd,	(dd,	J = 7.4)	J = 17.3)	J = 17.3)	(dd,	(ddd,	(ddd,	$C(5')H_2$; 2.05–2.25 (m, 2 H, C(10)H, C(9)H);
		J = 8.2,	J = 7.4,				J = 9.1,	J = 15.2,	J = 14.1,	2.51 (dddd, 1 H, C(4')H, $J = 14.4, 4.4, 2.7, 1.5$);
		7.8)	7.4)				5.1)	5.1, 1.6)	9.1, 6.4)	2.62 (dddd, 1 H, C(6')H, $J = 14.6, 4.4, 2.8, 1.5$);
										2.80 (ddd, 1 H, C(6')H, $J = 14.1, 14.1, 6.6$);
			- · · ·							3.06 (ddd, 1 H, C(4')H, J = 15.2, 11.3, 5.6)
2e*	6.40-6.47	7.00	6.40-6.47	6.92 (d,	3.36 (d,	2.85 (d,	3.82	3.49	1.50-2.21	$(m, 6 H, 3 CH_2);$
	(m)	(dd,	(m)	J = 7.9	J = 15.2)	J = 15.2)	(dd,	(dd,	2.25 (ddd,	1 H, C(4)H, J = 15.2, 5.6, 4.8);
		J = 8.0,					J = 10.1,	J = 7.9,	2.54 (ddd,	1 H, C(6) H, J = 15.0, 4.9, 4.3);
		7.3)	6.00	6.00		• • • • •	5.8)	6.7)	2.75-3.10	(m, 3 H, C(6))H, C(4))H, NC(8)H)
4a**	7.01 (d,	7.18	6.80	6.89	3.61 (d,	2.99 (d,	3.92	3.86	3.69	1.74, 1.77 (both s, 2 H each, Me);
	J = 7.4	(dd,	(dd,	(d,	J = 16.8)	J = 16.8)	(dd,	(dm,	(ddd,	2.70 (ddd, 1 H, C(9)H, $J = 11.6, 10.2, 3.6$);
		J = 8.0,	J = 8.0,	J =			J = 11.7,	J = 12.2)	J = 11.6,	3.28 (dd, 1 H, C(10)H, J = 11.0, 10.6);
		7.4)	8.3)	8.3)			3.2)		12.2, 2.7)	3.46 (dd, 1 H, C(9)H, J = 10.2, 3.1);
										3.77 (ddd, 1 H, C(10)H, $J = 11.0, 3.1, 2.9$)

(to be continued)

Table 2 (continued)

