Synthesis, structure and in vitro cytotoxicity testing of some 1,3,4-oxadiazoline derivatives from 2-hydroxy-5-iodobenzoic acid

Cong Nguyen Tien,^a Thin Nguyen Van,^b Giang Le Duc,^b Manh Vu Quoc,^c Trung Vu Quoc,^d Thang Pham Chien,^e Hung Nguyen Huy,^e Anh Dang Thi Tuyet,^f Tuyen Nguyen Van^f and Luc Van Meervelt^{g*}

^aFaculty of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District No. 5, Ho Chi Minh City, Vietnam, ^bSchool of Natural Sciences Education, Vinh University, 182 Le Duan St., Vinh City, Vietnam, ^cFaculty of Foundation Science, College of Printing Industry, Phuc Dien, Bac Tu Liem, Hanoi, Vietnam, ^dFaculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, ^eDepartment of Inorganic Chemistry, VNU University of Science, 19 Le Thanh Tong, Hanoi, Vietnam, ^fInstitute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi, Vietnam, and ^gDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium. *Correspondence e-mail: luc.vanmeervelt@kuleuven.be

The syntheses of nine new 5-iodosalicylic acid-based 1,3,4-oxadiazoline derivatives starting from methyl salicylate are described. These compounds are 2-[4-acetyl-5-methyl-5-(3-nitrophenyl)-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4iodophenyl acetate (6a), 2-[4-acetyl-5-methyl-5-(4-nitrophenyl)-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate (6b), 2-(4-acetyl-5-methyl-5-phenyl-4,5-dihydro-1,3,4-oxadiazol-2-vl)-4-iodophenyl acetate, $C_{19}H_{17}IN_2O_4$ (6c), 2-[4-acetyl-5-(4-fluorophenyl)-5-methyl-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate, $C_{19}H_{16}FIN_2O_4$ (6d), 2-[4-acetyl-5-(4-chlorophenyl)-5-methyl-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate, $C_{19}H_{16}CIIN_2O_4$ (6e), 2-[4-acetyl-5-(3-bromophenyl)-5-methyl-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate (6f), 2-[4-acetyl-5-(4-bromophenyl)-5-methyl-4,5-dihydro-1,3,4oxadiazol-2-yl]-4-iodophenyl acetate (6g), 2-[4-acetyl-5-methyl-5-(4-methylphenyl)-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate (6h) and 2-[5-(4acetamidophenyl)-4-acetyl-5-methyl-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate (6i). The compounds were characterized by mass, ¹H NMR and ¹³C NMR spectroscopies. Single-crystal X-ray diffraction studies were also carried out for 6c, 6d and 6e. Compounds 6c and 6d are isomorphous, with the 1,3,4-oxadiazoline ring having an envelope conformation, where the disubstituted C atom is the flap. The packing is determined by C–H···O, C–H··· π and I $\cdots \pi$ interactions. For **6e**, the 1,3,4-oxadiazoline ring is almost planar. In the packing, $Cl \cdots \pi$ interactions are observed, while the I atom is not involved in short interactions. Compounds 6d, 6e, 6f and 6h show good inhibiting abilities on the human cancer cell lines KB and Hep-G2, with IC₅₀ values of 0.9–4.5 μM .

1. Introduction

Derivatives of 1,3,4-oxadiazoline show a broad spectrum of biological activity, including antibacterial (Joshi et al., 2008; Suresh Kumar et al., 2010; Mohitea & Bhaskar, 2011; Hamdi et al., 2011; Naveena et al., 2011; Kotb et al., 2009), antifungal (Mohitea & Bhaskar, 2011; Naveena et al., 2011; Kotb et al., 2009), antitubercular (Joshi et al., 2008; Suresh Kumar et al., 2010), anti-inflammatory (Rajak et al., 2007; Sahoo et al., 2014), antioxidant (Hamdi et al., 2011; Sahoo et al., 2014; Manojkumar et al., 2009; Fadda et al., 2011) and antitumour activities (Kotb et al., 2009; Manojkumar et al., 2009; Fadda et al., 2011). Furthermore, it is well documented that 1,3,4-oxadiazoline derivatives display a pronounced effect on the

Received 31 May 2018 Accepted 13 June 2018

Edited by A. L. Spek, Utrecht University, The Netherlands

Keywords: 1,3,4-oxadiazoline; crystal structure; 5-iodosalicylic acid; cytotoxicity; biological activity.

CCDC references: 1849175; 1849174; 1849173

Supporting information: this article has supporting information at journals.iucr.org/c

research papers

enzyme tyrosinase (El Sadek *et al.*, 2013) or chitin biosynthesis (Ke *et al.*, 2009).

On the other hand, salicylic acid and structurally related compounds were found to possess antimicrobial (Khiati et al., 2007; Sarshira et al., 2016), analgesic and antitumour activities (Pattan et al., 2009; Vejselova & Kutlu, 2015; Huang et al., 2018). Research on the antibacterial properties of salicylic acid derivatives with respect to viscose fabrics shows that the antibacterial activity of salicylic acid and its derivatives are in the following order: 5-bromosalicylic acid > salicylic acid > 5chlorosalicylic acid > 4-chlorosalicylic acid (Kantouch *et al.*, 2013). However, iodinated derivatives of salicylic acid have not been studied much. Recently, a series of salicylic acidbased 1,3,4-oxadiazole derivatives were synthesized and some of them showed good antitumour activities, with IC₅₀ values ranging from 31.19 to 57.21 μM (Murty et al., 2014). As a continuation of our research work exploring potent bioactive 5-iodosalicylic acid-based oxadiazole derivatives (Cong et al., 2012), nine new 2-(4-acetyl-5-aryl-5-methyl-4,5-dihydro-1,3,4oxadiazol-2-yl)-4-iodophenyl acetate compounds were synthesized (see Scheme 1) and their antitumour activities evaluated against KB and Hep-G2.

2. Experimental

All chemicals were obtained from commercial sources and used without further purification. The melting points were determined in open capillaries and are uncorrected. The IR spectra were recorded on an FT–IR Shimadzu 8400-S. NMR spectra were measured on a Bruker Avance 500 MHz in dimethyl sulfoxide (DMSO- d_6) using tetramethylsilane (TMS) as an internal reference. All NMR spectra are available in the supporting information. Mass spectra were recorded on a Bruker micrOTOF-Q 10187 mass spectrometer.

2.1. Synthesis and crystallization

Methyl salicylate (2), methyl 2-hydroxy-5-iodobenzoate (3) and 2-hydroxy-5-iodobenzohydrazide (4) were synthesized according to previously reported methods (Cong *et al.*, 2012).

Methyl salicylate (2): liquid; b.p. 494–495 K, yield 73%.

Methyl 2-hydroxy-5-iodobenzoate (methyl 5-iodosalicylate) (**3**): white needles, m.p. 347–348 K, yield 85%; IR (ν , cm⁻¹): 3156, 3080, 2949, 1676, 1604, 527.

2-Hydroxy-5-iodobenzohydrazide (4): white needles, m.p. 451 K, yield 79%; IR (ν , cm⁻¹): 3405, 3322, 1626, 1574, 529; ¹H NMR (δ in ppm and *J* in Hz): δ 12.41 (1H, *br*, OH), 10.12 (1H, *br*, NH), 8.12 (1H, *d*, ⁴*J* = 2.0, ArH), 7.65 (1H, *dd*, ³*J* = 9.0, ⁴*J* = 2.0, ArH), 6.75 (1H, *d*, ³*J* = 9.0, ArH), 4.80 (2H, *br*, NH₂); ¹³C NMR: 166.1 (CO), 158.9, 141.3, 135.5, 119.9, 117.4, 80.5.

2.1.1. General procedure for the synthesis of N'-(1-arylethylidene)-2-hydroxy-5-iodobenzohydrazide compounds (5a–5i). Equimolar quantities of hydrazide **4** and a substituted acetophenone (X = 3-NO₂, 4-NO₂, 4-H, 4-F, 4-Cl, 3-Br, 4-Br, 4-CH₃ and 4-NH₂) were refluxed in ethanol for 2 h. The reaction mixture was cooled to room temperature and the precipitate was filtered off and crystallized from dioxane or a mixture of DMF and water to give the corresponding products **5a–5i**. **2-Hydroxy-5-iodo-***N***'-[1-(3-nitrophenyl)ethylidene]benzo-hydrazide** (**5a**): yield 88%, m.p. 508–509 K; IR (ν , cm⁻¹): 3217 (OH, N–H), 1636, 1559 (C=O, C=N); ¹H NMR (δ in ppm and *J* in Hz): δ 12.07 (1H, *br*, OH), 11.42 (1H, *s*, NH), 8.65 (1H, *s*, Ar-H), 8.29 (2H, *m*, Ar-H), 8.22 (1H, *d*, ⁴*J* = 2.0, Ar-H), 7.77 (1H, *dd*, ³*J* = ³*J*₁ = 8.0, ArH), 7.73 (1H, *dd*, ³*J* = 8.5, ⁴*J* = 2.0, ArH), 6.89 (1H, *d*, ³*J* = 8.5, ArH), 2.42 (3H, *s*, CH₃); ¹³C NMR: δ 161.2 (C=O), 156.4, 150.8, 148.5, 142.0, 140.0, 139.1, 134.2, 133.3, 130.6, 124.4, 121.2, 121.1, 120.1, 82.3, 14.4; MS: *m*/*z* 447.9718 (*M* + Na)⁺, calculated for C₁₆H₁₅NO₇SNa: 447.9770; MS: *m*/*z* 425.9924 (*M* + H)⁺, calculation for C₁₅H₁₃-IN₃O₄: *M* = 425.9951 a.u.

2-Hydroxy-5-iodo-*N***'-[1-(4-nitrophenyl)ethylidene]benzo-hydrazide (5b)**: yield 82%, m.p. 532–533 K; IR (ν , cm⁻¹): 3094 (OH, N–H), 1643, 1535 (C=O, C=N); ¹H NMR (δ in ppm and *J* in Hz): δ 12.07 (1H, *br*, OH), 11.43 (1H, *s*, NH), 8.31 (2H, *d*, ³*J* = 8.5, Ar-H), 8.22 (1H, *d*, ⁴*J* = 2.0, Ar-H), 8.12 (2H, *d*, ³*J* = 8.5, Ar-H), 7.74 (1H, *dd*, ³*J* = 8.5, ⁴*J* = 2.0, ArH), 6.89 (1H, *d*, ³*J* = 8.5, ArH), 2.40 (3H, *s*, CH₃); ¹³C NMR: δ 161.2 (C=O), 156.7, 150.8, 148.1, 144.4, 142.1, 139.1, 128.1, 124.1, 121.1, 120.1, 82.3, 14.3; MS: *m*/*z* 447.9718 (*M* + Na)⁺, calculation for C₁₅H₁₂-IN₃NaO₄: *M* = 447.9770 a.u.

2-Hydroxy-5-iodo-*N***'-(1-phenylethylidene)benzohydrazide** (**5c**): yield 84%, m.p. 452–453 K; IR (ν , cm⁻¹): 3295, 3040 (OH, N–H), 2917 (*Csp*³–H), 1643, 1566 (C=O, C=N); ¹H NMR (δ in ppm and *J* in Hz): δ 12.06 (1H, *br*, OH), 11.29 (1H, *s*, NH), 8.23 (1H, *d*, ⁴*J* = 2.0, Ar-H), 7.87 (2H, *m*, Ar-H), 7.73 (1H, *dd*, ³*J* = 8.5, ⁴*J* = 2.0, Ar-H), 7.46 (3H, *m*, Ar-H), 6.89 (1H, *d*, ³*J* = 8.5, ArH), 2.35 (3H, *s*, CH₃); ¹³C NMR: δ 160.6 (C=O), 156.3, 152.9, 141.4, 138.5, 137.8, 129.5, 128.4, 126.5, 120.6, 119.6, 81.8, 13.9; MS: *m*/*z* 380.9992 (*M* + H)⁺, calculation for C₁₅H₁₄IN₂O₂: *M* = 381.0100 a.u.

N'-[1-(4-Fluorophenyl)ethylidene]-2-hydroxy-5-iodobenzohydrazide (5d): yield 77%, m.p. 507–508 K; IR (ν , cm⁻¹): 3295, 3102 (OH, N–H), 2930 (Csp³–H), 1643, 1605 (C=O, C=N); ¹H NMR (δ in ppm and *J* in Hz): δ 12.04 (1H, *br*, OH), 11.27 (1H, *s*, NH), 8.22 (1H, *d*, ⁴*J* = 2.0, Ar-H), 7.92 (2H, *dd*, ³*J* = 8.5, ⁴*J*_{H-F} = 5.5, Ar-H), 7.72 (1H, *dd*, ³*J* = 8.5, ⁴*J* = 2.0, ArH), 7.29 (2H, *dd*, ³*J* = 8.5, Ar-H), 6.88 (1H, *d*, ³*J* = 8.5, ArH), 2.34 (3H, *s*, CH₃); ¹³C NMR: δ 162.9 (*d*, ¹*J*_{C-F} = 982.0), 160.6 (C=O), 156.2, 151.9, 141.4, 138.5, 134.3 (*d*, ⁴*J*_{C-F} = 11.0), 128.7 (*d*, ³*J*_{C-F} = 33.5), 120.6, 119.6, 115.3 (*d*, ²*J*_{C-F} = 86.0), 81.7, 13.9; MS: *m*/*z* 399.0007 (*M* + H)⁺, calculation for C₁₅H₁₃FIN₂O₂: *M* = 399.0006 a.u.

