Organic & Biomolecular Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: K. M. Saini, R. K. Saunthwal, S. . and A. K. Verma, *Org. Biomol. Chem.*, 2020, DOI: 10.1039/D0OB01281E.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Synthesis of Cyclopentaquinolinone and Cyclopentapyridinone from *ortho*-alkynyl-N-arylaldehyde *via* Superbase-promoted C-N, C-O and C-C Bonds Formation

Kapil Mohan Saini,^a Rakesh K. Saunthwal, ^{a,b} Sushmita^a and Akhilesh K. Verma^{a*}

An environmentally benign, transition metal-free, superbase-mediated intramolecular annulation of *o*-alkynylaldehydes with primary amines forms highly functionalized amino-subsituted cyclopentaquinolinones and cyclopentapyridinones *via* C-N, C-C, and C=O bond formation. Contrary to the traditional approaches of ring closures, a different mode of annulation is disclosed. The protocol involves the in-situ generations of imine intermediate followed by potassium hydroxide-promoted intramolecular cyclization and subsequent dimethyl sulfoxide induced dehydrogenation leads to the formation of *N*-heterocycles. X-ray crystallographic studies support the assigned structures of the amino-fused N-heterocycles.

Introduction

Published on 03 July 2020. Downloaded by University College London on 7/3/2020 5:16:51 PM.

Superbase-mediated reactions have emerged as a potent tool for the synthesis of heterocyclic compounds1 due to fascinating selectivity and unique ability to activate π -systems, especially carbon-carbon triple bonds, towards inter- and intramolecular cyclization.² Base-promoted intramolecular cyclization³ of ortho-alkynyl-N-arylaldehyde derived (2alkynyl)-arylaldimines having dual-functional groups is a significant challenge due to the chemoselectivity between imines and alkyne functional groups. Despite the significant achievements already accomplished, we have utilized the KOH-DMSO chemistry for the synthesis of 3Hcyclopentaquinolinone and 7H-cyclopentapyridinone via the intermolecular nucleophilic hydroxylation onto alkvne followed by intramolecular ring closure.

Fig 1. Biologically active compounds containing pyridinone and quinolinone cores

Mr. Kapil Mohan Saini, Dr. Rakesh K. Saunthwal, Sushmita, and Prof Akhilesh K. Verma

^aDepartment of Chemistry, University of Delhi, Delhi–110007, India E-mail: averma@acbr.du.ac.in

essential devices for the assembly of a wide variety of natural products,⁵ pharmaceuticals,⁶ and agrochemicals.7 The cyclopenta-quinolinone and cyclopentapyridinone core moieties have been found to exhibit medicinal activity, such as cyclopenta[b]pyridin-7-one and 11H-indeno[1,2-b]quinolin-11one derivative, which have antimicrobial, antibacterial activity respectively,⁸ as well as 7-azaindenoisoquinoline derivative used as Topoisomerase I Inhibitors.⁹ Due to the medicinal importance of these compounds, over the past decades, significant effort has been made¹⁰ and are still demanding for the developments of the efficient approach for the synthesis.

Base-mediated nucleophilic addition reactions of alkynes⁴ are

Previous work a) Verma group

Scheme 1 Synthetic approaches for utilizing *ortho*-alkynylaldehyde In recent years, various research groups have reported the metal-catalyzed synthesis of heterocycles.¹¹⁻¹³ In 2016, the Singh group reported the Pd-catalyzed synthesis of 3alkylsulfanyl-2- aryl-cyclopenta[b]quinolin-1-ones.¹⁴ Transition metal-free synthesis has a broad scope in synthetic

^bSchool of Chemistry, University of Bristol, Cantock's Close Bristol, BS8 1TS UK [†] Footnotes relating to the title and/or authors should appear here.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

ARTICLE

chemistry;^{15,16} therefore, recently we have reported the transition metal-free synthesis of amino-indinones *via* intramolecular cyclization.¹⁷ In continuation of our ongoing metal-free research on tandem cyclization, herein, we report a superbase-mediated tandem approach¹⁸ for the synthesis of *3H*-cyclopentaquinolinones and *7H*-cyclopentapyridinones by the reaction *ortho*-alkynyl-hetero-aldehydes with primary amines.

Results and discussion

In preliminary experiments, a number of bases were examined using 2-(phenylethynyl)quinoline-3-carbaldehyde 1a and aniline 2a as model substrates (Table 1). The reaction of 1a and **2a** with K₂CO₃ and NaHCO₃ at 100 °C for 4 h, did not give a positive result (Table 1, entries 1 and 2). Instead of carbonate bases, we next tried the hydroxide bases and gave fruitful results. KOH-DMSO at 120 °C, provided 60% yield of desired product 3a (entry 3). On increasing the amount of base from 1 equiv to 2 equiv, the yield of the desired cyclized product increased from 60% to 90% (entry 4). When the reaction proceeds at 100 °C for 45 min, the yield remains unchanged (entry 5). It is noteworthy that no desired product 3a was obtained in other polar organic solvents like DMF and THF (entries 6 and 7). NaOH as the base also provided the desired product 3a but in lower yield (entry 8). However, LiOH gave only a trace amount of product (entry 9).

Table 1. Optimization of the reaction conditions^a

$ \begin{array}{c} & & \\ & & $				
1a 2a			3a	
entry	base (equiv)	solvent	time	yield (%) ^b
				3a
1	K ₂ CO ₃ (1.0)	DMSO	4 h	00
2	NaHCO ₃ (1.0)	DMSO	4 h	00
3 ^c	KOH (1.0)	DMSO	30 min	60
4 ^c	KOH (2.0)	DMSO	30 min	90
5	KOH (2.0)	DMSO	45 min	90
6	KOH (2.0)	DMF	45 min	00
7	KOH (2.0)	THF	45 min	00
8	NaOH (2.0)	DMSO	4 h	42
9	LiOH (2.0)	DMSO	4 h	trace

^{*a*}Unless otherwise noted all reactions were carried out using 2-(phenylethynyl)quinoline-3-carbaldehyde **1a** (0.50 mmol), aniline **2a** (0.50 mmol), and KOH (2.0 equiv) in 2 mL solvent at 100 °C, ^{*b*}Isolated yield, ^{*c*} 120 °C.

With optimized conditions in hand, we explored the scope and generality of the developed reaction by using a variety of *o*-alkynylquinolinaldehyde **1a-I** and various aryl and heteroaryl amines **2a-e** (Scheme 2). The reaction of substrate **1a**, with aniline **2a**, provided the desired product **3a** in 90% yield. 4aminoaniline **2b** and 8-aminoquinolene **2c** performed well in the reaction, providing the cyclized product **3b-c** in 84% and 87% yield, respectively. The reaction of electron-donating Journal Name

Page 2 of 9

group-bearing substrates **1b**–**c**, such as *p*-Me, <u>vp-Et</u>_{tu}on_the benzene ring of the alkyne, afforded the 1007FSponding products **3d**–**e** in 88–93% yield. Electron-withdrawing substrates having substituents such as 2-fluoro and 4-fluoro provided the desired products **3f-g** in good yield. A bulky group such as 6-methoxynaphthalene-substituted aldehyde **1f** reacted smoothly with aniline **2a**, and 8-aminoquinolene **2c**, and afforded the corresponding heterocycles **3h-i** in 80% and 82% yields, respectively. It was interesting to note that under the optimized reaction conditions, electron-deficient heteroaromatic alkyne **1g** provided the targeted product **3j** in 86% yield.

