

0040-4039(95)01025-4

The First 6-Membered/10-Membered Ring Analogues of the Dienediyne Core of Neocarzinostatin Chromophore¹

Matthias Eckhardt[#], Reinhard Brückner^{*#}, and Jean Suffert[§]

#) Institut f
ür Organische Chemie der Georg-August-Universit
ät, Tammannstr. 2, D-37077 G
öttingen, Germany; §) Laboratoire de Pharmacochimie Mol
éculaire, Centre de Neurochimie du CNRS, 5 rue Blaise Pascal, F-67084 Strasbourg Cedex, France

Abstract: The Z-configurated enoltriflate 16 and ortho-ethinyl benzaldehyde were coupled giving the (trimethylsilyl)ethinyl aldehyde 17 which cyclized (\rightarrow tricyclic dienediyne 14; 21%) in the presence of CsF, Ac₂O, and 18-crown-6. A similar coupling allowed to prepare iodoalkinyl aldehyde 21. It gave the tricyclic dienediyne 13 (53%) in a Nozaki-Hiyama reaction with stoichiometric NiCl₂.

Neocarzinostatin is a highly potent anti-tumor chromoprotein whose biological activity stems from its exceedingly labile chromophore 1^2 . The unique structure of 1 as a whole and its extremely strained epoxybicyclo[7.3.0]-1(12),8-dodecadiene-2,6-diyne core continue to attract the attention of synthetic chemists. While the simplest analogue 2 of this compound was prepared as early as 1988 by Wender and associates ³ a fully functionalized analogue has not yet been obtained. The closest approach is due to the Myers group where the epoxydienediyne 3 was prepared ⁴. Nonetheless, many syntheses of simpler dienediyne models 4 of chromophore 1 were realized during the last years in which the unsaturated system was incorporated into acyclic, mono- or oligocyclic frameworks. Further dienediyne models which contain the natural 5-membered/9-membered-ring core are compounds 5 from Wender's laboratory ⁵ and 6 from Takahashi and Doi ⁶. Dienediyne models with the unnatural 5-membered/10-membered ring core are more abundant and include compounds 7 ⁷ and 8 ⁸ from the Hirama group, 9 from Myers and Dragovich ⁹, 10 from Terashima and coworkers ¹⁰, 11 from our own group ¹¹, and 12 from Ueda *et al* ¹². However, most if not all of these compounds are still quite unstable. With the goal of increasing the stability of neocarzinostatin chromophore models we have prepared its first 6-membered/10membered ring dienediyne analogues 13 and 14 and describe there obtention in Schemes 1 and 2, respectively ¹.

2-Formylcyclohexanone was converted via mono(enoltriflate) 16^{13} and Pd catalyzed C,C coupling with *ortho*ethinylbenzaldehyde into the Z-dienediyne 17 (Scheme 1). It did not cyclize to dienediynol 13 when exposed to fluoride ions¹⁴, but gave the corresponding acetate 14 when acetic anhydride was additionally present^{15, 16}. The alternative of a cyclization of the desilylated alkinyl aldehyde 18 with LiHMDS¹⁷ and CeCl₃ failed.

However, the target dienediyne 13 was accessible by the route of Scheme 2. There, monotriflate 16 was coupled with *ortho*-HC=C-C₆H₄-CH₂OH (\rightarrow 19; 82%) to provide, after desilylation ¹⁸, hydroxyalkyne 20 (80%). We oxidized the C_{sp} -H bond ¹⁹, then the OH group ²⁰, and obtained via iodoalkyne 22 (95%) the (iodoalkinyl) aldehyde 21 (87%). The Nozaki-Hiyama reaction ²¹ has become a powerful tool for the cyclization of iodinated 3-ene-1,5-diynes ^{19, 22}. Therefore, we felt encouraged to test it for the first in the cyclization of an iodinated dienediyne (21). The usual conditions (CrCl₂, *catalytic* NiCl₂) gave mediocre yields of the desired cyclization product 13. Gratifyingly, 53% of compound 13 were isolable when NiCl₂ was employed stoichiometrically. Since - according to thin layer chromatography - the cyclization itself went to completion the loss of material is almost only due to decomposition during flash chromatography on SiO₂. E.g., the dienediyne model 13 was not as stable as we had hoped (and its acetate 14 neither).