N'-[1-(4-Chlorophenyl)ethylidene]-2-hydroxy-5-iodobenzohydrazide (5e): yield 85%, m.p. 542–543 K; IR (ν , cm⁻¹): 3287, 3088 (OH, N–H), 2932 (Csp³–H), 1643, 1550 (C=O, CN); ¹H NMR (δ in ppm and *J* in Hz): δ 12.05 (1H, *br*, OH), 11.30 (1H, *s*, NH), 8.22 (1H, *s*, Ar-H), 7.89 (2H, *d*, ³*J* = 8.0, Ar-H), 7.73 (1H, *dd*, ³*J* = 8.5, ⁴*J* = 1.5, ArH), 7.53 (2H, *d*, ³*J* = 8.0, Ar-H), 6.89 (1H, *d*, ³*J* = 8.5, ArH), 2.33 (3H, *s*, CH₃); ¹³C NMR: δ 160.6 (C=O), 156.2, 151.5, 141.4, 138.5, 136.6, 134.2, 128.4, 128.2, 120.6, 119.6, 81.8, 13.7; MS: *m*/*z* 414.9674 (*M* + H)⁺, calculation for C₁₅H₁₃ClIN₂O₂: *M* = 414.9710 a.u.

N'-[1-(3-Bromophenyl)ethylidene]-2-hydroxy-5-iodobenzohydrazide (5f): yield 82%, m.p. 546–547 K; IR (ν , cm⁻¹): 3412, 3071 (OH, N–H), 1644, 1556 (C=O, C=N); ¹H NMR (δ in ppm and *J* in Hz): δ 12.01 (1H, *br*, OH), 11.30 (1H, *s*, NH), 8.21 (1H, *d*, ⁴*J* = 1.5, Ar-H), 8.03 (1H, *s*, Ar-H), 7.83 (1H, *d*, ³*J* = 8.0, Ar-H), 7.71 (1H, *dd*, ³*J* = 8.0, ⁴*J* = 1.5, ArH), 7.63 (1H, *d*, ³*J* = 8.0, Ar-H), 7.42 (1H, *dd*, ³*J*₁ = ³*J*₂ = 8.0, ArH), 6.87 (1H, *d*, ³*J* = 8.5, ArH), 2.32 (3H, *s*, CH₃); ¹³C NMR: δ 161.2 (C=O), 156.7, 151.6, 141.9, 140.6, 139.0, 132.6, 131.1, 129.3, 126.1, 122.4, 121.1, 120.1, 82.2, 14.3; MS: *m*/*z* 414.9674 (*M* + H)⁺, calculation for C₁₅H₁₂BrIN₂O₂: *M* = 457.9127 a.u.

N'-[1-(4-Bromophenyl)ethylidene]-2-hydroxy-5-iodobenzohydrazide (5g): yield 86%, m.p. 555–556 K; IR (ν , cm⁻¹): 3285, 3034 (OH, N–H), 2938 (Csp³–H), 1647, 1593 (C=O, C=N); ¹H NMR (δ in ppm and *J* in Hz): δ 12.03 (1H, *br*, OH), 11.30 (1H, *s*, NH), 8.22 (1H, *d*, ⁴*J* = 2.0, Ar-H), 7.82 (2H, *d*, ³*J* = 8.5, Ar-H), 7.72 (1H, *dd*, ³*J* = 8.5, ⁴*J* = 2.0, ArH), 7.66 (2H, *d*, ³*J* = 8.5, Ar-H), 6.89 (1H, *d*, ³*J* = 8.5, ArH), 2.33 (3H, *s*, CH₃); ¹³C NMR: δ 161.1 (C=O), 156.7, 152.1, 141.9, 139.0, 137.5, 131.9, 129.0, 123.5, 121.1, 120.1, 82.3, 14.2; MS: *m*/*z* 458.8999 (*M* + H)⁺, calculation for C₁₅H₁₃BrIN₂O₂: *M* = 458.9205 a.u.

2-Hydroxy-5-iodo-*N***'-[1-(4-methylphenyl)ethylidene]benzo-hydrazide** (**5h**): yield 76%, m.p. 501–502 K; IR (ν , cm⁻¹): 3279, 3035 (OH, N–H), 2940 (Csp³–H), 1645, 1600 (C=O, C=N); ¹H NMR (δ in ppm and *J* in Hz): δ 12.04 (1H, *br*, OH), 11.24 (1H, *s*, NH), 8.23 (1H, *d*, ⁴*J* = 2.0, Ar-H), 7.76 (2H, *d*, ³*J* = 8.5, Ar-H), 7.72 (1H, *dd*, ³*J* = 8.5, 4*I* = 2.5, ArH), 7.26 (2H, *d*, ³*J* = 8.5, Ar-H), 6.88 (1H, *d*, ³*J* = 8.5, ArH), 2.32 (3H, *s*, Ar-CH₃), 2.31 (3H, *s*, CH₃); ¹³C NMR: δ 160.6 (C=O), 156.3, 152.9, 141.3, 139.2, 138.5, 135.0, 129.0, 126.4, 120.6, 119.6, 81.7, 20.9, 13.8; MS: *m*/*z* 395.0247 (*M* + H)⁺, calculation for C₁₆H₁₆IN₂O₂: *M* = 395.0256 a.u.

N'-[1-(4-Aminophenyl)ethylidene]-2-hydroxy-5-iodobenzohydrazide (5i): yield 78%, m.p. 515–516 K; IR (ν , cm⁻¹): 3440, 3298, 3201 (OH, N−H), 2932 (Csp³−H), 1634, 1577 (C=O, C=N); ¹H NMR (δ in ppm and *J* in Hz): δ 11.11 (1H, *s*, NH), 8.23 (1H, *s*, Ar-H), 7.70 (1H, *d*, ³*J* = 8.5, ArH), 7.59 (2H, *d*, ³*J* = 8.5, Ar-H), 6.86 (1H, *d*, ³*J* = 8.5, ArH), 6.59 (2H, *d*, ³*J* = 8.5, Ar-H), 5.55 (2H, *br*, NH₂), 2.22 (3H, *s*, CH₃); ¹³C NMR: δ 161.1 (C=O), 157.0, 154.8, 150.9, 141.6, 138.7, 128.3, 125.2, 121.0, 120.1, 113.7, 82.0, 14.1; MS: *m*/*z* 396.0069 (*M* + H)⁺, calculation for C₁₅H₁₅IN₃O₂: *M* = 396.0209 a.u. 2.1.2. General procedure for the synthesis of 2-(4-acetyl-5aryl-5-methyl-4,5-dihydro-1,3,4-oxadiazol-2-yl)-4-iodophenyl acetate compounds (6a–6i). A mixture of *N*-substituted hydrazides (**5a–5i**) (5 mmol) and acetic anhydride (10 ml) was taken into a 100 ml round-bottomed flask. The mixture was refluxed for 4 h. After cooling to room temperature, the reaction mixture was poured into ice cold water. The precipitate obtained was filtered off and crystallized from a mixture of ethanol and water to give the corresponding products. For compounds **6c**, **6d** and **6e**, the crystals were suitable for X-ray diffraction.

2-[4-Acetyl-5-methyl-5-(3-nitrophenyl)-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate (**6a**): IR (ν , cm⁻¹): 3079 (Csp²-H), 2986 (Csp³-H), 1751, 1659 (C=O), 1589 (C=N, C=C); ¹H NMR (δ in ppm and J in Hz): δ 8.30 (2H, m, Ar-H), 8.10 (1H, d, ⁴J = 2.0, Ar-H), 8.00 (2H, m, Ar-H), 7.77 (1H, t, ³J = 8.0, Ar-H), 7.16 (1H, d, ³J = 8.5, Ar-H), 2.26 (9H, m, 3 × CH₃); ¹³C NMR: δ 169.2, 166.9, 149.4, 148.7, 148.4, 142.1, 141.0, 137.3, 132.9, 130.9, 127.0, 124.8, 121.1, 120.0, 99.4, 91.7, 22.7, 22.6, 21.2; MS: m/z 531.9991 (M + Na)⁺; calculation for C₁₉H₁₆I-N₃NaO₆: M = 532.0008 a.u.

2-[4-Acetyl-5-methyl-5-(4-nitrophenyl)-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate (**6b**): IR (ν , cm⁻¹): 3055 (Csp^2 -H), 2940 (Csp^3 -H), 1759, 1667 (C=O), 1605 (C=N, C=C); ¹H NMR (δ in ppm and *J* in Hz): δ 8.29 (2H, *d*, ³*J* = 9.0, Ar-H), 8.08 (1H, *d*, ⁴*J* = 2.0, Ar-H), 8.00 (1H, *dd*, ³*J* = 8.5, ⁴*J* = 2.0, Ar-H), 7.83 (2H, *d*, ³*J* = 8.5, Ar-H), 7.15 (1H, *d*, ³*J* = 8.5, Ar-H), 2.26 (6H, *m*, 2 × CH₃), 2.23 (3H, *s*, CH₃); ¹³C NMR: δ 169.2, 166.8, 149.4, 148.7, 148.4, 145.4, 142.1, 137.3, 128.0, 127.0, 124.2, 120.0, 99.3, 91.7, 22.7, 22.6, 21.2; MS: *m*/*z* 531.9991 (*M* + Na)⁺; calculation for C₁₉H₁₆IN₃NaO₆: *M* = 531.9981 a.u.

2-(4-Acetyl-5-methyl-5-phenyl-4,5-dihydro-1,3,4-oxadiazol-2-yl)-4-iodophenyl acetate (6c): IR (ν , cm⁻¹): 2950 (Csp³-H), 1767, 1667 (C=O); ¹H NMR (δ in ppm and J in Hz): δ 8.05 (1H, d, ⁴J = 2.0, Ar-H), 7.98 (1H, dd, ³J = 8.5, ⁴J = 2.0, Ar-H), 7.51 (2H, d, ³J = 7.0, Ar-H), 7.44 (3H, m, Ar-H), 7.13 (1H, d, ³J = 8.5, Ar-H), 2.25 (3H, s, CH₃), 2.24 (3H, s, CH₃), 2.20 (3H, s, CH₃); ¹³C NMR: δ 169.2, 166.5, 149.3, 148.7, 141.9, 139.1, 137.2, 129.8, 129.0, 126.9, 126.1, 120.3, 100.4, 91.7, 22.8, 22.7, 21.1; MS: *m/z* 487.0126 (*M* + Na)⁺; calculation for C₁₉H₁₇I-N₂NaO₄: 487.0131 a.u.

2-[4-Acetyl-5-(4-fluorophenyl)-5-methyl-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate (6d): IR (ν , cm⁻¹): 3094 (Csp^2 -H), 2940 (Csp^3 -H), 1759, 1659 (C=O), 1605 (C=N, C=C); ¹H NMR (δ in ppm and J in Hz): δ 8.07 (1H, s, Ar-H), 7.98 (1H, dd, ³J = 8.5, ⁴J = 2.0, Ar-H), 7.57 (2H, m, Ar-H), 7.26 (2H, dd, ³J = 8.0, Ar-H), 7.16 (1H, ³J_{H-H} = ³J_{H-F} = 9.0, Ar-H), 7.13 (1H, d, ³J = 8.5, Ar-H), 2.25 (3H, s, CH₃), 2.24 (3H, s, CH₃), 2.19 (3H, s, CH₃); ¹³C NMR: δ 169.1, 166.5, 163.9, 161.9, (149.3, 148.7), 141.9, 137.3, (135.477, 135.453), (128.739, 128.670), 126.9, 120.3, (115.922, 115.749), 99.9, 91.6, 22.8, 22.7, 21.1; MS: m/z 505.0044 (M + Na)⁺; calculation for C₁₉H₁₆FI-N₂NaO₄: M = 505.0036 a.u.

2-[4-Acetyl-5-(4-chlorophenyl)-5-methyl-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate (**6e**): IR (ν , cm⁻¹): 3094 (Csp²-H), 1767, 1667 (C=O), 1597 (C=N, C=C); ¹H NMR (δ in ppm and J in Hz): δ 8.06 (1H, d, ⁴J = 2.0, Ar-H), 7.98 (1H,

research papers

Table 1Experimental details.