Com-							δ, <i>J</i> /Hz			
pound	H(1)	H(2)	H(3)	H(4)	ArC(5)H	ArC(5)H	NC(6)H	NC(7)H	NC(8)H	Other signals
4b**	7.00 (d, J = 7.4)	7.08 (dd, J = 8.4, 7.4)	6.70 (dd, J = 8.0, 8.4)	6.93 (d, $J = 8.0$)	3.35 (d, J = 17.0)	3.29 (d, J = 17.0)	3.92 (dd, J = 12.4, 4.0)	1.74 (s, 3 l 2.00 (ddd, CH, <i>J</i> = 1 3.41 (dd, 1	H, Me); 1.75 (d 1 H, CH, $J =$ 0.8); 2.80 (d, 1 1 H, CH, $J =$ 10	id, 1 H, CH, $J = 10.7$, 4.5); 1.77 (s, 3 H, Me); 11.8, 4.0, 3.1); 2.20 (s, 3 H, NMe); 2.63 (d, 1 H, H, CH, $J = 9.9$); 2.82 (dd, 1 H, CH, $J = 11.2$, 3.8); 0.8, 3.1)
4c*	6.91 (d, <i>J</i> = 8.0)	6.66 (ddd, J = 8.5, 8.0, 1.2)	7.05 (ddd, J = 8.5, 7.8, 1.4)	6.99 (dd, J = 7.8, 1.2)	3.30 (d, J = 16.9)	3.25 (d, J = 16.9)	4.05 (dm, J = 12.3)	3.42 (dd, J = 12.2, 2.4)	2.78 (ddd, J = 12.2, 3.2, 2.9)	1.22 (ddd, 1 H, CH, <i>J</i> = 11.7, 5.8, 4.0); 1.38–1.66 (m, 4 H, 4 CH); 1.74–1.78 (m, 1 H, CH); 1.76, 1.77 (both s, 2 H each, Me)
4d**	6.53 (d, J = 8.2)	7.00 (dd, J = 8.2, 7.8)	6.67 (dd, J = 7.4, 7.8)	7.12 (d, J = 7.4)	3.25 (d, <i>J</i> = 17.3)	3.15 (d, J = 17.3)	3.42—3.65 (m)	3.29—3.38 (m)	1.30—1.70 (1.71, 1.78 (t	(m, 8 H, C(10)H, C(9)H, 2 C(X)H ₂ , C(9)H, C(8)H); both s, 2 H each, Me); $1.85-2.00$ (m, 1 H, C(10)H)
4e * 6.	54—6.60,	7.03—7.11 (both m, 2 H	each, ArH	I) 3.33 (s,	2 H)	3.84 (dd, J = 8.9, 6.1)	3.58 (dd, J = 16.5, 5.8)	3.10 (dd, J = 16.5, 8.2)	1.50–1.62 (m, 1 H, CH); 1.72, 1.79 (both s, 2 H each, Me); 1.87–1.98 (m, 2 H, 2 CH); 2.01–2.19 (m, 1 H, CH)
ба*	6.83 (d, <i>J</i> = 9.0)	6.68 (dd, J = 8.1, 9.0)	7.04 (dd, J = 7.9, 8.1)	6.92 (d, J = 7.9)	3.33 (d, J = 16.8)	3.10 (d, $J = 16.8$)	3.84 (d, $J = 14.2$)	2.93 (ddd, 3.13, 3.14, 3.54 (ddd, 3.78 (dd, 1	1 H, CH, $J =$, 3.22 (all s, 2 H 1 H, CH, $J =$ 1 H, CH, $J = 12$	11.9, 3.6, 3.5); 3.10–3.25 (m, 1 H, CH); H each, Me); 3.41 (dd, 1 H, CH, <i>J</i> = 10.3, 3.2); 11.4, 2.8, 2.3); 3.63 (dd, 1 H, CH, <i>J</i> = 11.0, 2.9); 2.2, 2.3)
6b**	6.90 (d, J = 8.0)	6.67 (ddd, J = 7.1, 8.0, 1.4)	7.04 (dd, J = 7.1, 7.5)	6.96 (dd, J = 7.5, 1.4)	3.24 (d, J = 17.0)	3.15 (d, <i>J</i> = 17.0)	3.92 (ddd, J = 12.7, 2.2, 2.9)	3.48 (dd, J = 10.8, 3.1)	2.45—2.55 (m)	1.69 (dd, 1 H, CH, <i>J</i> = 11.8, 10.8); 1.98 (ddd, 1 H, CH, <i>J</i> = 11.8, 2.9, 3.4); 2.14 (s, 3 H, Me); 2.70 (dm, 1 H, CH, <i>J</i> = 9.9); 2.82 (ddd, 1 H, CH, <i>J</i> = 12.0, 1.3, 2.5); 3.11, 3.19 (both s, 2 H each, NMe)
бс*	6.83 (d, <i>J</i> = 8.1)	6.97—7.05 (m)	6.97—7.05 (m)	6.63 (dd, J = 6.3, 0.9)	3.29 (d, <i>J</i> = 17.0)	3.00 (d, J = 17.0)	3.99 (d, J = 13.9)	3.48 (ddd, J = 9.2, 7.3, 4.4)	2.81 (ddd, J = 9.2, 7.4, 4.4)	1.10–1.17 (m, 1 H, CH); 1.26–1.55 (m, 4 H, 2 CH ₂); 1.70 (d, 1 H, CH, <i>J</i> = 12.6); 3.12 (d, 6 H, 2 Me, <i>J</i> = 5.0)

(to be continued)

Table 2 (continued)