Scheme 2. Scope of *o*-alkynylquinolinaldehyde and primary amines.

We further extended the scope of the developed protocol with electron-rich substitution on the quinoline ring **1h-l**. 6-Methyl

substituted quinoline **1h-1l** provided the desired products **3k**-**3q** in good yields with electron-donating and electronwithdrawing group substituted aryl-alkynes. The regioselectivity of the products was clearly assigned by X-ray crystallographic study¹⁹ of compound **3n**.

Scheme 3. Scope of o-alkynylpyridinaldhyde

Encouraged by the above results, we explored the scope of ortho-alkynylnicotinaldehydes for the synthesis of cyclopentapyridinone derivatives (Scheme 3). The reaction of 2-(phenylethynyl)nicotinaldehyde 4a, with aniline 2a or electron-withdrawing 4-fluoroaniline 2f, provided the desired products 5a-b in good yields. Electron donating group-bearing aryl alkyne 4b gave the desired products 5c-d in 86% and 83% yields, respectively. It is worth noting that the reaction of substrate 4c having an electron-rich thiophene-substituted alkyne provided the desired product 5e in 80% yield. Notably, the heterocyclic amine such as 6-methylpyridin-2-amine 2h and 6-methoxybenzo[d]thiazol-2-amine 2i effectively gave the corresponding cyclopenta[b]pyridin-7-ones 5f-g in good yields.

The scope of this base-mediated intramolecular annulation further investigated was by using ortho-alkynyl isonicotinaldehyde **6a-c** (Scheme Reaction 4). of 3-(phenylethynyl)isonicotinaldehyde 6a with aniline 2a and 2f were successful and provided the cyclized amino-fused products **7a-b** in 86% and 83% yields respectively. Interestingly, electron-rich and electron-poor alkvnesubstituted aldehydes 6b and 6c afforded the desired products 7c-e in 81-84% yields.

Scheme 4. Scope of Isonicotinaldehyde

To further check the generality of the developed protocol, we extended the chemistry on substrates *ortho*-alkynyl benzo[*b*]thiophen-2-carbaldehyde and *ortho*-alkynyl benzo[*b*]furan-2-carbaldehyde **8a–b**; both of the substrates failed to provide the desired products **9a-b** (Scheme 5).

Scheme 5. Scope of O/S heterocycles; ^{*a*} reaction decomposed.

Based on the literature reports,²⁰ a plausible reaction pathway has been proposed in Scheme 6. The mechanism starts with the aldehyde-amine reaction, which results in the formation of species **A**. Regioselective intramolecular annulation promoted by hydroxide would produce species **C**. Nucleophilic attack of the enol **C** on dimethyl sulfoxide and subsequent proton transfer would generate the species **D**. Finally base-mediated elimination of dimethyl sulfide produces the desired products.

Scheme 6. Plausible reaction pathway

ARTICLE

ARTICLE

Conclusions

In summary, we have demonstrated the transition metalfree, superbase-promoted intramolecular cyclization of readily accessible ortho-alkynyl-hetero-aldehydes with a wide range of anilines for the synthesis of substituted cyclopentaquinolinones and cyclopentapyridinones with good vields. A wide variety of readily available ortho-alkynyl-heteroaldehydes were utilised including electron-withdrawing and electron-donating alkynyl-aldehydes. We expect that the protocol will be useful for the synthesis of highly-substituted cyclopentanone-fused quinoline and pyridine derivatives, which could find application in the synthesis of pharmaceutically active compounds.

Experimental Section

Published on 03 July 2020. Downloaded by University College London on 7/3/2020 5:16:51 PM

General Procedure for the Synthesis of Starting Substrate 1, 4, 6 and 9: To a solution of substituted 2-halo-aldehyde (1.0 mmol) in MeCN (5 mL), 3 mol% of Pd(PPh₃)₂Cl₂ was added. The reaction vial was then sealed and flushed with nitrogen. Then, 1.5 equiv of Et₃N and 1.05 mmol of alkyne were added to the reaction mixture. Afterwards the reaction was stirred at 70 °C until TLC revealed complete conversion of the starting material. After complete of the reaction, the reaction mixture was allowed to cool, diluted with H₂O, and finally extracted with EtOAc (3 × 10 mL). The combined organic layers were dried over Na₂SO₄, concentrated under vacuum, and purified by column chromatography using 100-200 mesh sized silica gel (hexane: ethyl acetate) to afford the corresponding product. The structure and purity of known starting materials 1, 4, 6 and 9 were confirmed by comparison of their physical and NMR-spectral data (¹H NMR and ¹³C NMR) with those reported in the literature.²¹

General experimental procedure for the synthesis of cyclopenta[b]quinolin-3-one, cyclopenta[b]pyridin-7-one 3, 5, 7: To a solution of *ortho*-alkynylaldehyde (0.5 mmol), amine 2 (0.5 mmol) in DMSO (2.0 mL), 2.0 equiv of KOH was added. The reaction was then stirred at 100 °C temperature until TLC revealed a complete conversion of the starting material. The reaction mixture was allowed to cool, diluted with H₂O, and finally extracted with EtOAc (2 × 10 mL). The combined organic layers were dried over Na₂SO₄, concentrated under vacuum, and purified by column chromatography using 100–200 mesh size silica gels (hexane: ethyl acetate) to afford the corresponding product.

2-Phenyl-1-(phenylamino)-3*H*-cyclopenta[b]quinolin-3-one (3a). The product was obtained as a red needles, mp: 171–173 °C (156.6 mg, 90%); ¹H NMR (400 MHz, DMSO-d₆) δ 10.29 (s, 1H), 8.33 (s, 1H), 8.07 (d, *J* = 8.2 Hz, 1H), 7.90–7.87 (m, 1H), 7.74–7.70 (m, 1H), 7.62–7.58 (m, 1H), 7.02–6.93 (m, 8H), 6.92–6.88 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 188.8, 155.8, 155.5, 148.5, 138.3, 132.3, 131.2,

130.7, 130.6, 129.6, 128.7, 128.5, 128.45, 127.5, 126.5, 125.4, 125.2, 124.2, 114.5; HRMS (ESI) [M+H]⁺ Cald (2.167) [C22H & 20] 349.1341, found 349.1333.