Scheme 1: a) tert-BuLi (1.0 equiv.), THF, $-78^{\circ}C$, 30 min; $(F_3C-SO_2)_2O$ (1.0 equiv.), 30 min; 57% ¹³.- b) LiHMDS (1.1 equiv.), THF, -78°C, 30 min; (F₃C-SO₂)₂O (1.0 equiv.), 45 min; $68\%^{13}$.- c) H-C=C-SiMe₃ (1.15 equiv.), PdCl₂(PPh₃)₂ (5 mol-%), Cul (12 mol-%), Et₂O/iPr₂NH (3:1), -5°C, 18 h; 75 % after chromatographic separation²³ of a 97:3 mixture of regioisomers ¹³.- d) ortho-Ethinylbenzaldehvde (1.2)eauiv.). PdCl₂(PPh₃)₂ (7 mol-%), CuI (17 mol-%), THF/ iPr_2NH (3:1), room temp., 20 h, 70%.- e) I N NaOH, THF/MeOH (1:1), 30 h; 69%.- f) CsF (5 equiv.), Ac₂O (1.5 equiv.), 18crown-6 (1 equiv.), THF, room temp., 20 h; 21%.- g) LiHMDS (3 - 30 equiv.), CeCl3 (3-6 equiv.), THF, - $78^{\circ}C$, 3 h.- h) aq. NH₃ (24%) / THF (1:1), 18 h; or: NaOH, MeOH, 18 h.

Scheme 2: a) ortho-Ethinylbenzyl alcohol (1.3 equiv.), $PdCl_2(PPh_3)_2$ (5 mol-%), CuI (12 mol-%), THF/iPr₂NH (3:1), room temp., 4 h; 82 %.- b) NH₄F (45% in H₂O), Bu₄NHSO₄ (0.25 equiv.), CH₂Cl₂, room temp., 1 h¹⁸; 80%.- c) I₂ (2.5 equiv.), morpholine (5.9 equiv.), THF, 40°C, 4 h¹⁹; 95%.d) Dess-Martin reagent (2.0 equiv.), CH₂Cl₂, room temp., 1 h²⁰; 87%.- e) CrCl₂ (3 equiv.), NiCl₂ (1 equiv.), THF, -10 - -5°C, 5 h; 53%.

The structure of the novel 6-membered/10-membered ring analogues 13, 14 of the dienediyne moiety of neocarzinostatin is supported by their spectroscopic data ¹⁶ and particularly by the similarity of the ¹H and ¹³C NMR data with those of the previously prepared 5-membered/10-membered ring analogue 11 ¹¹ (Table 1).

	4-H	9-Н		13-H for 11, 14-H for 13 and 14	Ar-H	
11 (200 MHz) 11	5.86 (s)	5.49 (br. s)		6.09 (br. s)	6.90 and 7.02 (2 dt), 7.41 and 7.47 (2 dd)	
13 (300 MHz)	5.49 (d)	5.54 (d)		6.37 (td)	7.24-7.41 (m)	
14 (300 MHz)	6.70 (s)	5.56 (d)		6.41 (td)	7.28-7.33 (m) and 7.35-7.43 (m)	
	CH ₂		C-4	(Sp2	C _{sp}
11 (50 MHz) ¹¹	30.88 (2 ×)		65.79	100.04, 122.48, 127.71, 127.85, 128.49, 129.21, 131.98, 140.25, 146.22, 156.70		84.16, 93.75, 95.19, 95,42
13 (125 MHz)	22.36, 26.51, 33.41		65.88	105.35, 120.84, 121.52, 128.11, 128.52, 130.06, 131.82, 138.58, 142.05, 144.93		86.73, 89.02, 94.53, 95.07
14 (75 MHz)	22.28, 26.52, 33.35		66.52	105.45, 120.60, 123.16, 128.30, 128.61, 131.07, 131.89, 134.25, 143.07, 144.83		85.64, 86.71, 94.41, 94.99

Table 1: Characteristic dienediyne ¹H NMR data (CDCl₃; splitting patterns in brackets) and ¹³C NMR shifts (CDCl₃)

ACKNOWLEDGMENT: We are indebted to the VOLKSWAGENSTIFTUNG for financial support and to the "Graduiertenkolleg Chemie unter hohen Drücken" of the DEUTSCHE FORSCHUNGSGEMEINSCHAFT for a stipend. A generous donation of palladium chloride by DEGUSSA is gratefully acknowledged.

REFERENCES AND NOTES:

1. First presented at the 15th Biannual Meeting of the Organic Section of the Spanish Chemical Society, Oviedo, Spain, April 4-6, 1995.