Com							δ, <i>J</i> /Hz			
poun	d H(1)	H(2)	H(3)	H(4)	ArC(5)H	ArC(5)H	NC(6)H	NC(7)H	NC(8)H	Other signals
6d*	6.59—6.60 (m)	6.94 (dd, J = 8.0, 7.6)	6.59—6.60 (m)	7.00 (d, $J = 6.1$)	3.41 (d, $J = 17.3$)	2.71 (d, J = 17.3)	3.51-3.65	5 (m, 2 H)	1.35—1.70 2.95—3.10	(m, 6 H, 6 CH); 1.85–2.01 (m, 1 H, CH); (m, 2 H, CH); 3.13, 3.16 (both s, 2 H each, Me)
6e*	6.48 (d, J = 8.3)	7.00 (dd, J = 8.3, 7.9)	6.53 (dd, J = 7.3, 7.9)	6.92 (d, $J = 7.3$)	3.38 (d, $J = 10.0$)	3.20 (d, J = 10.0)	3.68 (dd, J = 6.4, 2.7)	3.41—3.55 (m)	1.41—1.58 3.08 (s, 3 I 3.24 (s, 3 I	(m, 1 H, CH); 1.85–2.11 (m, 3 H, 3 CH); H, Me); 3.15–3.20 (m, 1 H, CH); H, Me)
7a*	6.91 (d, $J = 8.0$)	6.71 (dd, J = 8.0, 7.2)	7.02—7.09	(m, 2 H)	3.45 (d, J = 16.9)	3.36 (d, J = 16.9)	3.96 (dd, J = 11.2, 2.7)	3.09 (ddd, 3.64 (d, 1) 3.83—3.90 7.37—7.53	1 H, CH, $J =$ H, CH, $J =$ 1 (m, 2 H, 2 C (m, 8 H, Ph)	= 11.2, 9.8, 3.7); 3.59 (d, 1 H, CH, <i>J</i> = 9.7); 1.1); 3.74–3.80 (m, 1 H, CH); CH); 7.30–7.35 (m, 2 H, Ph); 0;
7b**	6.99—7.08 (m)	6.68 (ddd, J = 7.3, 7.1, 0.7)	6.99—7.08 (m)	6.91 (d, $J = 8.0$)	3.42 (d, $J = 14.9$)	3.30 (d, J = 14.9)	3.94 (dm, J = 11.6)	3.76 (dd, J = 10.1, 3.1)	3.1—3.31 (m)	2.08–2.22 (m, 2 H, CH); 2.28 (s, 3 H, Me); 2.72 (dm, 1 H, CH, <i>J</i> = 9.6); 2.81 (dm, 1 H, CH, <i>J</i> = 8.6); 7.27–7.32 (m, 2 H, ArH); 7.34–7.53 (m, 8 H, ArH)
7c*	6.85 (d, J = 8.2)	7.00 (ddd, J = 8.2, 6.5, 1.5)	6.63 (dd, J = 7.4, 6.5)	7.07 (dd, J = 7.4, 1.5)	3.46 (d, <i>J</i> = 17.2)	3.02 (d, J = 17.2)	4.26 (d, J = 10.8)	4.00 (d, J = 12.7)	3.21 (ddd, J = 11.8, 11.2, 0.9)	1.13—1.48 (m, 4 H, CH); 1.71—1.99 (m, 2 H, CH ₂); 7.23—7.54 (m, 10 H, 2 Ph)
7d*	7.03 (d, $J = 7.3$)	6.48—6.6	i3 (m, 2 H)	6.94 (dd, J = 7.5, 1.22)	3.60 (d, $J = 17.7$)	3.00 (d, J = 17.7)	4.22—4.41 (m)	3.79—4.00 (m)	1.35—2.20 3.30—3.50 7.12—7.58	(m, 8 H, 8 CH); (m, 1 H, CH); (m, 10 H, 2 Ph)
7e*	6.44 (d, $J = 8.2$)	6.91—7.06 (m)		6.91—7.06 (m)	3.56 (d, J = 16.7)	3.33 (d, <i>J</i> = 16.7)	3.73—3.85 (m)	3.20—3.30 (m)	2.90—3.00 (m)	1.98–2.20 (m, 3 H, 3 CH); 2.23–2.50 (m, 1 H, CH); 7.12–7.24 (m, 2 H, ArH); 7.28–7.55 (m, 8 H, ArH)

condensation product **2**. For example, the molecular ion of compound **2d** was observed as a doublet with 299 $[M + 2]^+$ and 297 $[M]^+$, peaks; the ratio between the [M] and [M + 2] peaks was 100 : 2.66. The NMR spectral patterns appeared to be much more complicated than those expected for compounds **3**, but they correspond to structure **2** (Tables 2 and 3).

