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Abstract 

A convenient and efficient procedure for the synthesis of some novel chiral ionic liquids (CILs) 

from 4-dimethylaminopyridinium cation has been reported. The synthesis of the CILs includes 

the treatment of optically active (-)-menthyl ester with 4-dimethylaminopyridine and after that 

the anion exchange reactions in water. The synthesized ionic salts have been characterized using 

polarimetry, NMR spectroscopy and EI-MS techniques. The synthesized CIL was used in chiral 

recognition of Mosher’s acid by 
1
H NMR and also to induce the enantioselectivity in the sodium 

borohydride reduction of some prochiral ketones.  

Keywords: Chiral Ionic Liquids; Asymmetric reduction; Enantiomeric excess; Chirality; Chiral 

recognition.  
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1. Introduction 

Ionic liquids (ILs), due to their non-volatility, have appeared as the lucrative alternative to the 

volatile organic compounds [1-3]. These compounds exhibit several peculiar properties such as 

low vapour pressure, wide electrochemical potential window, solvent and catalytic potential, 

reusability etc [4-5]. The most commonly synthesized ILs are N,N-dialkyl imidazolium, N-alkyl 

pyridinium, tetra-alkyl phosphonium and tetra-alkyl ammonium salts. ILs are composed of ions 

only and are very important in the field of organic synthesis and catalysis [6-7], analytical 

techniques [8-10], energy storage [11-12] and biotechnology [13] etc.  

CILs are the compounds which consist of any sort of chirality in the cation or anion or in both 

cation and anion. They possess all the above-quoted properties of the ionic liquids and are further 

important due to their chiral discrimination properties. They exhibit prominent applications in 

asymmetric synthesis and organocatalysis [14-17], polymerization [18-19],
 

resolution of 

racemates [20-21] etc. In some cases, CILs provide better results in catalysis than enzyme and 

transition-metal based catalysts. Their most advantageous property is that they can be recovered 

and reused in the reaction procedures [22-23]. These can be used as chiral additives and/or chiral 

stationary phase in advanced analytical methods such as liquid/gas chromatography
 
[24-25] and 

capillary electrophoresis [26-27]. One can aim at the synthesis of CILs either from the chiral 

pool or by asymmetric synthetic methods. The chiral pool based synthesis is preferable because 

of the availability of the inexpensive chiral building blocks.  

Chiral recognition is a diastereomeric interaction between a chiral selector and the two 

enantiomers of the racemate which leads to their enantiodifferentiation. Chiral recognition plays 

an important role in the determination of absolute configuration and chirality transfer 
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mechanisms. CILs are also important in chiral recognition of numerous compounds using 

spectroscopic methods [28-31]. 

The synthesis and separation of the chiral molecules is an important aspect of chemistry and 

biology. The chiral secondary alcohols are valuable compounds in pharmaceutics and 

agrochemicals. Many reports about the synthesis of these scaffolds using metal and biocatalysts 

can be found in the recent literature [32-34]. CILs are also important in context to the synthesis 

of these compounds [35-37]. We have already reported the synthesis of some CILs from the 

natural chiral materials for their application in asymmetric sodium borohydride reduction [38-

40].  

In this report, we have provided a straightforward method for the synthesis of DMAP-based 

CILs and also studied their application in chiral molecular recognition and enantioselective 

sodium borohydride reduction reactions. Although there are some examples about the synthesis 

of simple ionic liquids from DMAP moiety [41-42], to the best of our knowledge, it is the first 

report about the synthesis of CILs from DMAP. The easily available and cheap starting 

materials; very moderate reaction conditions and excellent yields are the advantageous points of 

these CILs. Moreover, these CILs are also valuable due to their multifaceted applications in 

chiral recognition and organocatalysis.  