1-((4-Aminophenyl)amino)-2-phenyl-3H-cyclopenta[b]quinolin-3one (3b). The product was obtained as a red needles, mp: 160–162 °C (152.4 mg, 84%); ¹H NMR (400 MHz, DMSO-d₆) δ 10.05 (s, 1H), 8.04 (d, *J* = 8.2 Hz, 1H), 7.81 (d, *J* = 3.9 Hz, 1H), 7.73–7.69 (m, 1H), 7.60–7.56 (m, 1H), 7.18–6.99 (m, 6H), 6.66 (d, *J* = 5.5 Hz, 2H), 6.35– 6.26 (m, 2H), 5.04 (br s, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 187.7, 156.6, 148.4, 147.3, 132.5, 130.6, 130.5, 129.8, 129.6, 128.5, 128.3, 127.5, 126.8, 125.9, 125.4, 116.1, 113.6; HRMS (ESI) [M+H]⁺ Calcd for [C₂₄H₁₇N₃O] 364.1450, found 364.1471.

2-Phenyl-1-(quinolin-8-ylamino)-3H-cyclopenta[b]quinolin-3-one

(3c). The product was obtained as a red needles, mp: 175–177 °C (173.5 mg, 87%); ¹H NMR (400 MHz, CDCl₃) δ 9.31 (br s, 1H), 8.94 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.31 (d, *J* = 8.4 Hz, 1H), 8.23 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.89 (s, 1H), 7.77 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.73–7.68 (m, 1H), 7.59–7.53 (m, 2H), 7.50 (dd, *J* = 8.3, 1.0 Hz, 1H), 7.43–7.41 (m, 2H), 7.29–7.23 (m, 3H), 7.19-7.15 (m, 1H), 6.82 (dd, *J* = 7.6, 0.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 189.9, 154.9, 153.2, 149.3, 148.7, 139.9, 136.6, 133.6, 131.4, 130.6, 130.2, 129.6, 128.7, 128.4, 128.34, 128.2, 127.5, 126.0, 124.6, 122.6, 122.2, 119.8, 118.7; HRMS (ESI) [M+H]⁺ Calcd for [C₂₇H₁₇N₃O] 400.1450, found 400.1464.

1-(phenylamino)-2-(*p***-tolyl)-3H-cyclopenta[b]quinolin-3-one (3d).** The product was obtained as a red needles, mp: 278–280 °C (168.3 mg, 93%); ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, *J* = 8.2 Hz, 1H), 7.67 (s, 1H), 7.65–7.59 (m, 1H), 7.46–7.43 (m, 2H), 7.42–7.32 (m, 5H), 7.24 (d, *J* = 7.0 Hz, 2H), 7.20 (d, *J* = 7.8 Hz, 2H), 7.01 (s, 1H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 188.4, 157.1, 156.0, 148.3, 137.8, 137.5, 131.0, 130.1, 129.7, 129.4, 128.9, 128.5, 128.0, 127.7, 127.1, 126.9, 125.8, 117.9, 21.4; HRMS (ESI) [M+H]⁺ Calcd for [C₂₅H₁₈N₂O] 363.1497, found 363.1500.

2-(4-Ethylphenyl)-1-(phenylamino)-3H-cyclopenta[b]quinolin-3-

one (3e). The product was obtained as a red needles, mp: 258–260 °C (165.4 mg, 88%); ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 8.2 Hz, 1H), 8.08 (br s, 1H), 7.62–7.58 (m, 1H), 7.45–7.39 (m, 2H), 7.33–7.24 (m, 5H), 7.18–7.16 (m, 3H), 7.11 (d, J = 7.8 Hz, 2H), 2.55 (q, J = 7.5 Hz, 2H), 1.16 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 188.7, 157.2, 156.1, 148.3, 143.7, 137.8, 130.9, 130.1, 129.1, 129.0, 128.9, 128.8, 128.3, 128.1, 127.9, 126.8, 126.6, 125.6, 117.5, 28.8, 15.7; HRMS (ESI) [M+H]⁺ Calcd for [C₂₆H₂₀N₂O] 377.1654, found 377.1649.

2-(2-Fluorophenyl)-1-(phenylamino)-3H-cyclopenta[b]quinolin-3-

one (3f). The product was obtained as a yellow needles, mp: 221–223 °C (157.3 mg, 86%); ¹H NMR (400 MHz, DMSO-d₆) δ 10.49 (s, 1H), 8.49 (s, 1H), 8.12 (d, *J* = 8.2 Hz, 1H), 7.98 (d, *J* = 7.8 Hz, 1H), 7.80–7.76 (m, 1H), 7.69–7.65 (m, 1H), 7.17–7.08 (m, 2H), 7.03–6.92 (m, 6H), 6.74–6.69 (m, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ 188.0, 159.2 (d, *J*_{C-F} = 244.7 Hz), 156.5, 155.8, 148.5, 137.5, 132.0, 130.8, 129.8, 129.5, 129.4, 128.8, 128.3, 128.2, 125.7, 125.6, 124.4, 124.0, 121.1 (d, *J*_{C-F} = 16.4 Hz), 114.9 (d, *J*_{C-F} = 22.2 Hz), 108.4; HRMS (ESI) [M+H]⁺ Calcd for [C₂₄H₁₅FN₂O] 367.1247, found 367.1257.

Published on 03 July 2020. Downloaded by University College London on 7/3/2020 5:16:51 PM

Journal Name

2-(4-Fluorophenyl)-1-(phenylamino)-3H-cyclopenta[b]quinolin-3one (3g). The product was obtained as a yellow needles, mp: 282– 284 °C (155.3 mg, 85%); ¹H NMR (400 MHz, DMSO-d₆) δ 10.36 (s, 1H), 8.38 (s, 1H), 8.07 (d, *J* = 8.1 Hz, 1H), 7.93–7.89 (m, 1H), 7.75– 7.70 (m, 1H), 7.63–7.59 (m, 1H), 7.06–6.95 (m, 5H), 6.91-6.86 (m, 2H), 6.83–6.78 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 188.8, 161.0 (d, *J*_{C-F} = 243.7 Hz), 155.8, 155.7, 148.5, 138.2, 131.4 (d, *J*_{C-F} = 7.7 Hz), 131.1, 130.8, 130.7, 129.7, 128.8, 128.6, 128.5, 125.4 (d, *J*_{C-F} = 21.2 Hz), 124.4, 114.3 (d, *J*_{C-F} = 21.2 Hz), 113.4; HRMS (ESI) [M+H]⁺ Calcd for [C₂₄H₁₅FN₂O] 367.1247, found 367.1251.

2-(6-Methoxynaphthalen-2-yl)-1-(phenylamino)-3*H*-cyclopenta[b] **quinolin-3-one (3h).** The product was obtained as a yellow needles, mp: 217–219 °C (171.1 mg, 80%); ¹H NMR (400 MHz, DMSO-d₆) δ 10.36 (s, 1H), 8.34 (s, 1H), 8.11 (d, *J* = 8.2 Hz, 1H), 7.91 (d, *J* = 7.8 Hz, 1H), 7.77–7.73 (m, 1H), 7.65–7.61 (m, 1H), 7.56–7.52 (m, 2H), 7.44 (d, *J* = 8.2 Hz, 1H), 7.14–7.12 (m, 2H), 7.03 (d, *J* = 8.2 Hz, 1H), 6.97– 6.93 (m, 4H), 6.85–6.83 (m, 1H), 3.82 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 189.0, 157.6, 155.9, 155.5, 148.5, 138.4, 133.1, 131.3, 130.8, 130.6, 129.9, 129.6, 128.7, 128.5, 128.3, 128.1, 127.4, 125.6, 125.3, 125.1, 124.2, 118.7, 114.6, 106.1, 55.6; HRMS (ESI) [M+H]⁺ Calcd for [C₂₉H₂₀N₂O₂] 429.1603, found 429.1596.