Therefore, as distinct from the reactions of benzaldehydes 1 with acyclic derivatives of malonic acid, intermediates 3a-e were not isolated but underwent cyclization

Table 3. $^{13}\mathrm{C}$ NMR spectra (CDCl_3) of fused quinolines 2d, 4a, 6d, and 7d

Atom		δ*						
	2d**	4 a	6d	7d				
C(1)	110.8	112.6	113.4	112.5				
C(1a)	141.4	144.1	144.5	143.1				
C(2)	126.5	127.6	126.6	128.2				
C(3)	117.1	119.0	117.4	117.9				
C(4)	129.1	128.7	128.2	129.3				
C(4a)	119.8	119.2	120.4	119.7				
ArC(5)	23.6	27.85	26.0	26.0				
NC(6)	64.2	67.3	67.2	67.1				
NC(7)	50.5	48.5	50.5	51.0				
C(9)	27.0	59.4	29.6	28.8				
C(10)	29.9	46.4	30.1	30.2				
C(1')	205.2	168.7	170.1	169.4				
C(2')	70.0	67.3	53.2	54.7				
C(3')	203.8	164.8	168.7	168.3				
C(5′)	10.6	66.7	151.2	151.2				

* Other signals: 2d: 25.4, 25.7 (C(X)); 37.8 (C(4')); 38.1 (C(6'));
4a: 30.2, 34.6 (Me); 6d: 27.2 (C(X)); 28.9 (Me); 29.5 (C(X));
7d: 26.68, 28.11 (C(X)); 126.79, 128.26, 128.75, 128.97, 129.17, 129.41, 129.48, 134.43 (Ph).
** In DMSO-d₆.

to form spiro derivatives of [1,2-a]quinoline-2'-cyclohexane-1',3'-dione **2a**-e.

The reactions of 2-dialkylaminobenzaldehydes 1a-e with 2,2-dimethyl-1,3-dioxane-4,6-dione (Meldrum's acid) proceeded analogously. It was demonstrated that the reactions were completed in 10 h to give spiro-fused [1,2-*a*]quinolines 4a-e, whereas vinyl derivatives 5 were also not isolated (Scheme 3). The structures of compounds 4a-e were confirmed by NMR, IR, and mass spectra as well as by the results of elemental analysis (see Tables 1–3).

i. Toluene, Δ .

Spiro-fused quinolinepyrimidines 6a-e and 7a-e can be synthesized according to two procedures. One of them involves Knoevenagel condensation of 2-dialkylaminobenzaldehydes 1a-e with malonic ester, cyclization of the resulting benzylidenemalonic esters 8 to fused quinolines 9,^{11,22} and condensation of the latter with disubstituted urea to give the target products. Another procedure involves the reaction of 2-dialkylaminobenzaldehydes 1a-e with barbituric acids, where Knoevenagel condensation is accompanied by intramolecular cyclization of the intermediate vinyl derivatives (Scheme 4). Taking into account the results obtained in the earlier studies, it can be assumed that this reaction proceeds in one step to give spiro-fused quinolines 6a-e and 7a-e.