2. Experimental   

2.1 Materials and methods  

All the chemicals were purchased from Sigma-Aldrich, Acros Organics, Alfa Aesar and LOBA 

Chemie and were used as such unless stated otherwise. The solvents were dried using 

appropriate drying techniques. The pre-coated Merck TLC silica gel 60 sheets were used to 

monitor the progress of all the reactions. Optical rotation values were measured on Anton Paar 
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polarimeter MCP 500 at 589 nm using a cell of length 1 dm at room temperature. Melting points 

of all the synthesized compounds were determined by using a digital melting point apparatus and 

are reported as such. The mass spectra were taken on a Shimadzu GCMS-QP 2010 Ultra in 

electron ionization (EI) mode. 
1
H, 

13
C, 

11
B and 

31
P NMR spectra of all the salts were taken on a 

Bruker Advance II, 400 MHz NMR spectrometer. In chiral recognition experiments, 
1
H NMR 

spectra were recorded on a 400 MHz JEOL ECS instrument. The enantiomeric excess of the 

synthesized secondary alcohols has been determined by using GC-FID analysis using a 

Shimadzu GCMS-QP 2010 Ultra in split mode. Before injection, samples were dissolved in 

HPLC grade methanol and passed through a 0.22 μm syringe filters.  

2.2 Procedure for the quaternization reaction (Synthesis of CIL 2)  

The synthesis of (-)-menthyl chloroacetate has been carried out according to our previously 

reported procedure [38]. Next, to a solution of 4-dimethylaminopyridine (4 mmol, 489 mg), an 

equimolar quantity of (-)-menthyl chloroacetate was added. The reaction mixture was then 

refluxed at 70 
o
C. The progress of the reaction was checked by TLC (chloroform:methanol). 

After completion of the reaction, 15 ml of 1 N sulphuric acid was added and the product 

extraction was carried out using dichloromethane (3×10). The combined dichloromethane layers 

were then dried over anhydrous Na2SO4. Finally, the solvent was removed in vaccuo and the CIL 

2 was obtained in good yield (78%). 

2.2.1 4-(dimethylamino)-1-(2-((1R,2S,5R)-2-isopropyl-5-methylcyclohexyloxy)-2-oxoethyl)- 

pyridinium chloride (2) 

Produced as white solid in 78% yield, mp: 242-244 
o
C, [α]D

25
= -45.9

o
 (c 0.25, MeOH), 

1
H NMR 

(CDCl3, 400MHz): δ 8.47-8.45 (d, 2H, J=7.52, Ar), 6.96-6.94 (d, 2H, J=7.52, Ar), 5.57-5.52 (d, 

1H, J=17.52, -NCH2), 5.41-5.36 (d, 1H, J=17.52, -NCH2), 4.79-4.72 (td, 1H, J=4.44 and J=6.48, 
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-OCH), 3.28 (s, 6H, -N(CH3)2), 2.03-2.0 (m, 1H), 1.86-1.82 (m, 1H), 1.70-1.66 (m, 2H), 1.46-

1.39 (m, 2H), 1.10-1.01 (m, 2H), 0.91-0.85 (m, 7H, isopropyl group of menthol), 0.75-0.73 (d, 

3H, J=6.92 methyl group of the menthol). 
13

C NMR (CDCl3, 100MHz): δ 166.84, 156.54, 143.86 

107.68, 57.56, 46.77, 40.63, 40.52, 33.95, 31.45, 26.07, 23.15, 21.93, 20.85, 16.17. EI-MS: m/z 

= 319(M
+

cation), m/z = 289(M
+

cation-2CH3). 

2.3 General procedure for the synthesis of CILs (3-7)  

The synthesized chloride salt (2 mmol) was dissolved in 15-20 ml of distilled water and small 

excess of the various sodium or potassium salts has been added. The reaction mixture was then 

stirred overnight at room temperature. The products were extracted with dichloromethane and 

dried over anhydrous Na2SO4. The solvent was evaporated using a rotary evaporater to afford 

excellent yields of the CILs (3-7).  

2.3.1 4-(dimethylamino)-1-(2-((1R,2S,5R)-2-isopropyl-5-methylcyclohexyloxy)-2-oxoethyl)- 

pyridinium tetrafluoroborate (3) 

Produced as off-white solid in 92% yield. mp: 134-138 
o
C, [α]D

25
= -41.6

o
 (c 0.25, MeOH), 

1
H 

NMR (CDCl3, 400MHz): δ 7.96-7.94 (d, 2H, J=7.52, Ar), 6.88-6.86 (d, 2H, J=7.56, Ar), 4.95 (s, 

2H, -NCH2), 4.79-4.73 (td, 1H, J=4.44 and J=6.52, -OCH), 3.24 (s, 6H, -N(CH3)2), 2.03-2.0 (m, 

1H), 1.90-1.81 (m, 1H), 1.70-1.66 (m, 2H), 1.47-1.36 (m, 2H), 1.09-0.98 (m, 2H), 0.91-0.85 (m, 