	6c	6d	6e
Crystal data			
Chemical formula	$C_{19}H_{17}IN_2O_4$	$C_{19}H_{16}FIN_2O_4$	$C_{19}H_{16}CIIN_2O_4$
M_r	464.24	482.24	498.69
Crystal system, space group	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$
Temperature (K)	100	100	100
a, b, c (Å)	8.837 (1), 20.056 (1), 11.015 (1)	9.1241 (4), 20.0980 (9), 10.7456 (5)	11.703 (2), 22.037 (4), 7.4073 (12)
β (°)	110.18 (1)	110.224 (2)	92.888 (8)
$V(Å^3)$	1832.4 (3)	1849.00 (15)	1907.9 (5)
Ζ	4	4	4
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	1.77	1.77	1.85
Crystal size (mm)	$0.42 \times 0.20 \times 0.16$	$0.60 \times 0.37 \times 0.29$	$0.22 \times 0.12 \times 0.12$
Data collection			
Diffractometer	Bruker APEXII CCD	Bruker APEXII CCD	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker,	Multi-scan (SADABS; Bruker,	Multi-scan (SADABS; Bruker,
-	2014)	2014)	2014)
T_{\min}, T_{\max}	0.627, 0.747	0.610, 0.746	0.640, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	54289, 5600, 4994	52242, 4033, 3703	62840, 4387, 3863
R _{int}	0.029	0.048	0.042
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.714	0.639	0.650
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.022, 0.050, 1.05	0.020, 0.047, 1.06	0.021, 0.051, 1.04
No. of reflections	5600	4033	4387
No. of parameters	238	247	247
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.97, -0.59	0.56, -0.32	0.40, -0.66

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2013), SHELXS97 (Sheldrick, 2008), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

dd, ${}^{3}J = 8.5$, ${}^{4}J = 2.0$, Ar-H), 7.50 (2H, *d*, ${}^{3}J = 8.5$, Ar-H), 7.51 (2H, *d*, ${}^{3}J = 8.5$, Ar-H), 7.14 (1H, *d*, ${}^{3}J = 8.5$, Ar-H), 2.25 (3H, *s*, CH₃), 2.24 (3H, *s*, CH₃), 2.18 (3H, *s*, CH₃); 13 C NMR: δ 168.7, 166.1, 148.8, 148.2, 141.5, 137.5, 136.8, 134.1, 128.6, 127.8, 126.5, 119.7, 99.3, 91.2, 22.2, 22.1, 20.7; MS: *m/z* 520.9743 (*M* + Na)⁺; calculation for C₁₉H₁₆CIIN₂NaO₄: 520.9741 a.u.

2-[4-Acetyl-5-(3-bromophenyl)-5-methyl-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate (**6f**): IR (ν , cm⁻¹): 3071 (Csp²-H), 2932 (Csp³-H), 1767, 1651 (C=O); ¹H NMR (δ in ppm and J in Hz): δ 8.07 (1H, d, ⁴J = 2.0, Ar-H), 7.98 (1H, dd, ³J = 8.5, ⁴J = 2.0, Ar-H), 7.70 (1H, s, Ar-H), 7.64 (1H, t, ³J₁ = ³J₂ = 7.0, Ar-H), 7.52 (1H, d, ³J = 7.5, Ar-H), 7.41 (1H, m, Ar-H), 2.25 (6H, m, 2 × CH₃), 2.18 (3H, s, CH₃); ¹³C NMR: δ 169.1, 166.7, 149.4, 148.7, 142.0, 141.5, 137.3, 132.8, 131.3, 129.0, 126.9, 125.4, 122.3, 120.2, 99.6, 91.7, 22.7, 22.6, 21.1; MS: m/z 564.9230 (M + Na)⁺; calculation for C₁₉H₁₆BrIN₂NaO₄: M = 564.9236 a.u.

2-[4-Acetyl-5-(4-bromophenyl)-5-methyl-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate (**6g**): IR (ν , cm⁻¹): 3094 (Csp²-H), 1767, 1667 (C=O), 1620, 1589 (C=N, C=C); ¹H NMR (δ in ppm and J in Hz): δ 8.05 (1H, d, ⁴J = 2.0, Ar-H), 7.98 (1H, dd, ³J = 8.5, ⁴J = 2.0, Ar-H), 7.65 (2H, d, ³J = 8.5, Ar-H), 7.47 (2H, d, ³J = 8.0, Ar-H), 7.14 (1H, d, ³J = 8.5, Ar-H), 2.25 (3H, s, CH₃), 2.23 (3H, s, CH₃), 2.17 (3H, s, CH₃); ¹³C NMR: δ 169.1, 166.6, 149.3, 148.7, 142.0, 138.4, 137.3, 132.0, 128.6, 127.0, 123.3, 120.2, 99.8, 91.7, 22.7, 22.6, 21.1; MS: m/z 564.9244 (M + Na)⁺; calculation for C₁₉H₁₆BrIN₂NaO₄: M = 564.9236 a.u.

2-[4-Acetyl-5-methyl-5-(4-methylphenyl)-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate (6h): IR (ν , cm⁻¹): 3009 (Csp^2 -H), 2924 (Csp^3 -H), 1767, 1667 (C=O), 1620 (C=N, C=C); ¹H NMR (δ in ppm and *J* in Hz): δ 8.04 (1H, *d*, ⁴*J* = 2.0, Ar-H), 7.97 (1H, *dd*, ³*J* = 8.5, ⁴*J* = 2.0, Ar-H), 7.39 (2H, *d*, ³*J* = 8.0, Ar-H), 7.24 (2H, *d*, ³*J* = 8.0, Ar-H), 7.13 (1H, *d*, ³*J* = 8.5, Ar-H), 2.32 (3H, *s*, CH₃), 2.24 (3H, *s*, CH₃), 2.23 (3H, *s*, CH₃), 2.18 (3H, *s*, CH₃); ¹³C NMR: δ 169.1, 166.3, 149.3, 148.7, 141.8, 139.3, 137.2, 136.2, 129.5, 126.9, 126.1, 120.4, 100.4, 91.6, 22.8, 22.7, 21.2, 21.1; MS: *m/z* 501.0261 (*M* + Na)⁺; calculation for C₂₀H₁₉IN₂NaO₄: *M* = 501.0267 a.u.

2-[5-(4-Acetamidophenyl)-4-acetyl-5-methyl-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate (6i): IR (ν , cm⁻¹): 3320 (NH), 3070 (Cs p^2 -H), 2934 (Cs p^3 -H), 1763, 1655 (C=O), 1601 (C=N, C=C); ¹H NMR (δ in ppm and *J* in Hz): δ 10.08 (1H, *s*, NH), 8.03 (1H, *d*, ⁴*J* = 2.0, Ar-H), 7.97 (1H, *dd*, ³*J* = 8.5, ⁴*J* = 2.0, Ar-H), 7.62 (2H, *d*, ³*J* = 7.0, Ar-H), 7.41 (2H, *d*, ³*J* = 7.0, Ar-H), 7.13 (1H, *d*, ³*J* = 8.5, Ar-H), 2.24 (3H, *s*, CH₃), 2.23 (3H, *s*, CH₃), 2.18 (3H, *s*, CH₃), 2.16 (3H, *s*, CH₃), 2.05 (3H, *s*, CH₃); ¹³C NMR: δ 172.7, 169.2, 166.6, 149.3, 148.7, 141.9, 140.8, 137.3, 133.6, 129.7, 126.9, 120.4, 119.2, 100.3, 91.6, 27.2, 24.5, 22.8, 22.7, 21.1; MS: *m*/z 544.0173 (*M* + Na)⁺; calculation for C₂₁H₂₀IN₃NaO₅: *M* = 544.0345 a.u.

2.2. Structure solution and refinement

Crystal data, data collection and structure refinement details for **6c**, **6d** and **6e** are summarized in Table 1. H atoms

were placed in calculated positions and refined using a riding model, with C-H distances of 0.95 (aromatic) and 0.98 Å (CH₃), and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$ for methyl groups.

2.3. In vitro cell tests

The synthesized compounds 6a-6i were evaluated for their cytotoxicity against two human cancer cell lines, including KB (epidermoid carcinoma cancer) and HepG2 (hepatoma carcinoma cancer). The cell lines were obtained from the American Type Culture Collection (USA) ATCC. The cells were grown in RPMI 1640 medium supplemented with 10% fetal bovine serum, 100 U ml^{-1} penicillin, and 100 µg ml^{-1} streptomycin at 310 K in a humidified atmosphere (95% air and 5% CO_2). The exponentially growing cells were used throughout the experiments. The inhibitory effects of the compounds on the growth of the human cancer cell lines were determined by measuring metabolic activity using a 3-(4,5dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide (MTT) assay. Briefly, human cancer cell lines $(1 \times 105 \text{ cells/ml})$ were treated for 3 d with a series of concentrations of the compounds (in DMSO), i.e. 0.125, 0.5, 2.0, 8.0, 32.0, and 128.0 μ g ml⁻¹. After incubation, 0.1 mg MTT solution (50 μ l of a 2 mg ml⁻¹ solution) was added to each well and the cells were then incubated at 310 K for 4 h. The plates were centrifuged at 1000 rpm for 10 min at room temperature and the media were then carefully aspirated. DMSO (150 µl) was added to each well to dissolve the formazan crystals. The plates were read immediately at 540 nm on a microplate reader (TECAN GENIOUS). All the experiments were performed three times and the mean absorbance values were calculated. The results are expressed as the percentage of inhibition that produced a reduction in the absorbance by the treatment of the compounds compared to the untreated controls. A dose-response curve was generated and the inhibitory concentration of 50% (IC₅₀) was determined for each compound as well as for each cell line.

3. Results and discussion

3.1. Synthesis of 1,3,4-oxadiazoline derivatives 6a-6i

Nine new 2-(4-acetyl-5-aryl-5-methyl-4,5-dihydro-1,3,4-oxadiazol-2-yl)-4-iodophenyl acetate derivatives, **6a–6i**, were synthesized starting from salicylic acid **1** (Scheme 1). In the initial steps, salicylic acid **1** is converted into 2-hydroxy-5iodobenzohydrazide **4**. The IR spectrum of **4** shows an absorption at 1626 cm⁻¹ corresponding to a C=O stretching vibration of the amide group. Two bands at 3405 and 3322 cm⁻¹ are due to the presence of OH and NH₂ groups, respectively. The ¹H NMR spectrum of **4**, displays a broad singlet at 4.80 ppm (2H) corresponding to the NH₂ protons. Two broad peaks appear at δ 12.41 and 10.12 ppm, representing the OH and NHCO protons. The appearance of three signals in the aromatic area at 8.12 (1H, doublet, ⁴J = 2.0 Hz), 7.6 (1H, doublet of doublet, ³J = 9.0 Hz, ⁴J = 2.0 Hz) and

The molecular structure of 6c, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

6.75 ppm (1H, doublet, ${}^{3}J = 9.0$ Hz) indicate that the benzene ring contains three substituents at positions of 1, 2 and 5.

The reaction of aromatic ketones with hydrazide **4** to obtain the desired *N*-substituted hydrazides **5a–5i** occurs easily and may be observed clearly by the appearance of a precipitate during and after the progress of the reaction. In comparison with **4**, the corresponding *N'*-(1-arylethylidene)-2-hydroxy-5iodobenzohydrazides **5a–5i** show similar spectra, except for the absence of bands due to the NH₂ group. Each compound shows absorptions at 1636–1645 and 1535–1605 cm⁻¹ corresponding to C=O and C=N or C=C bonds present in the molecule. Besides that, the absorption around 2917– 2940 cm⁻¹ corresponds to the CH₃ group present in the *N*substituted hydrazides.

Figure 2

Packing diagram for **6c**, showing C–H···O (red), C–I··· π (grey) and C–H··· π (grey) interactions. *Cg2* is the centroid of the C1–C6 ring and *Cg3* is the centroid of the C9–C14 ring. [Symmetry codes: (i) –*x* + 1, *y* – $\frac{1}{2}$, –*z* + $\frac{1}{2}$; (ii) –*x* + 2, –*y* + 1, –*z* + 1; (iii) *x*, –*y* + $\frac{3}{2}$, *z* + $\frac{1}{2}$.]

Figure 3

Figure 4

The molecular structure of **6d**, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Hydrazones **5a–5i** on cyclization with acetic anhydride afforded 1,3,4-oxadiazoline derivatives **6a–6i**. In the IR spectra of 1,3,4-oxadiazoline compounds **6a–6h** (except for **6i**), no N–H bond stretching is present around 3200 cm⁻¹, while strong bands in the ranges 1751–1767 and 1651–1667 cm⁻¹ indicated the presence of acetyl groups. Comparing the ¹³C NMR spectra of **5a–5i** with those of **6a–6i** showed the appearance of a signal around 100.00 ppm; this was assigned to the C-5 atom of the oxadiazoline ring, *i.e.* atom C8. Besides that, the signals of the methyl group in the ¹H NMR spectra of **5a–5i** were shifted upfield in the ¹H NMR spectra of **6a–6i**. Those spectral characteristics are compatible with the transformation of hydrazones to oxadiazoline compounds.