2-(6-Methoxynaphthalen-2-yl)-1-(quinolin-8-ylamino)-3H-

cyclopenta[b]quinolin-3-one (3i). The product was obtained as a red needles, mp: 265–267 °C (196.1 mg, 82%); ¹H NMR (400 MHz, DMSO-d₆) δ 10.59 (s, 1H), 8.96–8.95 (m, 1H), 8.56 (s, 1H), 8.19–8.17 (m, 1H), 8.10 (d, J = 8.2 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.76–7.72 (m, 1H), 7.64–7.60 (m, 1H), 7.54–7.51 (m, 1H), 7.42 (d, J = 8.2 Hz, 1H), 7.22–7.15 (m, 4H), 7.01–6.96 (m, 2H), 6.91–6.87 (m, 2H), 3.76 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 189.0, 157.5, 157.3, 156.2, 150.6, 148.5, 142.5, 136.7, 135.4, 132.9, 131.4, 130.8, 130.6, 129.7, 129.4, 128.7, 127.9, 127.7, 127.4, 126.0, 125.9, 125.6, 125.4, 125.2, 122.5, 118.6, 115.2, 105.9, 55.6; HRMS (ESI) [M+H]⁺ Calcd for [C₃₂H₂₁N₃O₂] 480.1712, found 480.1703.

1-(Phenylamino)-2-(pyridin-2-yl)-3H-cyclopenta[b] quinolin-3-one

(3j). The product was obtained as a red needles, mp: 284–286 °C (149.9 mg, 86%); ¹H NMR (400 MHz, CDCl₃) δ 13.39 (br s, 1H), 8.90 (d, *J* = 8.3 Hz, 1H), 8.43 (d, *J* = 4.2 Hz, 1H), 8.20 (d, *J* = 8.3 Hz, 1H), 7.77–7.73 (m, 1H), 7.63–7.60 (m, 1H), 7.56–7.47 (m, 5H), 7.43–7.36 (m, 2H), 7.08–7.05 (m, 1H), 6.88 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 186.5, 163.0, 157.2, 154.7, 148.9, 146.4, 138.1, 136.9, 130.9, 130.6, 129.6, 129.2, 129.1, 128.1, 127.9, 127.8, 127.0, 122.2, 120.2, 109.0; HRMS (ESI) [M+H]⁺ Calcd for [C₂₃H₁₅N₃O] 350.1293, found 350.1302.

7-Methyl-1-(phenylamino)-2-(o-tolyl)-3H-cyclopenta[b]quinolin-3one (3k). The product was obtained as a red needles, mp: 268–270 °C (165.4 mg, 88%); ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.4 Hz, 1H), 7.47 (dd, J = 8.5, 1.8 Hz, 1H), 7.36–7.30 (m, 3H), 7.26 (s, 2H), 7.23–7.15 (m, 6H), 7.05 (s, 1H), 2.45 (s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 188.3, 157.9, 155.4, 146.7, 138.2, 138.1, 137.5, 132.2, 130.8, 130.75, 130.5, 130.1, 129.2, 128.5, 128.4, 128.3, 128.0, 127.0, 126.3, 126.2, 125.7, 118.4, 116.3, 21.6, 20.5; HRMS (ESI) [M+H]⁺ Calcd for [C₂₆H₂₀N₂O] 377.1654, found 377.1655.

2-(4-Ethylphenyl)-7-methyl-1-(phenylamino)-3H-

cyclopenta[b]quinolin-3-one (3I). The product was obtained as a

ARTICLE

red needles, mp: 153–155 °C (169.6 mg, 87%); ¹H NMR (400 MHz, CDCl₃) δ 8.15 (br s, 1H), 8.04 (d, *J* = 8.2 Hz, Ω , Ω , 12.43 (d) Ω Ω Ω , 12.443 (d) Ω Ω , 12.443 (d) Ω Ω Ω , 12.443 (d) Ω Ω , 12.443 (d) Ω Ω , 12.443 (d) Ω , 12.43, 12.443 (d) Ω , 12.43 (d) Ω , 12.443 (d) Ω , 12.43 (d) Ω , 12.443 (d) Ω , 12.43 (d) Ω , 12.443 (d) 12.443 (d

2-(4-Butylphenyl)-7-methyl-1-(phenylamino)-3H-

cyclopenta[b]quinolin-3-one (3m). The product was obtained as a red needles, mp: 251–253 °C (188.1 mg, 90%); ¹H NMR (400 MHz, CDCl₃) δ 8.13 (br s, 1H), 8.04 (d, *J* = 8.4 Hz, 1H), 7.42 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.29–7.23 (m, 5H), 7.20 (s, 1H), 7.17–7.13 (m, 3H), 7.06 (d, *J* = 8.1 Hz, 2H), 2.49 (t, *J* = 7.6 Hz, 2H), 2.39 (s, 3H), 1.54–1.46 (m, 2H), 1.34–1.25 (m, 2H), 0.89 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 189.0, 157.0, 155.2, 146.7, 142.1, 138.1, 137.8, 132.0, 130.6, 129.0, 128.9, 128.7, 128.3, 128.2, 128.17, 126.6, 126.1, 125.4, 117.0, 35.5, 33.6, 22.3, 21.5, 14.0; HRMS (ESI) [M+H]⁺ Calcd for [C₂₉H₂₆N₂O] 419.2123, found 419.2148.

2-(4-Fluorophenyl)-7-methyl-1-(phenylamino)-3H-cyclopenta[b]

quinolin-3-one (3n). The product was obtained as a red needles, mp: 155–157 °C (155.9 mg, 82%); ¹H NMR (400 MHz, DMSO-d₆) δ 10.29 (s, 1H), 8.23 (s, 1H), 7.94 (d, *J* = 8.5 Hz, 1H), 7.63 (s, 1H), 7.53 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.05–7.02 (m, 2H), 6.99–6.93 (m, 3H), 6.90–6.88 (m, 2H), 6.83–6.77 (m, 2H), 2.45 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 188.9, 161.0 (d, *J*_{C-F} = 242.8 Hz), 155.6, 154.9, 146.9, 138.6, 138.2, 132.5, 131.4 (d, *J*_{C-F} = 7.7 Hz), 131.2, 130.5, 128.7, 128.6, 128.4, 125.5, 124.8, 124.4, 114.3 (d, *J*_{C-F} = 21.2 Hz), 113.1, 21.6; HRMS (ESI) [M+H]⁺ Calcd for [C₂₅H₁₇FN₂O] 381.1403, found 381.1403.