7H, isopropyl group of menthol), 0.75-0.73 (d, 3H, J=6.92, methyl group of the menthol). 
13

C 

NMR (CDCl3, 100MHz): δ 166.91, 156.53, 143.07, 107.67, 57.50, 46.80, 40.47, 40.28, 33.95, 

31.44, 26.06, 23.18, 21.93, 20.78, 16.12. 
11

B NMR (CDCl3, 400MHz): δ -1.00 (s). EI-MS: m/z = 

319(M
+

cation), m/z = 289(M
+

cation-2CH3). 

2.3.2 4-(dimethylamino)-1-(2-((1R,2S,5R)-2-isopropyl-5-methylcyclohexyloxy)-2-oxoethyl)- 

pyridinium hexafluorophosphate (4) 
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Produced as off-white solid in 89% yield. mp: 126-130 
o
C, [α]D

25
= -39.1

o
 (c 0.25, MeOH), 

1
H 

NMR (CDCl3, 400MHz): δ 7.86-7.84 (d, 2H, J=7.68, Ar), 6.84-6.82 (d, 2H, J=7.72, Ar), 4.86 (s, 

2H, -NCH2), 4.79-4.73 (td, 1H, J=4.44, and J=6.48, -OCH), 3.23 (s, 6H, -N(CH3)2), 2.00-1.99 

(m, 1H), 1.84-1.80 (m, 1H), 1.71-1.66 (m, 2H), 1.47-1.37 (m, 2H), 1.10-1.01 (m, 2H), 0.91-0.85 

(m, 7H, isopropyl group of menthol), 0.75-0.73 (d, 3H, J=6.92, methyl group of the menthol). 

13
C NMR (CDCl3, 100MHz): δ 166.22, 156.52, 142.76, 107.67, 57.48, 46.78, 40.40, 40.29, 

33.93, 31.44, 26.06, 23.17, 21.90, 20.75, 16.07. 
31

P NMR (CDCl3, 400MHz): δ -131.16-157.56 

(hept). EI-MS: m/z = 319(M
+

cation), m/z = 289(M
+

cation-2CH3). 

2.3.3 4-(dimethylamino)-1-(2-((1R,2S,5R)-2-isopropyl-5-methylcyclohexyloxy)-2-oxoethyl)- 

pyridinium hexafluoroantimonate (5) 

Produced as off-white solid in 86% yield. mp: 104-106 
o
C, [α]D

25
= -30.6

o
 (c 0.25, MeOH), 

1
H 

NMR (CDCl3, 400MHz): δ 7.88-7.86 (d, 2H, J=7.68, Ar), 6.85-6.83 (d, 2H, J=7.68, Ar), 4.89 (s, 

2H, -NCH2), 4.79-4.73 (td, 1H, J=4.44, and J=6.48, -OCH), 3.22 (s, 6H, -N(CH3)2), 2.03-2.00 

(m, 1H), 1.84-1.80 (m, 1H), 1.70-1.66 (m, 2H), 1.47-1.38 (m, 2H), 1.10-0.98 (m, 2H), 0.93-0.82 

(m, 7H, isopropyl group of menthol), 0.75-0.73 (d, 3H, J=6.92, methyl group of the menthol). 

13
CNMR (CDCl3, 100MHz): δ 166.43, 156.56, 142.84, 107.76, 57.64, 46.78, 40.46, 40.30, 33.93, 

31.44, 26.13, 23.18, 21.96, 20.76, 16.10. EI-MS: m/z = 319(M
+

cation), m/z = 289(M
+

cation-2CH3). 

2.3.4 4-(dimethylamino)-1-(2-((1R,2S,5R)-2-isopropyl-5-methylcyclohexyloxy)-2-oxoethyl)- 

pyridinium bromoethanesulfonate (6) 

Produced as off-white solid in 87% yield. mp: 138-142 
o
C, [α]D

25
= -37.1

o
 (c 0.25, Acetone), 

1
H 

NMR (CDCl3, 400MHz): δ 8.23-8.21 (d, 2H, J=7.68, Ar), 6.93-6.91 (d, 2H, J=7.68,  Ar), 5.24-

5.11 (q, 2H, J=17.76 and J=16.56, -NCH2), 4.80-4.74 (td, 1H, J=4.44 and J=6.48, -OCH), 3.74-