Table 2	
Hydrogen-bond geometry (Å, °) for 6c .	

Cg3 is the centroid of the C9-C14 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C5-H5\cdots O4^{i}$	0.95	2.51	3.2828 (19)	139
$C16-H16B\cdots O4^{ii}$	0.98	2.55	3.529 (2)	177
$C17 - H17C \cdot \cdot \cdot Cg3^{iii}$	0.98	2.70	3.5766 (17)	150
		4		

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x, $-y + \frac{3}{2}$, $z - \frac{1}{2}$; (iii) x, $-y + \frac{3}{2}$, $z + \frac{1}{2}$.

3.2. Crystal structures of 1,3,4-oxadiazoline derivatives 6c, 6d and 6e

Crystallization experiments for compounds **6a–6i** using a mixture of ethanol and water resulted in crystals suitable for X-ray diffraction for compounds **6c**, **6d** and **6e**. The crystals belong to the monoclinic space group $P2_1/c$.

The central 1,3,4-oxadiazoline ring in **6c** displays an envelope conformation (Fig. 1) with the C8 atom as the flap [puckering parameters: Q = 0.1310 (14) Å and $\varphi = 322.2$ (6)°]. The best plane through the 1,3,4-oxadiazoline ring makes angles of 7.84 (8) and 78.48 (8)° with the 4-iodophenyl ring (atoms C1–C6) and the phenyl ring (atoms C9–C14), respectively. Both aromatic rings are inclined to each other by 82.11 (8)°.

In the crystal, molecules of **6c** are linked by $C-H\cdots O$ and $C-H\cdots \pi$ interactions, forming chains propagating along the *b*-axis direction (Fig. 2 and Table 2). Molecules in parallel chains form inversion dimers by $I\cdots \pi$ interactions [Fig. 2; $I\cdots Cg2^{iv} = 3.7888$ (8) Å; Cg2 is the centroid of the C1–C6 ring; symmetry code: (iv) -x + 2, -y + 1, -z + 1].

The crystal structures of **6c** and **6d** (Fig. 3) are isomorphous; the r.m.s. overlay fit is 0.0438 Å for the non-H atoms. The

Partial packing diagram for **6d**, showing dimer formation by $C-H \cdots O$ (red) interactions. [Symmetry code: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.]

Figure 5

The molecular structure of 6e, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

puckering parameters of the 1,3,4-oxadiazoline ring of **6d** are Q = 0.1159 (17) Å and $\varphi = 325.4 (8)^{\circ}$.

The crystal packing is built up by $C-H\cdots O$, $C-H\cdots \pi$ and $C-I\cdots \pi$ interactions, as for **6c** [Table 3; $I\cdots Cg2^i = 3.7807$ (8) Å; *Cg2* is the centroid of the C1–C6 ring; symmetry code: (i) -x + 2, -y + 1, -z + 1]. In addition, a C14–H14 \cdots O2ⁱⁱ interaction (Table 3) is observed, which together

Figure 6

Partial packing diagram for **6e**, showing C-H···O (red), C-H··· π (grey) and C-Cl··· π (grey) interactions. *Cg2* is the centroid of the C1-C6 ring. [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, y, z + 1; (iii) x, y, z - 1; (iv) x - 1, y, z.]

Table	3
--------------	---

Hydrogen-bond geometry (Å, $^\circ)$ for 6d.

Cg3 is the centroid of the C9-C14 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C5-H5\cdots O4^{i}$	0.95	2.53	3.331 (2)	142
$C14 - H14 \cdots O2^{ii}$	0.95	2.51	3.335 (2)	145
$C16-H16A\cdots O4^{iii}$	0.98	2.54	3.513 (2)	174
$C17 - H17C \cdot \cdot \cdot Cg3^{ii}$	0.98	2.50	3.407 (2)	154

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x, $-y + \frac{3}{2}$, $z + \frac{1}{2}$; (iii) x, $-y + \frac{3}{2}$, $z - \frac{1}{2}$.

Table 4Hydrogen-bond geometry (Å, $^{\circ}$) for 6e.

Cg2 is the centroid of the C1–C6 ring.						
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$		
$C6-H6\cdots O2^i$	0.95	2.47	3.258 (2)	140		
$C11 - H11 \cdots O1^{ii}$	0.95	2.55	3.435 (2)	155		
$C19-H19B\cdots Cg2^{iii}$	0.98	2.75	3.649 (2)	153		

Symmetry codes: (i) x, y, z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) x, y, z - 1.

with the C16-H16A···O4ⁱⁱⁱ interaction, results in the formation of a dimer, generating an $R_2^2(11)$ loop (Fig. 4).

Compound **6e** is not isomorphous with analogues **6c** and **6d**. The 1,3,4-oxadiazoline ring is almost planar (r.m.s. deviation = 0.024 Å) and is inclined to the planes of the aromatic rings by 11.95 (8) (ring C1–C6) and 78.28 (8)° (ring C9–C14) (Fig. 5). The orientation of the acetate group in **6e** is different compared to compounds **6c** and **6d**, as illustrated by the torsion angle C3–C4–O1–C15 [-83.55 (18)° in **6e**, 81.17 (17)° in **6c** and 81.5 (2)° in **6d**]. As a result, in structures **6c** and **6d**, the acetate group and the C8-aryl substituent are *syn* with respect to one another, while in **6e** they are *anti*. In all three cases, the carbonyl O atom (O4) of acetate is close to being eclipsed with respect to atom C4 of the aromatic ring, which may indicate a favourable interaction between a non-bonded pair of electrons on O4 and the π^* orbital of the aromatic C1–C6 ring.

In the crystal, inversion dimers are formed by C11– H11···O1ⁱⁱ interactions (Table 4 and Fig. 6). These dimers interact further by C6–H6···O2ⁱ and C19–H19B··· π^{iii} interactions with the iodo-substituted phenyl ring (Table 4 and Fig. 6), resulting in chains of molecules running in the *c* direction. Parallel chains interact further by Cl··· π contacts, again with the iodo-substituted phenyl ring (Table 4 and Fig. 6). In contrast to the crystal packings of the two previous analogues, the packing of **6e** does not show I··· π interactions. The closest neighbour for atom I1 is H17B (I1···H17Bⁱ = 3.13 Å). The shortest I···Cl distance in the crystal packing is I1···Cl1^{iv} = 3.850 (2) Å [symmetry code: (iv) x + 1, $-y + \frac{1}{2}$, $z + \frac{1}{2}$].

The crystal packings of compounds **6c**, **6d** and **6e** contain no voids.

3.3. In vitro cytotoxicity of compounds 6a-6i

Complexes **6a-6i** were assayed for *in vitro* cytotoxicity against human cancer cells KB-CCL-17 (Human epidemic

carcinoma) and Hep-G2-HB-8065 (Hepatocellular carcinoma). The IC_{50} values are listed in Table 5, together with literature data for ellipcitine (Hoang *et al.*, 2015).

The results indicate that most of the examined compounds possess at least moderate cytotoxic activity, and some compounds even display a promising activity profile. It is important to note that these separate pharmacophores display considerably less potent cytotoxic activities (IC₅₀ values ranging from 42 to more than 400 μ *M*) compared to the most promising compounds **6d**, **6e**, **6f** and **6h** (IC₅₀ values between 0.9 and 4.5 μ *M*), showing a reasonable activity against two human cancer cell lines. In particular, compound **6f** exhibits a strong anticancer effect against KB cells, with an IC₅₀ value (0.9 μ *M*) lower than ellipticine (1.2 μ *M*).

4. Conclusions

In this study, we have synthesized nine new 2-(4-acetyl-5-aryl-5-methyl-4,5-dihydro-1,3,4-oxadiazol-2-yl)-4-iodophenyl acetate compounds in five steps starting from salicylic acid with moderate yield. The compounds were characterized spectroscopically and by single-crystal X-ray diffraction for **6c**, **6d** and **6e**. The *in vitro* cytotoxicity of **6a–6i** against two human cancer cell lines (KB and Hep-G2) was determined and illustrated, implying their potential for further studies in the field of anticancer research.

References

- Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cong, N. T., Tung, N. Q., Minh Nguyen, N. T. & Chi, N. T. (2012). Viet. J. Chem. 50, 12–15.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.
- El Sadek, M. M., Hassan, S. Y., Abdelwahab, H. E. & Yacout, G. A. (2013). *Molecules*, **18**, 8550–8562.
- Fadda, A. A., Abdel-Rahman, A. A.-H., El-Sayed, W. A., Zidan, T. A. & Badria, F. A. (2011). *Chem. Heterocycl. Compd*, **47**, 856–864.
- Hamdi, N., Passarelli, V. & Romerosa, A. (2011). C. R. Chim. 14, 548– 555.
- Hoang, L. T. A., Nguyen, T. C., Bui, H. T., Pham, H. Y., Nguyen, X. N., Do, T. T., Nguyen, H. N., Chau, V. M., Phan, V. K. & Young, H. K. (2015). *Molecules*, **20**, 1151–1160.
- Huang, G., Cheng, H., Liu, Y. & Hu, J. (2018). Saudi Pharm. J. 26, 263–265.

|--|--|

Cytotoxic effects of the examined	compounds 6a-6i	$(IC_{50}^{a} ir)$	(μM)
-----------------------------------	-----------------	--------------------	-----------

Compound	KB	Hep-G2
6a	3.733 ±0.472	12.574 ± 0.766
6b	9.214 ± 0.884	14.735±0.727
6c	5.280 ± 0.819	12.284 ± 0.625
6d	1.867±0.568	4.564±0.539
6e	4.012±0.622	3.811±0.822
6f	0.921 ±0.360	3.315±0.552
6g	6.262 ± 0.645	13.260 ± 0.866
6h	3.166 ±0.398	3.983 ±0.482
6i	12.476 ± 0.979	11.900 ± 1.036
Ellipcitine	$1.260 \pm 0,528$	$2.358 {\pm} 0.407$

Note: (a) IC_{50} is the concentration of the compound required to inhibit cell growth by 50%.

- Joshi, S. D., Vagdevi, H. M., Vaidya, V. P. & Gadaginamath, G. S. (2008). Eur. J. Med. Chem. 43, 1989–1996.
- Kantouch, A., El-Sayed, A. A., Salama, M., El-Kheir, A. A. & Mowafi, S. (2013). Int. J. Biol. Macromol. 62, 603–607.
- Ke, S., Liu, F., Wang, N., Yang, Q. & Qian, X. (2009). Bioorg. Med. Chem. Lett. 19, 332–335.
- Khiati, Z., Othman, A. A. & Guessas, B. (2007). S. Afr. J. Chem. 60, 20–24.
- Kotb, E. R., El-Hashash, M. A., Salama, M. A., Kalf, H. S. & Abdel Wahed, N. A. M. (2009). Acta Chim. Slov. 56, 908–919.
- Manojkumar, P., Ravi, T. K. & Subbuchettiar, G. (2009). *Acta Pharm.* **59**, 159–170.
- Mohitea, P. B. & Bhaskar, V. H. (2011). Orbital: Electron. J. Chem. 3, 117–124.
- Murty, M. S. R., Penthala, R., Nath, L. R. & Anto, R. J. (2014). Lett. Drug. Des. Discov. 11, 1133–1142.
- Naveena, C. S., Poojary, B., Kumsi, M., Thangavel, A. & Shenoy, S. (2011). Der Pharma Chem. 3, 247–257.
- Pattan, S. R., Rabara, P. A., Pattan, J. S., Bukitagar, A. A., Wakale, V. S. & Musmade, D. S. (2009). *Indian J. Chem. Sect. B*, 48, 1453– 1456.
- Rajak, H., Kharya, M. D. & Mishra, P. (2007). Yakugaku Zasshi, 127, 1757–1764.
- Sahoo, U., Seth, A. K. & Balaraman, R. (2014). *Int. J. ChemTech Res.* 6, 2427–2437.
- Sarshira, E. M., Hamada, N. M., Moghazi, Y. M. & Abdelrahman, M. M. (2016). J. Heterocycl. Chem. 53, 1970–1982.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Suresh Kumar, G. V., Rajendraprasad, Y., Mallikarjuna, B. P., Chandrashekar, S. M. & Kistayya, C. (2010). *Eur. J. Med. Chem.* 45, 2063–2074.
- Vejselova, D. & Kutlu, H. M. (2015). Turk. J. Biol. 39, 1-5.