The synthesis of spiro derivatives of quinolines according to the first method involves difficulties associated, in particular, with the formation of by-products. In this connection, isolation of the pure target spiro-fused quinolines presents a problem. The total yield was 15%(for 7e).

```
Scheme 4
```


R = Ph (6), Me (7)

The second method is preparatively more convenient because it involves one step. We demonstrated that the reactions of 2-dialkylaminobenzaldehydes 1a-e with dimethyl- and diphenylbarbituric acids afforded spiro compounds 6a-e and 7a-e. Their structures were confirmed by ¹H and ¹³C NMR and IR spectroscopy, mass spectrometry, and elemental analysis (see Tables 1–3). It should be noted that cyclization gave spiro-fused quinolines 6 and 7 in good yields on refluxing in toluene for 3 h. An increase in the reaction time led to a decrease in the yield and resinification of the products. In this approach, the total yield of the target products 6a-e and 7a-evaried from 26 to 70%.

To summarize, we developed a one-step method for the synthesis of new heterocyclic systems, *viz.*, spiro derivatives of pyrrolo[1,2-a]quinoline, benzo[c]quinolizine, [1,4]oxazino[1,2-a]quinoline, and azepino[1,2-a]quinoline.

Experimental

The ¹H and ¹³C NMR spectra were recorded on a Bruker WP-250 spectrometer (250 MHz for ¹H) and a Bruker DRX-400 instrument (400 MHz for ¹H and 100 MHz for ¹³C) in DMSO-d₆ and CDCl₃ with Me₄Si as the internal standard. The IR spectra were measured on a UR-20 spectrometer in KBr pellets. The mass spectra were obtained on a MAT11 instrument (EI, 70 eV). The course of the reactions and purity of the compounds synthesized was monitored by TLC on DC-Plastikfolien Kieselgel 60 F 254 plates using the 15 : 1 dichloromethane—hexane system. The melting points are uncorrected. Compounds 1a,¹⁴ 1b,¹⁵ 1c,e, 8e, and 9e ¹⁶ were synthesized according to known procedures. The physicochemical characteristics and spectroscopic data for the compounds synthesized are given in Tables 1–5.

Table 4. Physicochemical characteristics of o-dialkylaminobenzaldehydes 1a-e

Com- po- und*	Yield (%)	Found Calculated N (%)	Molecular formula	IR, (KBr), v/cm ⁻¹ C=O	MS, <i>m/z</i> (<i>I</i> _{rel} (%))
1a	87	<u>7.50</u>	C ₁₁ H ₁₃ NO ₂	1745,	191
		7.32		1720	(94)
1b	88	<u>13.20</u>	$C_{12}H_{16}N_2O$	1690	204
		13.72			(79)
1c	87	7.62	$C_{12}H_{15}NO$	1680	189
		7.40	12 15		(100)
1d	82	6.56	C ₁₃ H ₁₇ NO	1675	203
		6.89	15 17		(100)
1e	95	7.50	C ₁₁ H ₁₃ NO	1680	175
		7.99	11 15		(96)

* Oil.

Synthesis of *o*-dialkylamino-substituted benzaldehydes 1a-e (general procedure). Dialkylamine (9.88 mmol) and potassium carbonate (1.38 g, 9.88 mmol) were added to a solution of 2-fluorobenzaldehyde (1.0 mL, 9.49 mmol) in DMF (8.0 mL). The reaction mixture was refluxed on a glycerol bath at 150 °C for 20 h. The completion of the reaction was judged from the TLC data. Then the reaction mixture was cooled to ~20 °C, water (75 mL) was added, and the product was extracted with ethyl acetate (3×60 mL). The combined organic extract was washed with a solution of ammonium chloride. The organic layer was dried with Na₂SO₄ and the solvent was removed *in vacuo*.

Synthesis of spiro derivatives of fused quinolines (general procedure). Cyclic CH-active compounds (2.3 mmol) were added to a solution of 2-dialkylaminobenzaldehyde **1a**–e (2.3 mmol)