1-((2, 5-Dichlorophenyl)amino)-2-(4-fluorophenyl)-7-methyl-3H-cyclopenta[b]quinolin-3-one (30). The product was obtained as a yellow needles, mp: 321–323 °C (192.6 mg, 86%); ¹H NMR (400 MHz, DMSO-d₆) δ 10.24 (s, 1H), 8.36 (s, 1H), 7.97 (d, J = 8.7 Hz, 1H), 7.71 (s, 1H), 7.57 (d, J = 8.7 Hz, 1H), 7.30 (d, J = 8.7 Hz, 1H), 7.11 (m, 2H), 6.93–6.83 (m, 4H), 2.48 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 189.2, 161.1 (d, J_{C-F} = 243.7 Hz), 156.5, 154.7, 146.8, 138.8, 137.0, 132.6, 132.0, 131.3 (d, J_{C-F} = 7.7 Hz), 131.1, 130.8, 130.6, 128.8, 128.4, 128.1 (d, J_{C-F} = 6.7 Hz), 124.9, 116.6, 116.2, 114.4 (d, J_{C-F} = 21.2 Hz), 114.3, 21.6; HRMS (ESI) [M+H]⁺ Calcd for [C₂₅H₁₅Cl₂FN₂O] 449.0624, found 449.0620.

7-Methyl-1-((4-methylpyridin-2-yl)amino)-2-(4-(trifluoromethyl)

phenyl)-3H-cyclopenta[b]quinolin-3-one (3p). The product was obtained as a yellow needles, mp: 148–150 °C (186.9 mg, 84%); ¹H NMR (400 MHz, DMSO-d₆) δ 10.80 (br s, 1H), 8.40 (s, 1H), 7.96 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 5.1 Hz, 1H), 7.69 (s, 1H), 7.57 (dd, J = 8.5, 1.8 Hz, 1H), 7.38 (d, J = 8.2 Hz, 2H), 7.17 (d, J = 7.8 Hz, 2H), 6.76 (d, J = 4.9 Hz, 1H), 6.59 (s, 1H), 2.47 (s, 3H), 1.94 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 189.2, 156.0, 154.2, 151.1, 148.7, 147.8, 146.9, 138.9, 137.6, 132.8, 131.1, 130.6, 129.5, 128.9, 128.5, 126.8 (q, J_{C-F} = 31.8 Hz), 125.9, 124.8 (q, J_{C-F} = 271.7 Hz), 124.4 (q, J_{C-F} = 2.9 Hz), 121.3, 119.0, 114.4, 21.6, 20.5; HRMS (ESI) [M+H]⁺ Calcd for [C₂₆H₁₈F₃N₃O] 446.1480, found 446.1506.

ARTICLE

Published on 03 July 2020. Downloaded by University College London on 7/3/2020 5:16:51 PM

Page 6 of 9

7-Methyl-1-(quinolin-8-ylamino)-2-(4-(trifluoromethyl)phenyl)-

3H-cyclopenta[b]quinolin-3-one (3q). The product was obtained as a yellow needles, mp: 149–151 °C (204.1 mg, 85%); ¹H NMR (400 MHz, DMSO-d₆) δ 10.80 (s, 1H), 8.84–8.83 (m, 1H), 8.48 (s, 1H), 8.20 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.99 (d, *J* = 8.4 Hz, 1H), 7.70 (s, 1H), 7.63 (dd, *J* = 8.2, 1.0 Hz, 1H), 7.58 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.48–7.45 (m, 1H), 7.36–7.34 (m, 1H), 7.24 (t, *J* = 7.8 Hz, 1H), 6.95 (d, *J* = 8.2 Hz, 2H), 6.79 (d, *J* = 8.1 Hz, 2H), 2.48 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 188.3, 158.5, 155.2, 150.7, 147.0, 142.4, 138.7, 136.7, 136.6, 135.5, 132.7, 130.9, 130.5, 129.4, 128.9, 128.8, 128.5, 126.9, 126.4, 126.1, 126.07, 125.5, 123.3 (q, *J*_{C-F} = 2.9 Hz), 122.5, 113.4, 21.6; HRMS (ESI) [M+H]⁺ Calcd for [C₂₉H₁₈F₃N₃O] 482.1480, found 482.1473.

6-Phenyl-5-(phenylamino)-7H-cyclopenta[b]pyridin-7-one (5a). The product was obtained as a yellow needles, mp: 164–166 °C (124.9 mg, 84%); ¹H NMR (400 MHz, DMSO-d₆) δ 10.14 (s, 1H), 8.48 (dd, *J* = 5.1, 1.2 Hz, 1H), 7.97 (d, *J* = 6.9 Hz, 1H), 7.38 (dd, *J* = 7.5, 5.2 Hz, 1H), 7.02–6.90 (m, 8H), 6.88–6.86 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 190.4, 154.8, 154.2, 150.1, 138.2, 135.5, 132.3, 129.6, 128.4, 127.4, 126.5, 126.1, 125.2, 124.1, 108.3; HRMS (ESI) [M+H]⁺ Calcd for [C₂₀H₁₄N₂O] 299.1184, found 299.1186.

5-((4-Fluorophenyl)amino)-6-phenyl-7H-cyclopenta[b]pyridin-7-

one (5b). The product was obtained as a red needles, mp: 153–155 °C (129.5 mg, 82%); ¹H NMR (400 MHz, CDCl₃) δ 10.12 (s, 1H), 8.48 (dd, *J* = 5.2, 1.1 Hz, 1H), 7.98 (d, *J* = 7.3 Hz, 1H), 7.39–7.36 (m, 1H), 6.98 (dd, *J* = 6.0, 3.6 Hz, 3H), 6.91–6.87 (m, 4H), 6.82–6.78 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 190.4, 159.8 (d, *J* = 242.8 Hz, 1C), 155.2, 154.3, 150.2, 135.4, 134.7, 132.3, 129.8, 127.5, 126.4, 126.3, 126.2 (d, *J* = 4.8 Hz, 1C), 125.3, 115.1 (d, *J* = 23.1 Hz, 1C), 108.1; HRMS (ESI) [M+H]⁺ Calcd for [C₂₀H₁₃FN₂O] 317.1090, found 317.1086.

5-(Phenylamino)-6-(*p*-tolyl)-7*H*-cyclopenta[b]pyridin-7-one (5c). The product was obtained as a red needles, mp: 170–172 °C (134.1 mg, 86%); ¹H NMR (400 MHz, DMSO-d₆) δ 10.06 (s, 1H), 8.46–8.44 (m, 1H), 7.90–7.88 (m, 1H), 7.35 (dd, *J* = 7.5, 5.2 Hz, 1H), 7.04–7.00 (m, 2H), 6.96–6.92 (m, 1H), 6.89–6.87 (m, 2H), 6.84–6.79 (m, 4H), 2.13 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 190.6, 154.6, 154.2, 150.0, 138.4, 135.6, 135.2, 129.5, 129.4, 128.5, 128.1, 126.5, 125.3, 125.2, 124.2, 108.6, 21.3; HRMS (ESI) [M+H]⁺ Calcd for [C₂₁H₁₆N₂O] 313.1341, found 313.1321.