Acta Cryst. (2018). C74 [https://doi.org/10.1107/S2053229618008719]

Synthesis, structure and *in vitro* cytotoxicity testing of some 1,3,4-oxadiazoline derivatives from 2-hydroxy-5-iodobenzoic acid

Cong Nguyen Tien, Thin Nguyen Van, Giang Le Duc, Manh Vu Quoc, Trung Vu Quoc, Thang Pham Chien, Hung Nguyen Huy, Anh Dang Thi Tuyet, Tuyen Nguyen Van and Luc Van Meervelt

Computing details

For all structures, data collection: *APEX2* (Bruker, 2014); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT* (Bruker, 2013). Program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008) for (6c), (6e); SHELXT (Sheldrick, 2015a) for (6d). For all structures, program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov *et al.*, 2009); software used to prepare material for publication: OLEX2 (Dolomanov *et al.*, 2009).

2-(4-Acetyl-5-methyl-5-phenyl-4,5-dihydro-1,3,4-oxadiazol-2-yl)-4-iodophenyl acetate (6c)

Crystal data

 $C_{19}H_{17}IN_2O_4$ $M_r = 464.24$ Monoclinic, $P2_1/c$ a = 8.837 (1) Å b = 20.056 (1) Å c = 11.015 (1) Å $\beta = 110.18$ (1)° V = 1832.4 (3) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2014) $T_{\min} = 0.627, T_{\max} = 0.747$ 54289 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.050$ S = 1.055600 reflections 238 parameters 0 restraints F(000) = 920 $D_x = 1.683 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9773 reflections $\theta = 3.2-33.1^{\circ}$ $\mu = 1.77 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.42 \times 0.20 \times 0.16 \text{ mm}$

5600 independent reflections 4994 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 30.5^\circ, \ \theta_{min} = 2.8^\circ$ $h = -12 \rightarrow 12$ $k = -28 \rightarrow 28$ $l = -15 \rightarrow 15$

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0212P)^2 + 1.2207P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.003$

Acta Cryst. (2018). C74

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.59 \ {\rm e} \ {\rm \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	1.02273 (2)	0.44378 (2)	0.71043 (2)	0.02391 (4)	
01	0.42189 (12)	0.51004 (5)	0.22300 (10)	0.0198 (2)	
N1	0.44105 (14)	0.63918 (6)	0.32433 (11)	0.0172 (2)	
C1	0.81918 (17)	0.46520(7)	0.54844 (14)	0.0185 (3)	
O2	0.57214 (14)	0.56173 (6)	0.12194 (11)	0.0265 (2)	
N2	0.43632 (14)	0.70564 (6)	0.36222 (11)	0.0170 (2)	
C2	0.75217 (17)	0.52839 (7)	0.53642 (13)	0.0177 (3)	
H2	0.795397	0.560319	0.603141	0.021*	
03	0.63889 (13)	0.65492 (5)	0.51584 (9)	0.0191 (2)	
C3	0.62097 (16)	0.54536 (7)	0.42630 (13)	0.0162 (2)	
O4	0.31986 (13)	0.80687 (5)	0.32597 (11)	0.0240 (2)	
C4	0.55900 (17)	0.49706 (7)	0.33034 (13)	0.0175 (3)	
C5	0.62622 (19)	0.43404 (7)	0.34230 (15)	0.0221 (3)	
Н5	0.582960	0.401921	0.275960	0.027*	
C6	0.75733 (19)	0.41777 (7)	0.45167 (15)	0.0226 (3)	
H6	0.804238	0.374628	0.460211	0.027*	
C7	0.55901 (16)	0.61343 (7)	0.41634 (13)	0.0161 (2)	
C8	0.58015 (17)	0.72191 (7)	0.47773 (13)	0.0165 (2)	
C9	0.70562 (16)	0.76014 (7)	0.43953 (13)	0.0170 (2)	
C10	0.82350 (18)	0.72550 (8)	0.40745 (15)	0.0225 (3)	
H10	0.828901	0.678281	0.414448	0.027*	
C11	0.93294 (19)	0.75959 (9)	0.36537 (16)	0.0289 (3)	
H11	1.012829	0.735524	0.343917	0.035*	
C12	0.92662 (19)	0.82828 (9)	0.35443 (16)	0.0294 (3)	
H12	1.001008	0.851359	0.324678	0.035*	
C13	0.8109 (2)	0.86321 (9)	0.38721 (17)	0.0299 (3)	
H13	0.806516	0.910437	0.380223	0.036*	
C14	0.70118 (18)	0.82959 (8)	0.43030 (15)	0.0235 (3)	
H14	0.623057	0.853966	0.453485	0.028*	
C15	0.44235 (18)	0.54575 (7)	0.12345 (14)	0.0197 (3)	
C16	0.2830 (2)	0.55892 (8)	0.02103 (15)	0.0274 (3)	
H16A	0.245772	0.518532	-0.030777	0.041*	
H16B	0.294126	0.595176	-0.034930	0.041*	
H16C	0.204476	0.571687	0.061592	0.041*	
C17	0.5379 (2)	0.75217 (8)	0.58752 (14)	0.0236 (3)	
H17A	0.456948	0.724354	0.605601	0.035*	
H17B	0.494300	0.797093	0.563247	0.035*	
H17C	0.634896	0.754692	0.664922	0.035*	

C18	0.31788 (16)	0.74827 (7)	0.29343 (13)	0.0176 (3)
C19	0.18862 (18)	0.71930 (8)	0.17778 (15)	0.0227 (3)
H19A	0.101667	0.751907	0.143604	0.034*
H19B	0.145536	0.678758	0.203469	0.034*
H19C	0.234431	0.708341	0.110914	0.034*
H19B H19C	0.145536 0.234431	0.678758 0.708341	0.203469 0.110914	0.034* 0.034*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.02366 (5)	0.02116 (5)	0.02296 (5)	0.00370 (3)	0.00299 (4)	0.00274 (3)
01	0.0188 (5)	0.0201 (5)	0.0183 (5)	-0.0032 (4)	0.0038 (4)	0.0003 (4)
N1	0.0175 (5)	0.0151 (5)	0.0192 (5)	0.0000 (4)	0.0065 (4)	-0.0022 (4)
C1	0.0184 (6)	0.0178 (6)	0.0192 (6)	0.0005 (5)	0.0064 (5)	0.0028 (5)
O2	0.0257 (6)	0.0309 (6)	0.0238 (5)	-0.0008 (4)	0.0096 (4)	0.0042 (4)
N2	0.0163 (5)	0.0159 (5)	0.0175 (5)	0.0010 (4)	0.0041 (4)	-0.0023 (4)
C2	0.0192 (6)	0.0171 (6)	0.0173 (6)	-0.0010 (5)	0.0070 (5)	0.0001 (5)
03	0.0241 (5)	0.0154 (5)	0.0148 (4)	0.0027 (4)	0.0029 (4)	-0.0007 (4)
C3	0.0167 (6)	0.0158 (6)	0.0175 (6)	-0.0008 (5)	0.0078 (5)	0.0003 (5)
O4	0.0233 (5)	0.0190 (5)	0.0290 (5)	0.0038 (4)	0.0083 (4)	0.0007 (4)
C4	0.0173 (6)	0.0180 (6)	0.0172 (6)	-0.0026 (5)	0.0060 (5)	0.0009 (5)
C5	0.0257 (7)	0.0166 (7)	0.0230 (7)	-0.0025 (5)	0.0070 (6)	-0.0029 (5)
C6	0.0263 (7)	0.0145 (6)	0.0264 (7)	0.0014 (5)	0.0082 (6)	0.0002 (5)
C7	0.0177 (6)	0.0165 (6)	0.0151 (6)	-0.0008 (5)	0.0068 (5)	-0.0013 (5)
C8	0.0182 (6)	0.0165 (6)	0.0141 (6)	0.0028 (5)	0.0046 (5)	-0.0010 (5)
C9	0.0162 (6)	0.0197 (6)	0.0133 (6)	0.0008 (5)	0.0028 (5)	-0.0022 (5)
C10	0.0198 (7)	0.0243 (7)	0.0235 (7)	0.0021 (5)	0.0077 (5)	-0.0033 (6)
C11	0.0195 (7)	0.0388 (9)	0.0304 (8)	0.0001 (6)	0.0111 (6)	-0.0033 (7)
C12	0.0201 (7)	0.0400 (9)	0.0272 (8)	-0.0065 (6)	0.0071 (6)	0.0020 (7)
C13	0.0276 (8)	0.0243 (8)	0.0361 (9)	-0.0043 (6)	0.0090 (7)	0.0014 (7)
C14	0.0214 (7)	0.0208 (7)	0.0279 (7)	0.0015 (5)	0.0080 (6)	-0.0018 (6)
C15	0.0245 (7)	0.0168 (6)	0.0169 (6)	0.0003 (5)	0.0058 (5)	-0.0021 (5)
C16	0.0264 (8)	0.0299 (8)	0.0206 (7)	0.0022 (6)	0.0014 (6)	-0.0003 (6)
C17	0.0307 (8)	0.0251 (7)	0.0179 (6)	0.0042 (6)	0.0122 (6)	-0.0020 (5)
C18	0.0149 (6)	0.0204 (6)	0.0195 (6)	0.0017 (5)	0.0085 (5)	0.0026 (5)
C19	0.0162 (6)	0.0265 (7)	0.0231 (7)	0.0008 (5)	0.0040 (5)	0.0013 (6)

Geometric parameters (Å, °)

I1—C1	2.0951 (14)	C9—C10	1.395 (2)
O1—C4	1.3948 (17)	C9—C14	1.396 (2)
01—C15	1.3727 (17)	C10—H10	0.9500
N1—N2	1.4017 (16)	C10—C11	1.388 (2)
N1—C7	1.2851 (18)	C11—H11	0.9500
C1—C2	1.386 (2)	C11—C12	1.382 (3)
C1—C6	1.392 (2)	C12—H12	0.9500
O2—C15	1.1966 (19)	C12—C13	1.386 (2)
N2	1.4917 (18)	C13—H13	0.9500
N2—C18	1.3614 (18)	C13—C14	1.392 (2)

С2—Н2	0.9500	C14—H14	0.9500
C2—C3	1.4004 (19)	C15—C16	1.493 (2)
O3—C7	1.3631 (16)	C16—H16A	0.9800
O3—C8	1.4493 (16)	C16—H16B	0.9800
C3—C4	1.3986 (19)	C16—H16C	0.9800
C3—C7	1.4610 (19)	С17—Н17А	0.9800
04-C18	1 2270 (18)	C17—H17B	0.9800
C4-C5	1.2270(10) 1.383(2)	C17_H17C	0.9800
C5 H5	0.0500	C_{18} C_{10}	1.504(2)
C5	1,202 (2)	C10_U10A	1.304(2)
C5C6	1.392 (2)	С19—П19А	0.9800
	0.9500	CI9—HI9B	0.9800
08-09	1.522 (2)	С19—Н19С	0.9800
C8—C17	1.5107 (19)		
C15—O1—C4	117.34 (11)	C11—C10—H10	119.8
C7—N1—N2	104.29 (11)	C10-C11-H11	119.7
$C_{2}-C_{1}-I_{1}$	118 81 (10)	C12-C11-C10	120 55 (15)
$C_2 C_1 C_6$	120.65 (13)	C_{12} C_{11} H_{11}	110.7
$C_{2} = C_{1} = C_{0}$	120.03(13) 120.47(11)	$C_{12} = C_{11} = H_{12}$	119.7
N1 N2 C9	120.47(11)	$C_{11} = C_{12} = C_{12}$	120.3
$NI - NZ - C\delta$	110.97(11)		119.49 (13)
C18 - N2 - N1	121.85 (12)	C13—C12—H12	120.3
C18—N2—C8	127.06 (12)	С12—С13—Н13	119.8
C1—C2—H2	119.9	C12—C13—C14	120.47 (16)
C1—C2—C3	120.26 (13)	C14—C13—H13	119.8
С3—С2—Н2	119.9	C9—C14—H14	119.9
С7—О3—С8	107.38 (10)	C13—C14—C9	120.17 (15)
C2—C3—C7	117.97 (12)	C13—C14—H14	119.9
C4—C3—C2	118.53 (13)	O1—C15—C16	110.24 (13)
C4—C3—C7	123.48 (13)	O2-C15-O1	122.81 (13)
O1—C4—C3	120.69 (12)	O2—C15—C16	126.93 (14)
C5-C4-O1	118.05 (12)	C15—C16—H16A	109.5
C5-C4-C3	121.16(13)	C15—C16—H16B	109.5
C4—C5—H5	120.0	C_{15} $-C_{16}$ $-H_{16}$ C_{16} $-H_{16}$ C_{16} $-H_{16}$ C_{16} $-H_{16}$ C_{16} $-H_{16}$ C_{16} $-H_{16}$	109.5
C4-C5-C6	119 91 (14)	H_{164} C_{16} H_{16B}	109.5
C6 C5 H5	120.0		109.5
C_{1} C_{6} H_{6}	120.0	$H_{16} = C_{16} = H_{16} C_{16}$	109.5
$C_1 = C_0 = H_0$	120.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
	119.49 (14)		109.5
С5—С6—Н6	120.3		109.5
NI-C/03	116.29 (12)	C8—C1/—H1/C	109.5
N1—C7—C3	128.01 (13)	H17A—C17—H17B	109.5
O3—C7—C3	115.68 (12)	H17A—C17—H17C	109.5
N2—C8—C9	111.22 (11)	H17B—C17—H17C	109.5
N2—C8—C17	113.42 (12)	N2—C18—C19	116.25 (13)
O3—C8—N2	99.15 (10)	O4—C18—N2	120.54 (13)
O3—C8—C9	108.96 (11)	O4—C18—C19	123.21 (13)
O3—C8—C17	107.66 (11)	C18—C19—H19A	109.5
C17—C8—C9	115.08 (12)	C18—C19—H19B	109.5
C10—C9—C8	119.86 (13)	C18—C19—H19C	109.5