Com-						
pound	СНО		Arl	Н		Dialkylamino group
1a	10.22	7.06	7.01 (dd,	6.85	6.66 (dd,	2.50–2.57, 3.00–3.11 (both m,
	(s)	(d, J = 7.4)	J = 8.2, 8.0)	(d, J = 8.0)	J = 7.4, 8.2)	4 H each, $N(CH_2) + O(CH_2)$
1b	10.20	7.64-7.65	7.50-7.51	7.13	7.09 (dd,	2.27 (s, 3 H, CH ₃); 2.50–2.61,
	(s)	(m)	(m)	(d, J = 7.7)	J = 10.3, 7.6)	3.00-3.10 (both m, 4 H each, 4 CH ₂)
1c	10.19	7.66 (dd,	7.54-7.55	7.00-7.1	5 (m, 2 H)	1.30–1.81 (m, 6 H, 3 CH ₂);
	(s)	J = 6.1, 1.5)	(m)		, . ,	2.87-3.05 (m, 4 H, 2 CH ₂)
1d	10.10	7.60	7.45 (dd,	7.15	6.90 (dd,	2.60, 2.76 (both s, 6 H each, 6 CH ₂)
	(s)	(d, J = 7.4)	J = 8.1, 7.5)	(d, J = 8.2)	J = 7.8, 7.2)	
1e	10.02	7.65 (dd,	7.65 (dd,	6.65-6.9	0 (m, 2 H)	2.76 (s, 4 H, 2 CH ₂);
	(s)	J = 7.2, 6.4)	J = 8.0, 7.3)			2.89 (s, 4 H, 2 NCH ₂)

Table 5. ¹H NMR spectra (DMSO- d_6) of *o*-dialkylaminobenzaldehydes 1a—e

in toluene (20 mL). The reaction mixture was refluxed for 3 h. The completion of the reaction was determined by TLC. Then the reaction mixture was cooled to \sim 20 °C and concentrated *in vacuo*. The residue was triturated with ethanol.

This study was financially supported by the Russian Foundation for Basic Research (Project No. 04-03-32733a) and the US Civilian Research and Development Foundation (CRDF, Grants REC-005 and RC1-2393-EK-02).

References

- 1. O. Meth-Cohn and H. Suschitzky, *Adv. Heterocycl. Chem.*, 1972, **14**, 211.
- 2. J. Pinnow, Ber. Dtsch. Chem. Ges., 1895, 28, 3039.
- 3. R. K. Grantham and O. Meth-Cohn, J. Chem. Soc., C, 1969, 70.
- J. Martin, O. Meth-Cohn, and H. Suschitzky, *Tetrahedron Lett.*, 1973, 14, 4495.
- 5. H. Suschitzky, R. E. Walrond, and R. Hull, J. Chem. Soc., Perkin Trans. 1, 1977, 47.
- R. Kirschke, A. Möller, E. Schmaltz, R. J. Kuban, and B. Schulz, *Tetrahedron Lett.*, 1986, 27, 4281.

- 7. W. H. N. Nijhuis, W. Verboom, S. Harkema, and D. N. Reinhoudt, *Recl. Trav. Chim. Pays-Bas*, 1989, **108**, 147.
- 8. Y. Cheng, H.-L. Ye, Y.-H. Zhan, and O. Meth-Cohn, *Synthesis*, 2001, 904.
- 9. Y. Cheng, H.-B. Yang, B. Liu, O. Meth-Cohn, D. Watkin, and S. Humphries, *Synthesis*, 2002, 906.
- 10. W. Verboom and D. N. Reinhoudt, *Rec. Trav. Chim. Pay-Bas*, 1990, **109**, 311.
- 11. O. Melh-Cohn and H. Suschiizky, *Adv. Heterocycl. Chem.*, 1996, **65**, 1.
- 12. V. Ojea, I. Muinelo, and J. M. Quintela, *Tetrahedron*, 1998, 54, 927.
- T. V. Glukhareva, E. V. D'yachenko, and Yu. Yu. Morzherin, *Khim. Geterotsikl. Soedin.*, 2002, 1610 [*Chem. Heterocycl. Compd.*, 2002, 38, 1426 (Engl. Transl.)].
- 14. W. H. N. Nijhuis, W. Verboom, A. Abu El-Fadl, G. J. van Hummel, and D. N. Reinhoudt, *J. Org. Chem.*, 1989, 54, 199.
- 15. W. H. N. Nijhuis, W. Verboom, and D. N. Reinhoudt, *Synthesis*, 1987, 641.
- W. Verboom, D. N. Reinhoudt, R. Visser, and S. Harkema, J. Org. Chem., 1984, 49, 269.

Received October 28, 2003