- Review: Hirama, M. J. Synth. Org. Chem. Jpn. 1994, 52, 980-991.- Recent work on the related enediyne antibiotics: Maier, M. E., Kontakte (Merck) 1994 (2), 3-17 Synlett 1995, 13-26.
- 3. Wender, P. A.; Harmata, M.; Jeffrey, D.; Mukai, C.; Suffert, J. Tetrahedron Lett. 1988, 29, 909-912.
- 4. Myers, A. G.; Harrington, P. M.; Kwon, B.-M. J. Am. Chem. Soc. 1992, 114, 1086-1087.
- 5. Wender, P. A.; McKinney, J. A.; Mukai, C. J. Am. Chem. Soc. 1990, 112, 5369-5370.
- 6. Doi, T.; Takahashi, T. J. Org. Chem. 1991, 56, 3465-3467.
- R = H: Hirama, M.; Fujiwara, K.; Shigematu, K.; Fukazawa, Y. J. Am. Chem. Soc. 1989, 111, 4120-4122.- R = OH, OG, OCOAr: Hirama, M.; Gomibuchi, T.; Fujiwara, K. J. Am. Chem. Soc. 1991, 113, 9851-9853.- R = (CH₂)₂OR': Tokuda, M.; Fujiwara, K.; Gomibuchi, T.; Hirama, M. Tetrahedron Lett. 1993, 34, 669-672.- R = (CH₂)₂SAc: Hirama, M.; Tokuda, M.; Fujiwara, K. Synlett 1991, 651-653.
- 8. Fujiwara, K.; Kurisaki, A.; Hirama, M. Tetrahedron Lett. 1990, 31, 4329-4332.
- 9. Myers, A. G.; Dragovich, P. S. J. Am. Chem. Soc. 1993, 115, 7021-7022.
- Nakatani, K.; Arai, K.; Terashima, S. J. Chem. Soc. Chem. Commun. 1992, 289-291.- Nakatani, K.; Arai, K.; Terashima, S. Tetrahedron 1993, 49, 1901-1912.
- 11. Suffert, J.; Brückner, R. Synlett 1994, 51-53.
- 12. Matsumoto, Y.; Kuwatani, Y.; Ueda, I. Tetrahedron Lett. 1995, 36, 3197-3200.
- 13. Moniatte, M.; Eckhardt, M.; Brickmann, K.; Brückner, R.; Suffert, J. Tetrahedron Lett. 1994, 35, 1965-1968.
- Recent cyclizations by this method: Wender, P. A.; Zercher, C. K. J. Am. Chem. Soc. 1991, 113, 2311-2313.- Nishikawa, T.; Ino, A.; Hosokawa, S.; Isobe, M. Tetrahedron 1994, 50, 1449-1468.- Maier, M. E.; Abel, U. Synlett 1995, 38-40.
- Method: Wender, P. A.; Zercher, C. K.; Beckham, S.; Haubold, E.-M. J. Org. Chem. 1993, 58, 5867-5869.- Nishikawa, T.; Shibuya, S.; Isobe, M. Synlett 1994, 482-484.- Wender, P. A.; Beckham, S.; O'Leary, S. G. Synthesis 1994, 1278-1282.- Wender, P. A.; Beckham, S.; Mohler, D. L. Tetrahedron Lett. 1995, 36, 209-212.
- 16. All new compounds gave satisfying IR, ¹H NMR, ¹³C NMR, and correct high resolution mass spectra.
- Recent cyclizations by this method: Nicolaou, K. C.; Dai, W.-M.; Hong, Y. P.; Tsay, S.-C.; Baldridge, K. K.; Siegel, J. S. J. Am. Chem. Soc. 1993, 115, 7944-7953.- Semmelhack, M. F.; Gallagher, J. J.; Minami, T.; Dale, T. J. Am. Chem. Soc. 1993, 115, 11618-11619.- Kadow, J. F.; Cook, D. J.; Doyle, T. W.; Langley, D. R.; Pham, K. M.; Vyas, D. M.; Wittman, M. D. Tetrahedron 1994, 50, 1519-1538.- Braña, M. F.; Morán, M.; Pérez de Vega, M. J.; Pita-Romero, I. Tetrahedron Lett. 1994, 35, 8655-8658.
- 18. Procedure: Herold, P. Helv. Chim. Acta 1988, 71, 354-362.
- 19. Procedure: Brandstetter, T.; Maier, M. E. Tetrahedron 1994, 50, 1435-1448.
- 20. Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155-4156.
- 21. Cintas, P. Synthesis 1992, 248-257.
- Crévisy, C.; Beau, J.-M. Tetrahedron Lett. 1991, 32, 3171-3174.- Nicolaou, K. C.; Liu, A.; Zeng, Z.; McComb, S. J. Am. Chem. Soc. 1992, 114, 9279-9282.- Myers, A. G.; Finney, N. S. J. Am. Chem. Soc. 1992, 114, 10986-10987.- Maier, M. E.; Brandstetter, T. Tetrahedron Lett. 1992, 33, 7511-7514.- Lu, Y.-F.; Harwig, C. W.; Fallis, A. G. J. Org. Chem. 1993, 58, 4202-4204.- Nishikawa, T.; Shibuya, S.; Hosokawa, S.; Isobe, M. Synlett 1994, 485-486.
- 23. Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.

(Received in Germany 11 May 1995; accepted 31 May 1995)