C10—C9—C14	118.89 (14)	H19A—C19—H19B	109.5
C14—C9—C8	121.19 (13)	H19A—C19—H19C	109.5
С9—С10—Н10	119.8	H19B—C19—H19C	109.5
C11—C10—C9	120.41 (15)		
I1—C1—C2—C3	176.86 (10)	C6—C1—C2—C3	0.0 (2)
I1—C1—C6—C5	-177.27 (11)	C7—N1—N2—C8	9.02 (14)
O1—C4—C5—C6	-176.23 (13)	C7—N1—N2—C18	-174.80 (12)
N1—N2—C8—O3	-13.43 (13)	C7—O3—C8—N2	12.66 (13)
N1—N2—C8—C9	101.12 (13)	C7—O3—C8—C9	-103.64 (12)
N1—N2—C8—C17	-127.29 (12)	C7—O3—C8—C17	130.93 (12)
N1—N2—C18—O4	-177.27 (12)	C7—C3—C4—O1	-6.1 (2)
N1—N2—C18—C19	2.50 (19)	C7—C3—C4—C5	177.43 (13)
C1—C2—C3—C4	0.6 (2)	C8—N2—C18—O4	-1.7 (2)
C1—C2—C3—C7	-177.68 (13)	C8—N2—C18—C19	178.03 (12)
N2—N1—C7—O3	-0.09 (16)	C8—O3—C7—N1	-8.94 (16)
N2—N1—C7—C3	-178.50 (13)	C8—O3—C7—C3	169.68 (11)
N2-C8-C9-C10	-88.99 (15)	C8—C9—C10—C11	176.32 (14)
N2-C8-C9-C14	88.16 (15)	C8—C9—C14—C13	-175.89 (14)
C2-C1-C6-C5	-0.4 (2)	C9—C10—C11—C12	-0.1 (2)
C2-C3-C4-O1	175.70 (12)	C10-C9-C14-C13	1.3 (2)
C2—C3—C4—C5	-0.8 (2)	C10-C11-C12-C13	0.7 (3)
C2—C3—C7—N1	179.85 (14)	C11—C12—C13—C14	-0.3 (3)
C2—C3—C7—O3	1.42 (18)	C12—C13—C14—C9	-0.7 (3)
O3—C8—C9—C10	19.29 (17)	C14—C9—C10—C11	-0.9 (2)
O3—C8—C9—C14	-163.56 (12)	C15—O1—C4—C3	81.18 (16)
C3—C4—C5—C6	0.3 (2)	C15—O1—C4—C5	-102.23 (15)
C4—O1—C15—O2	5.2 (2)	C17—C8—C9—C10	140.28 (14)
C4—O1—C15—C16	-176.26 (12)	C17—C8—C9—C14	-42.57 (18)
C4—C3—C7—N1	1.6 (2)	C18—N2—C8—O3	170.64 (12)
C4—C3—C7—O3	-176.80 (12)	C18—N2—C8—C9	-74.81 (16)
C4—C5—C6—C1	0.3 (2)	C18—N2—C8—C17	56.77 (18)

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C9–C14 ring.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C5—H5····O4 ⁱ	0.95	2.51	3.2828 (19)	139
C16—H16 <i>B</i> ····O4 ⁱⁱ	0.98	2.55	3.529 (2)	177
C17—H17 <i>C</i> ··· <i>Cg</i> 3 ⁱⁱⁱ	0.98	2.70	3.5766 (17)	150

Symmetry codes: (i) -x+1, y-1/2, -z+1/2; (ii) x, -y+3/2, z-1/2; (iii) x, -y+3/2, z+1/2.

2-[4-Acetyl-5-(4-fluorophenyl)-5-methyl-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate (6d)

Crystal data

$C_{19}H_{16}FIN_2O_4$	a = 9.1241 (4) Å
$M_r = 482.24$	b = 20.0980 (9) Å
Monoclinic, $P2_1/c$	c = 10.7456 (5) Å

 $\beta = 110.224 \ (2)^{\circ}$ $V = 1849.00 (15) \text{ Å}^3$ Z = 4F(000) = 952 $D_{\rm x} = 1.732 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å

Data collection

Bruker APEXII CCD	4033 independent refle
diffractometer	3703 reflections with I
φ and ω scans	$R_{\rm int} = 0.048$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.0^{\circ}, \ \theta_{\rm min} = 2.7^{\circ}$
(SADABS; Bruker, 2014)	$h = -11 \rightarrow 11$
$T_{\min} = 0.610, \ T_{\max} = 0.746$	$k = -25 \rightarrow 25$
52242 measured reflections	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.020$ $wR(F^2) = 0.047$ S = 1.064033 reflections 247 parameters 0 restraints Primary atom site location: iterative Cell parameters from 9994 reflections $\theta = 2.9 - 30.5^{\circ}$ $\mu = 1.77 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.60 \times 0.37 \times 0.29 \text{ mm}$

ections $> 2\sigma(I)$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0179P)^2 + 1.3214P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.002$ $\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	1.02927 (2)	0.43863 (2)	0.70991 (2)	0.02562 (5)	
F1	0.99431 (14)	0.86573 (7)	0.31186 (15)	0.0482 (4)	
01	0.43234 (14)	0.50760 (6)	0.22482 (12)	0.0221 (3)	
N1	0.45186 (17)	0.63451 (7)	0.33434 (14)	0.0196 (3)	
C1	0.8281 (2)	0.46130 (9)	0.54780 (17)	0.0208 (3)	
O2	0.56974 (16)	0.56291 (6)	0.11907 (14)	0.0287 (3)	
N2	0.44708 (17)	0.70043 (7)	0.37438 (14)	0.0193 (3)	
C2	0.7610(2)	0.52365 (8)	0.54173 (17)	0.0193 (3)	
H2	0.803774	0.554529	0.611907	0.023*	
03	0.64636 (15)	0.64956 (6)	0.52903 (12)	0.0221 (3)	
C3	0.6303 (2)	0.54116 (8)	0.43227 (17)	0.0185 (3)	
O4	0.33470 (15)	0.80138 (6)	0.34228 (13)	0.0275 (3)	
C4	0.5691 (2)	0.49418 (8)	0.33133 (17)	0.0197 (3)	
C5	0.6368 (2)	0.43237 (8)	0.33789 (19)	0.0244 (4)	
H5	0.594019	0.401213	0.268247	0.029*	
C6	0.7674 (2)	0.41554 (9)	0.44590 (19)	0.0247 (4)	

H6	0.814835	0.373124	0.450193	0.030*
C7	0.5681 (2)	0.60868 (8)	0.42603 (16)	0.0185 (3)
C8	0.5860 (2)	0.71636 (8)	0.49331 (17)	0.0197 (3)
C9	0.7052 (2)	0.75722 (8)	0.45591 (16)	0.0190 (3)
C10	0.8228 (2)	0.72585 (9)	0.42326 (19)	0.0254 (4)
H10	0.835259	0.678999	0.433228	0.030*
C11	0.9221 (2)	0.76212 (10)	0.3763 (2)	0.0327 (4)
H11	1.002324	0.740675	0.353709	0.039*
C12	0.9018 (2)	0.82967 (10)	0.3632 (2)	0.0301 (4)
C13	0.7907 (2)	0.86302 (9)	0.3985 (2)	0.0293 (4)
H13	0.781470	0.910050	0.390699	0.035*
C14	0.6923 (2)	0.82630 (9)	0.44565 (18)	0.0242 (4)
H14	0.615284	0.848465	0.471304	0.029*
C15	0.4463 (2)	0.54563 (9)	0.12336 (18)	0.0221 (4)
C16	0.2891 (2)	0.55914 (10)	0.02252 (19)	0.0298 (4)
H16A	0.294383	0.599001	-0.028300	0.045*
H16B	0.213370	0.566258	0.067348	0.045*
H16C	0.256482	0.521035	-0.037665	0.045*
C17	0.5423 (2)	0.74413 (10)	0.60655 (18)	0.0274 (4)
H17A	0.463240	0.715531	0.621914	0.041*
H17B	0.500112	0.789140	0.584128	0.041*
H17C	0.635236	0.745718	0.686984	0.041*
C18	0.3312 (2)	0.74345 (9)	0.30679 (17)	0.0207 (3)
C19	0.2035 (2)	0.71544 (10)	0.1893 (2)	0.0281 (4)
H19A	0.119864	0.748393	0.156118	0.042*
H19B	0.161775	0.675041	0.215776	0.042*
H19C	0.245578	0.704600	0.119275	0.042*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.02788 (7)	0.02021 (7)	0.02625 (7)	0.00422 (5)	0.00614 (5)	0.00214 (5)
F1	0.0294 (6)	0.0459 (8)	0.0738 (10)	-0.0073 (6)	0.0236 (7)	0.0089 (7)
O1	0.0241 (6)	0.0200 (6)	0.0208 (6)	-0.0051 (5)	0.0061 (5)	0.0002 (5)
N1	0.0225 (7)	0.0160 (7)	0.0217 (7)	0.0003 (5)	0.0094 (6)	-0.0008 (6)
C1	0.0221 (8)	0.0187 (8)	0.0227 (9)	0.0002 (7)	0.0091 (7)	0.0035 (7)
O2	0.0305 (7)	0.0300 (7)	0.0275 (7)	-0.0029 (6)	0.0125 (6)	0.0043 (6)
N2	0.0216 (7)	0.0172 (7)	0.0184 (7)	0.0024 (5)	0.0062 (6)	-0.0010 (6)
C2	0.0240 (9)	0.0172 (8)	0.0194 (8)	-0.0015 (6)	0.0109 (7)	-0.0002 (6)
O3	0.0313 (7)	0.0163 (6)	0.0156 (6)	0.0061 (5)	0.0043 (5)	-0.0008(5)
C3	0.0224 (8)	0.0170 (8)	0.0197 (8)	-0.0004 (6)	0.0118 (7)	0.0020 (6)
O4	0.0282 (7)	0.0218 (7)	0.0317 (7)	0.0070 (5)	0.0092 (6)	0.0012 (5)
C4	0.0215 (8)	0.0190 (8)	0.0199 (8)	-0.0036 (6)	0.0087 (7)	0.0016 (7)
C5	0.0319 (10)	0.0163 (8)	0.0257 (9)	-0.0052 (7)	0.0106 (8)	-0.0036 (7)
C6	0.0313 (10)	0.0138 (8)	0.0308 (10)	0.0010 (7)	0.0131 (8)	0.0006 (7)
C7	0.0226 (8)	0.0180 (8)	0.0172 (8)	-0.0013 (6)	0.0098 (7)	-0.0008 (6)
C8	0.0248 (9)	0.0175 (8)	0.0152 (8)	0.0065 (7)	0.0050 (7)	0.0004 (6)
C9	0.0197 (8)	0.0201 (8)	0.0135 (8)	0.0027 (6)	0.0009 (6)	-0.0036 (6)

C10	0.0225 (9)	0.0230 (9)	0.0281 (10)	0.0061 (7)	0.0056 (7)	-0.0018 (7)
C11	0.0209 (9)	0.0361 (11)	0.0420 (12)	0.0058 (8)	0.0118 (9)	-0.0014 (9)
C12	0.0173 (9)	0.0344 (10)	0.0357 (11)	-0.0063 (8)	0.0056 (8)	0.0015 (9)
C13	0.0273 (10)	0.0207 (9)	0.0348 (11)	-0.0020 (7)	0.0044 (8)	-0.0012 (8)
C14	0.0233 (9)	0.0223 (9)	0.0243 (9)	0.0030 (7)	0.0048 (7)	-0.0044 (7)
C15	0.0305 (10)	0.0163 (8)	0.0203 (8)	-0.0011 (7)	0.0098 (7)	-0.0024 (7)
C16	0.0310 (10)	0.0299 (10)	0.0239 (9)	-0.0013 (8)	0.0037 (8)	0.0001 (8)
C17	0.0402 (11)	0.0280 (10)	0.0172 (9)	0.0084 (8)	0.0139 (8)	-0.0006 (7)
C18	0.0190 (8)	0.0228 (9)	0.0229 (9)	0.0032 (7)	0.0107 (7)	0.0045 (7)
C19	0.0189 (9)	0.0312 (10)	0.0318 (10)	0.0006 (7)	0.0055 (8)	0.0035 (8)