5-((2-(1H-pyrrol-1-yl)phenyl)amino)-6-(p-tolyl)-7H-

cyclopenta[b]pyridin-7-one (5d). The product was obtained as a yellow needles, mp: 163–165 °C (156.4 mg, 83%); ¹H NMR (400 MHz, CDCl₃) δ 8.35–8.34 (m, 1H), 7.65 (s, 1H), 7.31–7.28 (m, 1H), 7.26–7.22 (m, 1H), 7.15–7.11 (m, 1H), 7.09–7.06 (m, 2H), 7.04–6.97 (m, 5H), 6.81–6.80 (m, 2H), 6.31–6.30 (m, 2H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.2, 155.2, 154.3, 149.6, 136.9, 135.5, 133.8, 132.4, 129.2, 128.8, 127.5, 127.3, 127.2, 126.5, 124.3, 121.7, 112.6, 110.6, 21.4; HRMS (ESI) [M+H]⁺ Calcd for [C₂₅H₁₉N₃O] 378.1606, found 378.1600.

5-(Phenylamino)-6-(thiophen-3-yl)-7H-cyclopenta[b]pyridin-7-one (5e). The product was obtained as a red needles, mp: 171–173 °C (121.5 mg, 80%); ¹H NMR (400 MHz, DMSO-d₆) δ 10.09 (s, 1H),

8.45–8.43 (m, 1H), 7.84–7.82 (m, 1H), 7.33 (dd, J = 7.5 + 142, 1H), 7.16–7.14 (m, 1H), 7.12–7.08 (m, 2H), 7.04–7.001(m), 1H), 6.97–16.96 (m, 1H), 6.94–6.91 (m, 2H), 6.73–6.71 (m, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ 190.5, 154.4, 154.2, 150.0, 138.4, 135.7, 132.0, 128.7, 126.7, 125.4, 125.3, 124.1, 124.0, 123.2, 104.8; HRMS (ESI) [M+H]⁺ Calcd for [C₁₈H₁₂N₂OS] 305.0749, found 305.0739.

5-((6-Methylpyridin-2-yl)amino)-6-phenyl-7H-

cyclopenta[b]pyridin-7-one (5f). The product was obtained as a red needles, mp: 258–260 °C (126.7 mg, 81%); ¹H NMR (400 MHz, DMSO-d₆) δ 10.45 (br s, 1H), 8.47–8.46 (m, 1H), 8.01–7.99 (m, 1H), 7.38 (dd, *J* = 7.5, 5.2 Hz, 1H), 7.33–7.29 (m, 1H), 7.21–7.18 (m, 1H), 7.07–7.01 (m, 2H), 6.98–6.95 (m, 2H), 6.71 (d, *J* = 7.4 Hz, 1H), 6.67 (d, *J* = 8.1 Hz, 1H), 2.02 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 191.4, 159.6, 156.9, 153.9, 150.9, 150.0, 138.0, 136.2, 133.2, 129.0, 127.6, 127.1, 126.3, 118.9, 114.2, 111.3, 105.5, 23.7; HRMS (ESI) [M+H]⁺ Calcd for [$C_{20}H_{15}N_3O$] 314.1293, found 314.1294.

5-((6-Methoxybenzo[d]thiazol-2-yl)amino)-6-phenyl-7H-

cyclopenta[b]pyridin-7-one (5g). The product was obtained as a yellow needles, mp: 180–182 °C (150.1 mg, 78%); ¹H NMR (400 MHz, DMSO-d₆) δ 11.36 (br s, 1H), 8.52 (d, *J* = 4.7 Hz, 1H), 7.77 (d, *J* = 7.1 Hz, 1H), 7.59–7.50 (m, 1H), 7.43–7.32 (m, 2H), 7.21–7.01 (m, 4H), 6.99–6.94 (m, 1H), 6.82 (dd, *J* = 8.8, 2.5 Hz, 1H), 3.70 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 191.8, 169.7, 161.5, 156.6, 156.5, 151.5, 143.1, 132.7, 129.2, 128.6, 127.6, 127.0, 124.9, 121.6, 115.3, 114.8, 105.2, 56.1; HRMS (ESI) $[M+H]^+$ Calcd for $[C_{22}H_{15}N_3O_2S]$ 386.0963, found 386.0959.

6-Phenyl-5-(phenylamino)-7H-cyclopenta[c]pyridin-7-one (7a). The product was obtained as a red needles, mp: 265–267 °C (128.1 mg, 86%); ¹H NMR (400 MHz, DMSO-d₆) δ 10.08 (s, 1H), 8.75 (d, J = 4.8 Hz, 1H), 8.50 (s, 1H), 7.72 (d, J = 4.7 Hz, 1H), 6.99–6.95 (m, 5H), 6.92–6.88 (m, 3H), 6.83–6.81 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 191.7, 155.0, 154.1, 148.7, 140.3, 138.2, 132.1, 129.7, 128.4,

δ 191.7, 155.0, 154.1, 148.7, 140.3, 138.2, 132.1, 129.7, 128.4, 127.5, 127.3, 126.4, 125.1, 123.8, 114.8, 108.5; HRMS (ESI) [M+H]⁺ Calcd for [C₂₀H₁₄N₂O] 299.1184, found 299.1185.

5-((4-Fluorophenyl)amino)-6-phenyl-7H-cyclopenta[c]pyridin-7-

one (7b). The product was obtained as a red needles, mp: 267–269 °C (131.1 mg, 83%); ¹H NMR (400 MHz, DMSO-d₆) δ 10.11 (s, 1H), 8.78 (d, *J* = 4.9 Hz, 1H), 8.52 (s, 1H), 7.74 (d, *J* = 4.9 Hz, 1H), 7.62–7.53 (m, 1H), 7.02–7.01 (m, 2H), 6.88–6.78 (m, 6H); ¹³C NMR (100 MHz, DMSO-d₆) δ 191.3, 159. 2 (d, *J*_{C-F} = 242.5 Hz), 154.6, 154.1, 148.2, 139.9, 139.8, 134.2 (d, *J*_{C-F} = 1.9 Hz), 131.6, 129.5, 127.1, 126.9, 126.1, 125.5 (d, *J*_{C-F} = 7.7 Hz), 114.7 (d, *J*_{C-F} = 23.0 Hz), 114.3, 107.8; HRMS (ESI) [M+H]⁺ Calcd for [C₂₀H₁₃FN₂O] 317.1090, found 317.1093.