Geometric parameters (Å, °)

I1—C1	2.0979 (18)	C8—C17	1.512 (2)
F1-C12	1.365 (2)	C9—C10	1.390 (2)
O1—C4	1.397 (2)	C9—C14	1.395 (2)
O1—C15	1.373 (2)	C10—H10	0.9500
N1—N2	1.3983 (19)	C10—C11	1.387 (3)
N1—C7	1.281 (2)	C11—H11	0.9500
C1—C2	1.386 (2)	C11—C12	1.371 (3)
C1—C6	1.390 (3)	C12—C13	1.373 (3)
O2—C15	1.195 (2)	C13—H13	0.9500
N2-C8	1.491 (2)	C13—C14	1.386 (3)
N2-C18	1.364 (2)	C14—H14	0.9500
С2—Н2	0.9500	C15—C16	1.493 (3)
C2—C3	1.400 (2)	C16—H16A	0.9800
O3—C7	1.365 (2)	C16—H16B	0.9800
O3—C8	1.4515 (19)	C16—H16C	0.9800
C3—C4	1.400 (2)	C17—H17A	0.9800
С3—С7	1.464 (2)	C17—H17B	0.9800
O4—C18	1.222 (2)	C17—H17C	0.9800
C4—C5	1.379 (2)	C18—C19	1.500 (3)
С5—Н5	0.9500	C19—H19A	0.9800
C5—C6	1.387 (3)	C19—H19B	0.9800
С6—Н6	0.9500	C19—H19C	0.9800
C8—C9	1.523 (2)		
C15—O1—C4	117.16 (13)	C11—C10—H10	119.6
C7—N1—N2	104.65 (14)	C10-C11-H11	120.8
C2—C1—I1	118.74 (13)	C12-C11-C10	118.38 (18)
C2—C1—C6	120.79 (17)	C12—C11—H11	120.8
C6—C1—I1	120.42 (13)	F1-C12-C11	119.10 (18)
N1—N2—C8	111.07 (13)	F1-C12-C13	118.09 (18)
C18—N2—N1	122.51 (14)	C11—C12—C13	122.81 (19)
C18—N2—C8	126.37 (14)	C12—C13—H13	120.9
C1—C2—H2	120.0	C12—C13—C14	118.30 (18)
C1—C2—C3	120.05 (16)	C14—C13—H13	120.9
С3—С2—Н2	120.0	C9—C14—H14	119.6

С7—О3—С8	107.33 (12)	C13—C14—C9	120.78 (17)
C2—C3—C4	118.51 (16)	C13—C14—H14	119.6
C2—C3—C7	118.41 (15)	O1—C15—C16	110.38 (15)
C4—C3—C7	123.02 (16)	O2—C15—O1	122.66 (17)
O1—C4—C3	120.58 (15)	O2—C15—C16	126.93 (17)
C5—C4—O1	118.26 (15)	С15—С16—Н16А	109.5
C5—C4—C3	121.07 (16)	C15—C16—H16B	109.5
C4—C5—H5	119.9	C15—C16—H16C	109.5
C4—C5—C6	120.18 (17)	H16A—C16—H16B	109.5
С6—С5—Н5	119.9	H16A—C16—H16C	109.5
С1—С6—Н6	120.3	H16B—C16—H16C	109.5
C5—C6—C1	119.39 (16)	C8—C17—H17A	109.5
C5—C6—H6	120.3	C8—C17—H17B	109.5
N1-C7-O3	116.20 (15)	C8-C17-H17C	109.5
N1-C7-C3	128.00 (16)	H17A—C17—H17B	109.5
03-C7-C3	115.78 (15)	H17A - C17 - H17C	109.5
N2-C8-C9	111 26 (13)	H17B-C17-H17C	109.5
$N_{2} = C_{8} = C_{17}$	112 74 (15)	N_{2} C18 C19	116 33 (16)
03-C8-N2	99 24 (12)	04-C18-N2	120.39(17)
03 - C8 - C9	109.17(13)	04 - C18 - C19	120.39(17) 123.28(16)
03 - C8 - C17	108.06 (14)	C18 - C19 - H19A	109.5
C17 - C8 - C9	115.09(15)	C18 - C19 - H19R	109.5
C10-C9-C8	120 38 (15)	C18 - C19 - H19C	109.5
$C_{10} = C_{10} = C_{10}$	120.36(13) 118.86(17)	$H_{10A} = C_{10} = H_{10B}$	109.5
$C_{10} = C_{20} = C_{14}$	110.00(17) 120.64(15)	$H_{10A} = C_{10} = H_{10C}$	109.5
$C_{14} - C_{9} - C_{8}$	120.04 (13)	$H_{10} = C_{10} = H_{10} C_{10}$	109.5
$C_{j} = C_{10} = 110$	119.0	1119 D —C19—1119C	109.5
C11—C10—C9	120.80 (17)		
I1—C1—C2—C3	177.52 (12)	C6—C1—C2—C3	0.2 (3)
I1—C1—C6—C5	-178.17 (13)	C7—N1—N2—C8	7.40 (18)
F1—C12—C13—C14	177.44 (17)	C7—N1—N2—C18	-175.13 (15)
O1—C4—C5—C6	-176.19 (16)	C7—O3—C8—N2	11.41 (16)
N1—N2—C8—O3	-11.66 (16)	C7—O3—C8—C9	-105.04(15)
N1—N2—C8—C9	103.18 (15)	C7—O3—C8—C17	129.12 (15)
N1—N2—C8—C17	-125.79(15)	C7—C3—C4—O1	-7.2 (2)
N1—N2—C18—O4	-177.18(15)	C7—C3—C4—C5	176.30 (16)
N1—N2—C18—C19	2.7 (2)	C8—N2—C18—O4	-0.1(3)
C1-C2-C3-C4	0.8(2)	C8-N2-C18-C19	179.75 (15)
C1-C2-C3-C7	-176.69(15)	C8-O3-C7-N1	-8.6(2)
N2—N1—C7—O3	0.70 (19)	C8-O3-C7-C3	169.74 (14)
$N_2 - N_1 - C_7 - C_3$	-177.36(16)	C8-C9-C10-C11	173 47 (17)
$N_2 - C_8 - C_9 - C_{10}$	-90.33(18)	C8-C9-C14-C13	-17328(16)
$N_{2} - C_{8} - C_{9} - C_{14}$	85 57 (19)	C9-C10-C11-C12	0.2 (3)
$C_2 - C_1 - C_6 - C_5$	-0.9(3)	C10-C9-C14-C13	2.7(3)
$C_2 = C_1 = C_2 = C_2$	175 43 (14)	C10-C11-C12-F1	-177.25(18)
$C_2 = C_3 = C_4 = C_5$	-10(2)	C10-C11-C12-C13	21(3)
$C_2 = C_3 = C_7 = N_1$	178 95 (17)	$C_{11} = C_{12} = C_{13} = C_{14}$	-19(3)
$C_2 = C_3 = C_7 = C_2^2$	170.95(17)	$C_{12} = C_{12} = C_{13} = C_{14}$	-0.6(3)
12 - 13 - 17 - 03	0.9 (2)	012-013-014-09	0.0 (5)

O3—C8—C9—C10	18.2 (2)	C14—C9—C10—C11	-2.5 (3)
O3—C8—C9—C14	-165.92 (15)	C15—O1—C4—C3	81.4 (2)
C3—C4—C5—C6	0.3 (3)	C15—O1—C4—C5	-102.02 (18)
C4—O1—C15—O2	5.6 (2)	C17—C8—C9—C10	139.87 (17)
C4—O1—C15—C16	-176.14 (14)	C17—C8—C9—C14	-44.2 (2)
C4—C3—C7—N1	1.6 (3)	C18—N2—C8—O3	170.99 (15)
C4—C3—C7—O3	-176.45 (15)	C18—N2—C8—C9	-74.2 (2)
C4—C5—C6—C1	0.6 (3)	C18—N2—C8—C17	56.9 (2)

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C9–C14 ring.

D—H···A	<i>D</i> —Н	H···A	$D^{\dots}A$	D—H··· A
C5—H5…O4 ⁱ	0.95	2.53	3.331 (2)	142
C14—H14…O2 ⁱⁱ	0.95	2.51	3.335 (2)	145
C16—H16A····O4 ⁱⁱⁱ	0.98	2.54	3.513 (2)	174
С17—Н17С…Сд3іі	0.98	2.50	3.407 (2)	154

Symmetry codes: (i) -x+1, y-1/2, -z+1/2; (ii) x, -y+3/2, z+1/2; (iii) x, -y+3/2, z-1/2.

2-[4-Acetyl-5-(4-chlorophenyl)-5-methyl-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate (6e)

Crystal data

C₁₉H₁₆CIIN₂O₄ $M_r = 498.69$ Monoclinic, $P2_1/c$ a = 11.703 (2) Å b = 22.037 (4) Å c = 7.4073 (12) Å $\beta = 92.888$ (8)° V = 1907.9 (5) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan SADABS2014/2 (Bruker, 2014) $T_{\min} = 0.640, T_{\max} = 0.746$ 62840 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.051$ S = 1.044387 reflections 247 parameters 0 restraints F(000) = 984 $D_x = 1.736 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9499 reflections $\theta = 2.9-31.1^{\circ}$ $\mu = 1.85 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.22 \times 0.12 \times 0.12 \text{ mm}$

4387 independent reflections 3863 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.9^{\circ}$ $h = -15 \rightarrow 15$ $k = -28 \rightarrow 28$ $l = -9 \rightarrow 9$

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0233P)^2 + 1.3951P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.40$ e Å⁻³ $\Delta\rho_{min} = -0.66$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	0.89006 (2)	0.30547 (2)	0.88485 (2)	0.03207 (5)	
C11	0.06374 (4)	0.34278 (2)	0.41999 (8)	0.03241 (12)	
01	0.77394 (10)	0.50823 (5)	0.31612 (16)	0.0169 (2)	
N1	0.64395 (12)	0.42152 (6)	0.12176 (18)	0.0155 (3)	
C1	0.84397 (15)	0.37358 (8)	0.6975 (2)	0.0175 (3)	
O2	0.91227 (11)	0.47025 (6)	0.14881 (17)	0.0219 (3)	
N2	0.56147 (13)	0.38760 (6)	0.02279 (19)	0.0165 (3)	
C2	0.77370 (14)	0.35965 (7)	0.5465 (2)	0.0156 (3)	
H2	0.742501	0.320035	0.532421	0.019*	
O3	0.61627 (10)	0.33434 (5)	0.27089 (16)	0.0156 (2)	
C3	0.74881 (14)	0.40416 (7)	0.4147 (2)	0.0135 (3)	
O4	0.44240 (12)	0.37370 (6)	-0.22008 (18)	0.0279 (3)	
C4	0.79720 (14)	0.46180 (7)	0.4405 (2)	0.0147 (3)	
C5	0.86500 (15)	0.47563 (8)	0.5935 (2)	0.0176 (3)	
Н5	0.895568	0.515324	0.609208	0.021*	
C6	0.88836 (15)	0.43149 (8)	0.7241 (2)	0.0183 (3)	
H6	0.934058	0.440805	0.830114	0.022*	
C7	0.67047 (14)	0.38903 (7)	0.2610 (2)	0.0137 (3)	
C8	0.53275 (14)	0.33051 (7)	0.1187 (2)	0.0145 (3)	
C9	0.41367 (14)	0.33227 (7)	0.1917 (2)	0.0142 (3)	
C10	0.39456 (15)	0.36749 (8)	0.3436 (2)	0.0193 (4)	
H10	0.456042	0.389965	0.399203	0.023*	
C11	0.28763 (16)	0.37029 (8)	0.4149 (2)	0.0209 (4)	
H11	0.275442	0.394248	0.518796	0.025*	
C12	0.19911 (15)	0.33766 (8)	0.3323 (2)	0.0191 (4)	
C13	0.21483 (16)	0.30168 (8)	0.1829 (3)	0.0226 (4)	
H13	0.152988	0.279055	0.129009	0.027*	
C14	0.32285 (16)	0.29914 (8)	0.1126 (2)	0.0198 (4)	
H14	0.334764	0.274592	0.009782	0.024*	
C15	0.84064 (15)	0.50789 (8)	0.1683 (2)	0.0172 (3)	
C16	0.81145 (19)	0.56051 (9)	0.0475 (3)	0.0292 (4)	
H16A	0.801965	0.596984	0.120947	0.044*	
H16B	0.740015	0.552037	-0.022698	0.044*	
H16C	0.873208	0.567020	-0.034917	0.044*	
C17	0.55813 (15)	0.27428 (8)	0.0106 (2)	0.0197 (4)	
H17A	0.548298	0.238187	0.085534	0.029*	
H17B	0.637073	0.276005	-0.027385	0.029*	
H17C	0.505453	0.272232	-0.096334	0.029*	
C18	0.51525 (15)	0.40515 (8)	-0.1420(2)	0.0190 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C19	0.55873 (17)	0.46367 (9)	-0.2175 (2)	0.0239 (4)
H19A	0.516126	0.473014	-0.331441	0.036*
H19B	0.640246	0.459579	-0.239569	0.036*
H19C	0.548147	0.496532	-0.130830	0.036*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
I1	0.02554 (8)	0.03502 (8)	0.03427 (8)	-0.00758 (5)	-0.01207 (5)	0.02000 (6)
Cl1	0.0206 (2)	0.0319 (3)	0.0460 (3)	0.00113 (19)	0.0134 (2)	-0.0002 (2)
01	0.0224 (6)	0.0132 (5)	0.0153 (6)	0.0002 (5)	0.0019 (5)	0.0013 (4)
N1	0.0162 (7)	0.0158 (7)	0.0143 (7)	-0.0012 (5)	-0.0003 (5)	-0.0009 (5)
C1	0.0145 (8)	0.0224 (9)	0.0156 (8)	-0.0002 (7)	0.0005 (6)	0.0049 (7)
O2	0.0227 (7)	0.0242 (7)	0.0192 (6)	-0.0005 (5)	0.0047 (5)	0.0013 (5)
N2	0.0183 (7)	0.0169 (7)	0.0140 (7)	-0.0030 (6)	-0.0019 (6)	0.0012 (5)
C2	0.0144 (8)	0.0151 (8)	0.0174 (8)	-0.0022 (6)	0.0011 (6)	0.0005 (6)
03	0.0157 (6)	0.0147 (6)	0.0158 (6)	-0.0030 (5)	-0.0048 (5)	0.0014 (4)
C3	0.0114 (8)	0.0156 (8)	0.0135 (7)	-0.0004 (6)	0.0018 (6)	-0.0005 (6)
O4	0.0291 (8)	0.0343 (8)	0.0191 (7)	-0.0041 (6)	-0.0088 (6)	0.0005 (6)
C4	0.0152 (8)	0.0155 (8)	0.0137 (8)	0.0010 (6)	0.0034 (6)	0.0007 (6)
C5	0.0190 (9)	0.0168 (8)	0.0173 (8)	-0.0037 (7)	0.0030 (7)	-0.0032 (6)
C6	0.0149 (8)	0.0259 (9)	0.0141 (8)	-0.0037 (7)	0.0001 (6)	-0.0018 (7)
C7	0.0130 (8)	0.0131 (7)	0.0152 (8)	-0.0004 (6)	0.0026 (6)	-0.0010 (6)
C8	0.0150 (8)	0.0156 (8)	0.0125 (8)	-0.0013 (6)	-0.0023 (6)	-0.0004 (6)
C9	0.0165 (8)	0.0127 (7)	0.0131 (8)	0.0012 (6)	-0.0018 (6)	0.0009 (6)
C10	0.0196 (9)	0.0206 (8)	0.0174 (8)	-0.0013 (7)	-0.0018 (7)	-0.0049 (7)
C11	0.0243 (9)	0.0205 (9)	0.0179 (9)	0.0040 (7)	0.0023 (7)	-0.0044 (7)
C12	0.0158 (8)	0.0188 (8)	0.0231 (9)	0.0027 (7)	0.0047 (7)	0.0055 (7)
C13	0.0176 (9)	0.0226 (9)	0.0273 (10)	-0.0036 (7)	-0.0012 (7)	-0.0031 (7)
C14	0.0197 (9)	0.0207 (9)	0.0189 (8)	-0.0012 (7)	-0.0008 (7)	-0.0062 (7)
C15	0.0180 (8)	0.0179 (8)	0.0155 (8)	-0.0062 (7)	-0.0002 (7)	0.0010 (6)
C16	0.0346 (11)	0.0273 (10)	0.0258 (10)	-0.0006 (8)	0.0021 (8)	0.0121 (8)
C17	0.0191 (9)	0.0193 (8)	0.0208 (9)	0.0004 (7)	0.0023 (7)	-0.0054 (7)
C18	0.0196 (9)	0.0228 (9)	0.0146 (8)	0.0048 (7)	0.0011 (7)	-0.0002 (7)
C19	0.0308 (10)	0.0254 (9)	0.0156 (9)	0.0029 (8)	0.0022 (7)	0.0053 (7)

Geometric parameters (Å, °)

I1—C1	2.0963 (17)	C8—C17	1.513 (2)	
Cl1—C12	1.7459 (18)	C9—C10	1.395 (2)	
O1—C4	1.395 (2)	C9—C14	1.394 (2)	
O1—C15	1.377 (2)	C10—H10	0.9500	
N1—N2	1.399 (2)	C10—C11	1.384 (3)	
N1—C7	1.281 (2)	C11—H11	0.9500	
C1—C2	1.389 (2)	C11—C12	1.379 (3)	
C1—C6	1.388 (2)	C12—C13	1.381 (3)	
O2—C15	1.193 (2)	C13—H13	0.9500	
N2—C8	1.491 (2)	C13—C14	1.392 (3)	

N2—C18	1.366 (2)	C14—H14	0.9500
С2—Н2	0.9500	C15—C16	1.493 (2)
C2—C3	1.404 (2)	C16—H16A	0.9800
03	1.366 (2)	C16—H16B	0.9800
03-C8	1 4568 (19)	C16 - H16C	0.9800
$C_3 C_4$	1.400(2)	C17 H17A	0.9800
C_{3}	1.400(2)	C17I17P	0.9800
$C_3 = C_7$	1.404(2)		0.9800
	1.221 (2)		0.9800
C4—C5	1.384 (2)		1.505 (3)
С5—Н5	0.9500	С19—Н19А	0.9800
C5—C6	1.389 (2)	C19—H19B	0.9800
С6—Н6	0.9500	С19—Н19С	0.9800
C8—C9	1.520 (2)		
C15—O1—C4	114.96 (13)	C11—C10—H10	119.4
C7—N1—N2	104.84 (14)	C10-C11-H11	120.6
C2—C1—I1	119.80 (13)	C12—C11—C10	118.76 (16)
C6—C1—I1	118.83 (13)	C12—C11—H11	120.6
C6-C1-C2	121.32 (16)	C11—C12—C11	118.47 (14)
N1 - N2 - C8	11155(13)	$C_{11} - C_{12} - C_{13}$	121 84 (16)
C18 N2 N1	123 28 (14)	C_{13} C_{12} C_{13}	121.01(10) 119.69(14)
C18 N2 $C8$	125.20(14) 125.17(14)	C_{12} C_{12} C_{13} H_{13}	120.6
$C_{10} = N_2 = C_0$	120.0	$C_{12} = C_{13} = C_{14}$	120.0 119.97(17)
C1 = C2 = C2	120.0	C12 - C13 - C14	110.07 (17)
C1 = C2 = C3	119.95 (15)	C14—C13—H13	120.6
$C_3 = C_2 = H_2$	120.0	C9—C14—H14	119.7
C/O3C8	107.76 (12)	C13—C14—C9	120.60 (16)
C2—C3—C7	118.79 (15)	C13—C14—H14	119.7
C4—C3—C2	118.07 (15)	O1—C15—C16	110.52 (15)
C4—C3—C7	123.10 (15)	O2—C15—O1	122.00 (15)
O1—C4—C3	120.76 (15)	O2—C15—C16	127.46 (17)
C5—C4—O1	117.65 (15)	C15—C16—H16A	109.5
C5—C4—C3	121.53 (15)	C15—C16—H16B	109.5
С4—С5—Н5	120.0	C15—C16—H16C	109.5
C4—C5—C6	120.03 (16)	H16A—C16—H16B	109.5
С6—С5—Н5	120.0	H16A—C16—H16C	109.5
C1—C6—C5	119.06 (16)	H16B—C16—H16C	109.5
C1—C6—H6	120 5	C8-C17-H17A	109.5
C5—C6—H6	120.5	C8-C17-H17B	109.5
N1 - C7 - O3	116 24 (15)	C8-C17-H17C	109.5
N1 = C7 = C3	128.02(15)	H17A C17 H17P	109.5
$N_1 = C_7 = C_3$	126.02(13)	$\frac{111}{A} - \frac{17}{117} - \frac{117}{117}$	109.5
$V_{3} = C_{1} = C_{3}$	113./1(14) 112.25(14)	H1/A - C1/-H1/C	109.5
N2-C8-C9	112.35 (14)	HI/B - CI/-HI/C	109.5
$N_2 = 0$	112.57 (14)	$N_2 - C_{18} - C_{19}$	110.08 (16)
U3—U8—N2	99.28 (12)	04—C18—N2	119.87 (16)
03-08-09	108.34 (13)	04—C18—C19	123.46 (16)
O3—C8—C17	108.37 (13)	C18—C19—H19A	109.5
C17—C8—C9	114.64 (14)	C18—C19—H19B	109.5
C10—C9—C8	119.22 (15)	C18—C19—H19C	109.5

C14—C9—C8	122.03 (15)	H19A—C19—H19B	109.5
C14—C9—C10	118.74 (16)	H19A—C19—H19C	109.5
С9—С10—Н10	119.4	H19B—C19—H19C	109.5
C11—C10—C9	121.16 (16)		
I1—C1—C2—C3	-175.79 (12)	C6—C1—C2—C3	1.7 (3)
I1—C1—C6—C5	175.24 (13)	C7—N1—N2—C8	2.98 (18)
Cl1—C12—C13—C14	178.69 (14)	C7—N1—N2—C18	-176.27 (16)
O1—C4—C5—C6	178.30 (15)	C7—O3—C8—N2	5.51 (15)
N1—N2—C8—O3	-5.26 (16)	C7—O3—C8—C9	-111.89 (14)
N1—N2—C8—C9	109.07 (15)	C7—O3—C8—C17	123.16 (14)
N1—N2—C8—C17	-119.69 (15)	C7—C3—C4—O1	-1.2 (2)
N1—N2—C18—O4	-179.05 (16)	C7—C3—C4—C5	175.70 (15)
N1—N2—C18—C19	0.9 (2)	C8—N2—C18—O4	1.8 (3)
C1—C2—C3—C4	0.4 (2)	C8—N2—C18—C19	-178.20 (15)
C1—C2—C3—C7	-177.32 (15)	C8—O3—C7—N1	-4.56 (19)
N2—N1—C7—O3	0.98 (19)	C8—O3—C7—C3	173.32 (13)
N2—N1—C7—C3	-176.59 (16)	C8—C9—C10—C11	-179.82 (16)
N2-C8-C9-C10	-74.07 (19)	C8—C9—C14—C13	179.91 (16)
N2-C8-C9-C14	106.70 (18)	C9-C10-C11-C12	-0.3 (3)
C2-C1-C6-C5	-2.3 (3)	C10-C9-C14-C13	0.7 (3)
C2-C3-C4-O1	-178.77 (14)	C10-C11-C12-Cl1	-178.58 (14)
C2—C3—C4—C5	-1.9 (2)	C10-C11-C12-C13	1.1 (3)
C2—C3—C7—N1	-174.43 (16)	C11—C12—C13—C14	-1.0 (3)
C2—C3—C7—O3	8.0 (2)	C12—C13—C14—C9	0.1 (3)
O3—C8—C9—C10	34.6 (2)	C14—C9—C10—C11	-0.6 (3)
O3—C8—C9—C14	-144.63 (15)	C15—O1—C4—C3	-83.54 (19)
C3—C4—C5—C6	1.3 (3)	C15—O1—C4—C5	99.47 (17)
C4—O1—C15—O2	0.4 (2)	C17—C8—C9—C10	155.75 (16)
C4—O1—C15—C16	-178.08 (15)	C17—C8—C9—C14	-23.5 (2)
C4—C3—C7—N1	8.0 (3)	C18—N2—C8—O3	173.97 (15)
C4—C3—C7—O3	-169.58 (15)	C18—N2—C8—C9	-71.7 (2)
C4—C5—C6—C1	0.8 (3)	C18—N2—C8—C17	59.5 (2)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	D—H···A	
C6—H6…O2 ⁱ	0.95	2.47	3.258 (2)	140	
C11—H11···O1 ⁱⁱ	0.95	2.55	3.435 (2)	155	
C19—H19 <i>B</i> ··· <i>Cg</i> 2 ⁱⁱⁱ	0.98	2.75	3.649 (2)	153	

Symmetry codes: (i) *x*, *y*, *z*+1; (ii) –*x*+1, –*y*+1, –*z*+1; (iii) *x*, *y*, *z*-1.