5-((2-(1H-pyrrol-1-yl)phenyl)amino)-6-(p-tolyl)-7H-

cyclopenta[c]pyridin-7-one (7c). The product was obtained as a red needles, mp: 226–228 °C (152.6 mg, 81%); ¹H NMR (400 MHz, CDCl₃) δ 8.60 (s, 1H), 8.50 (d, *J* = 4.9 Hz, 1H), 7.35 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.25–7.21 (m, 1H), 7.14–7.06 (m, 6H), 6.94 (dd, *J* = 8.0, 1.2 Hz, 1H), 6.84–6.83 (m, 2H), 6.66–6.65 (m, 1H), 6.36–6.35 (m, 2H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.7, 154.3, 153.2, 147.4, 141.2, 137.5, 134.7, 132.8, 129.3, 128.9, 127.5, 127.4, 126.9, 126.7, 126.6, 126.1, 121.8, 114.3, 113.9, 110.8; HRMS (ESI) [M+H]⁺ Calcd for [C₂₅H₁₉N₃O] 378.1606, found 378.1615.

6-(4-Fluorophenyl)-5-(phenylamino)-7H-cyclopenta[c]pyridin-7-

one (7d). The product was obtained as a red needles, mp: 243–245 °C (131.1 mg, 83%); ¹H NMR (400 MHz, DMSO-d₆) δ 10.16 (s, 1H), 8.79 (d, *J* = 4.6 Hz, 1H), 8.53 (s, 1H), 7.77 (d, *J* = 4.6 Hz, 1H), 7.05–7.01 (m, 2H), 6.99–6.95 (m, 1H), 6.93–6.89 (m, 2H), 6.85–6.79 (m, 4H); ¹³C NMR (100 MHz, DMSO-d₆) δ 191.6, 161.0 (d, *J*_{C-F} = 243.7 Hz), 155.0, 154.2, 148.6, 140.3, 138.1, 131.5 (d, *J*_{C-F} = 8.7 Hz), 128.5, 127.2, 125.3, 124.0, 114.7, 114.3 (d, *J*_{C-F} = 21.2 Hz), 107.4; HRMS (ESI) [M+H]⁺ Calcd for [C₂₀H₁₃FN₂O] 317.1090, found 317.1091.

6-(4-Fluorophenyl)-5-(quinolin-8-ylamino)-7H-

cyclopenta[c]pyridin-7-one (7e). The product was obtained as a red needles, mp: 257–259 °C (150.4 mg, 82%); ¹H NMR (400 MHz, DMSO-d₆) δ 10.37 (s, 1H), 8.88-8.86 (m, 1H), 8.76 (s, 1H), 8.51 (s, 1H), 8.27–8.25 (m, 1H), 7.89 (d, J = 4.7 Hz, 1H), 7.64–7.62 (m, 1H), 7.51–7.48 (m, 1H), 7.20–7.12 (m, 2H), 6.65–6.60 (m, 2H), 6.55–6.49 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 191.6, 160.7 (d, $J_{C-F} = 243.7$ Hz), 156.1, 155.1, 150.5, 148.6, 142.2, 140.2, 136.8, 135.3, 130.9 (d, $J_{C-F} = 7.7$ Hz), 128.7, 128.3, 127.4, 126.1 (d, $J_{C-F} = 9.0$ Hz), 125.5, 122.5, 116.2, 115.0, 113.8 (d, $J_{C-F} = 21.2$ Hz), 108.2; HRMS (ESI) [M+H]⁺ Calcd for [C₂₃H₁₄FN₃O] 368.1199, found 368.1199.

Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgements

We gratefully acknowledge the SERB for financial support and USIC, the University of Delhi for providing instrumentation facilities. K.M.S. and S. is thankful to CSIR and UGC for the fellowship respectively.

Notes and references

- B. A. Trofimov and E. Y. Schmidt, Acc. Chem. Res., 2018, 51, 1117–1130.
- 2 (a) E. Y. Schmidt, B. A. Trofimov, I. A. Bidusenko, N. A. Cherimichkina, I. A. Ushakov, N. I. Protzuk and Y. V. Gatilov, *Org. Lett.*, 2014, 16, 4040–4043. (b) E. Y. Schmidt, I. A. Bidusenko, N. A. Cherimichkina, I. A. Ushakov, T. N. Borodina, V. I. Smirnov and B. A. Trofimov, *Chem. A Eur. J.*, 2015, 21, 15944–15946. (c) Andrew Morrell, Michael Placzek, Seth Parmley, Brian Grella, Smitha Antony, and Yves Pommier and Mark Cushman, DOI:10.1021/JM070307.
- 3 (a) D. Grandjean, P. Pale and J. Chuche, *Tetrahedron Lett.*, 1992, **33**, 4905–4908. (b) Y. Liu, T. Lu, W. F. Tang and J. Gao, *RSC Adv.*, 2018, **8**, 28637–28641.
- 4 (a) A. K. Verma, M. Joshi and V. P. Singh, *Org. Lett.*, 2011,
 13, 1630–1633. (b) R. Muruganantham, S. M. Mobin and I.
 N. N. Namboothiri, *Org. Lett.*, 2007, 9, 1125–1128. (c) M.
 Yamagishi, J. Okazaki, K. Nishigai, T. Hata and H. Urabe, *Org. Lett.*, 2012, 14, 34–37.
- 5 X. F. Wu, S. Oschatz, A. Block, A. Spannenberg and P. Langer, *Org. Biomol. Chem.*, 2014, **12**, 1865–1870.
- 6 (a) S. Nayak, P. Panda, B. P. Raiguru, S. Mohapatra and C. S. Purohit, Org. Biomol. Chem., 2019, 17, 74–82. (b) L.

Pan, Z. Li, T. Ding, X. Fang, W. Zhang, H. Xu, and Y. Xu, *iew Article Whine* Org. Chem., 2017, 82, 10043–1005001: 10.1039/D00801281E

- 7 J. B. Bharate, R. A. Vishwakarma and S. B. Bharate, *RSC Adv.*, 2015, 5, 42020–42053.
- 8 (a) X. P. Peng, Y. Wang, P. P. Liu, K. Hong, H. Chen, X. Yin and W. M. Zhu, *Arch. Pharm. Res.*, 2011, **34**, 907–912. (b)
 G. C. Muscia, G. Y. Buldain and S. E. Asís, *Eur. J. Med. Chem.*, 2014, **73**, 243–249. (c) K. Mishra, A. K. Pandey, J. B. Singh and R. M. Singh, *Org. Biomol. Chem.*, 2016, **14**, 6328–6336.
- 9 E. Kiselev, D. Sooryakumar, K. Agama, M. Cushman and Y. Pommier, *J. Med. Chem.*, 2014, **57**, 1289–1298.
- (a) S. A. Patil, R. Patil and S. A. Patil, *Eur. J. Med. Chem.*, 2017, **138**, 182–198. (b) D. J. Kerr, E. Hamel, M. K. Jung and B. L. Flynn, *Bioorganic Med. Chem.*, 2007, **15**, 3290– 3298. (c) M. Turek, D. Szczesna, M. Koprowski and P. Bałczewski, *Beilstein J. Org. Chem.*, 2017, **13**, 451–494. (d) A. Das, A. G. K. Reddy, J. Krishna and G. Satyanarayana, *RSC Adv.*, 2014, **4**, 26662–26666.
- (a) G. Sartori and R. Maggi, Advances in Friedel-Crafts acylation reactions: Catalytic and green processes, 2009.
 (b) M. Rostami, A. R. Khosropour, V. Mirkhani, M. Moghadam, S. Tangestaninejad and I. Mohammadpoor-Baltork, Tetrahedron Lett., 2011, 52, 7149–7152. (c) E. Fillion and D. Fishlock, J. Am. Chem. Soc., 2005, 127, 13144–13145. (d) N. Wu, A. Messinis, A. S. Batsanov, Z. Yang, A. Whiting and T. B. Marder, Chem. Commun., 2012, 48, 9986–9988. (e) B. Zhou, H. Yang, H. Jin and Y. Liu, J. Org. Chem., 2019, 84, 2169–2177.
- (a) A. N. Butkevich, B. Ranieri, L. Meerpoel, I. Stansfield, P. Angibaud, A. Corbu and J. Cossy, *Org. Biomol. Chem.*, 2014, **12**, 728–731. (b) A. A. Pletnev, Q. Tian and R. C. Larock, *J. Org. Chem.*, 2002, **67**, 9276–9287. (c) K. Gao and N. Yoshikai, *Chem. Commun.*, 2012, **48**, 4305–4307. (d) X. Chen, Q. He, Y. Xie and C. Yang, *Org. Biomol. Chem.*, 2013, **11**, 2582–2585.
- (a) T. Miura and M. Murakami, Org. Lett., 2005, 7, 3339– 3341. (b) H. Tsukamoto and Y. Kondo, Org. Lett., 2007, 9, 4227–4230. (c) C. C. Liu, R. P. Korivi and C. H. Cheng, Chem. - A Eur. J., 2008, 14, 9503–9506. (d) T. Morimoto, K. Yamasaki, A. Hirano, K. Tsutsumi, N. Kagawa, K. Kakiuchi, Y. Harada, Y. Fukumoto, N. Chatani and T. Nishioka, Org. Lett., 2009, 11, 1777–1780. (e) B. J. Li, H. Y. Wang, Q. L. Zhu and Z. J. Shi, Angew. Chemie Int. Ed., 2012, 51, 3948–3952. (f) S. Chen, J. Yu, Y. Jiang, F. Chen and J. Cheng, Org. Lett., 2013, 15, 4754–4757. (g) Z. Qi, M. Wang and X. Li, Org. Lett., 2013, 15, 5440–5443. (h) Y. Kuninobu, T. Matsuki and K. Takai, Org. Lett., 2010, 12, 2948–2950.
- 14 R. M. Singh, R. Kumar, K. C. Bharadwaj and T. Gupta, Org. Chem. Front., 2016, 3, 1100–1104.
- (a) C. Pan, B. Huang, W. Hu, X. Feng and J. T. Yu, *J. Org. Chem.*, 2016, **81**, 2087–2093. (b) Y. K. Song, P. C. Qian, F. Chen, C. L. Deng and X. G. Zhang, *Tetrahedron*, 2016, **72**, 7589–7593. (c) S. B. Nagode, A. K. Chaturvedi and N. Rastogi, *Asian J. Org. Chem.*, 2017, **6**, 453–457. (d) S. K. Pagire, P. Kreitmeier and O. Reiser, *Angew. Chemie Int. Ed.*, 2017, **56**, 10928–10932. (e) B. Banerji, L. Majumder and S. Adhikary, *ChemistrySelect*, 2018, **3**, 1381–1384.
- (a) C. Wang, J. Yang, X. Cheng, E. Li and Y. Li, *Tetrahedron Lett.*, 2012, 53, 4402–4404. (b) S. Zhang, X. T. Bai, D. Y. Chen, P. Chen, Q. Q. Zhang and Y. B. Wang, *RSC Adv.*,

Jhemistry Accepted Man

molecula

anic & Blo

View Article Online DOI: 10.1039/D0OB01281E

Published on 03 July 2020. Downloaded by University College London on 7/3/2020 5:16:51 PM.

2017, **7**, 31142–31147. (c) P. Zhao, Y. Liu and C. Xi, *Org. Lett.*, 2015, **17**, 4388–4391. (d) X. Yan, S. Zou, P. Zhao and C. Xi, *Chem. Commun.*, 2014, **50**, 2775–2777.

- 17 K. M. Saini, R. K. saunthwal, S., and A. K. Verma, *Chem. A Eur. J.*, 2020, **26**, 1017–1021.
- (a) R. K. Saunthwal, M. Patel and A. K. Verma, *Org. Lett.*, 2016, **18**, 2200–2203. (b) K. M. Saini, R. K. Saunthwal, S. Kumar and A. K. Verma, *J. Org. Chem.*, 2019, **84**, 2689–2698. (c) S. Kumar, R. K. Saunthwal, K. M. Saini and A. K. Verma, *Chem. Commun.*, 2019, **55**, 10721–10724. (d) K. M. Saini, R. K. Saunthwal, S. Kumar, and A. K. Verma, *Org. Biomol. Chem.*, 2019, **17**, 2657-2662.
- 19 Crystallographic data for the compound **3n** has been deposited with the Cambridge Crystallographic Data Centre. CCDC deposit number for compound **3n** is 1972359, contains all crystallographic details of this publication and is available free of charge at www.ccdc.cam.ac.uk
- 20 M. Rehan, G. Hazra and P. Ghorai, *Org. Lett.*, 2015, **17**, 1668–1671.
- 21 (a) R. Kumar, A. Chandra, B. A. Mir, and G. Shukla, J. Org. Chem., 2019, 84, 10710-10723. (b) K. Mishra, J. B. Singh, T. Gupta and R. M. Singh, Org. Chem. Front., 2017, 4, 1926-1930. (c) A. K. Verma, D. Choudhary, R. K. Saunthwal, V. Rustagi, M. Patel, and R. K. Tiwari, J. Org. Chem., 2013, 78, 6657-6669. (d) A. K. Verma, V. Rustagi, T. Aggarwal, and A. P. Singh, J. Org. Chem., 2010, 75, 7691-7703. (e) N. Sharma, M. Asthana, D. Nandini, R. P. Singh, R. M. Singh, Tetrahedron, 2013, 69, 1822-1829. (f) V. Rustagi, R. Tiwari, and A. K. Verma, Eur. J. Org. Chem., 2012, 4590-4602. (g) S., T. Aggarwal, N. Shibata, and A. K. Verma, Chem. Eur. J. 2019, 25, 16063 - 16067. (h) P. Kumar, T. Aggarwal, and A. K. Verma, J. Org. Chem., 2017, 82, 6388-6397. (h) M. Asthana, J. B. Singh, R. M. Singh, Tetrahedron Lett., 2016, 57, 615-618. (i) S. Kumar, C. Cruz, S. Pal, R. K. Saunthwal, R. K. Tiwari, E. Juaristi, and A. K. Verma, J. Org. Chem. 2015, 80, 10548-10560