3.70 (m, 2H), 3.32-3.28 (m, 2H), 3.27 (s, 6H, -N(CH3)2), 2.03-2.00 (m, 1H), 1.85-1.81 (m, 1H), 
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1.71-1.67 (m, 2H), 1.48-1.38 (m, 2H), 1.11-0.99 (m, 2H), 0.93-0.84 (m, 7H, isopropyl group of 

menthol), 0.76-0.74 (d, 3H, J=6.96, methyl group of the menthol). 
13

C NMR (CDCl3, 100MHz):  

δ 166.70, 156.54, 143.70, 107.71, 57.66, 54.58, 46.74, 40.60, 40.43, 33.91, 31.44, 29.69, 26.67, 

26.13, 23.17, 21.94, 20.81, 16.18. EI-MS: m/z = 319(M
+

cation), m/z = 289(M
+

cation-2CH3). 

2.3.5 4-(dimethylamino)-1-(2-((1R,2S,5R)-2-isopropyl-5-methylcyclohexyloxy)-2-oxoethyl)- 

pyridinium trifluoromethanesulfonate (7) 

Produced as semi-solid in 87% yield, [α]D
25

= -28.6
o
 (c 0.25, MeOH), 

1
H NMR (CDCl3, 

400MHz): δ 7.86-7.84 (d, 2H, J=7.76, Ar), 6.84-6.82 (d, 2H, J=7.40, Ar), 5.04 (s, 2H, -NCH2), 

4.80-4.73 (td, 1H, J=4.44, and J=6.48, -OCH), 3.24 (s, 6H, -N(CH3)2), 2.02-1.99 (m, 2H), 1.84-

1.80 (m, 1H), 1.71-1.67 (m, 2H), 1.45-1.37 (m, 2H), 1.09-1.01 (m, 2H), 0.92-0.85 (m, 7H, 

isopropyl group of menthol), 0.75-0.73 (d, 3H, J=6.92, methyl group of the menthol). 
13

C NMR 

(CDCl3, 100MHz): δ 166.43, 156.57, 143.33, 107.74, 57.66, 46.78, 40.50, 40.44, 33.93, 31.44, 

29.71, 26.10, 23.16, 21.91, 20.76, 16.10. EI-MS: m/z = 319(M
+

cation), m/z = 289(M
+

cation-2CH3). 

2.4 Procedure for the reduction of ketones in the presence of CILs: 

The asymmetric sodium borohydride reduction has been carried out according to our previously 

reported procedure [39]. The GC chromatograms of synthesized secondary alcohols are given in 

the supplementary information file. 

(-)-1-Phenylethanol: GC analysis-Rt-βDEXsm column, split mode, carrier gas helium, makeup 

gas helium, column oven temperature= 120 
o
C, injection temperature 230 

o
C, flow rate 0.80 mL/ 

min, tR1 = 11.93 min; tR2= 12.10 min. 

(-)-1-(4-Bromophenyl)-ethanol: GC analysis-Rt-βDEXsm column, split mode, carrier gas 

helium, makeup gas helium, column oven temperature= 120 
o
C, injection temperature 230 

o
C, 

flow rate 0.80 mL/min, tR1 = 19.60 min; tR2= 19.71 min.  
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(-)-1-(4-Hydroxyphenyl)-ethanol: GC analysis-Rt-βDEXsm column, split mode, carrier gas 

helium, makeup gas helium, column oven temperature= 120 
o
C, injection temperature 230 

o
C, 

flow rate 0.80 mL/min, tR1 = 15.80 min; tR2= 15.89 min.  

(-)-1-(4-Methoxyphenyl)-ethanol: GC analysis-Rt-βDEXsm column, split mode, carrier gas 

helium, makeup gas helium, column oven temperature= 120 
o
C, injection temperature 230 

o
C, 

flow rate 1.30 mL/min, tR1 = 16.00 min; tR2= 16.07 min. 

(-)-1-(4-Chlorophenyl)-ethanol: GC analysis-Rt-βDEXsm column, carrier gas helium, column 

oven temperature= 120 
o
C, injection temperature 230 

o
C, flow rate 0.80 mL/min, tR1 = 16.64 min; 

tR2= 16.73 min. 

(-)-1-(4-Methylphenyl)-ethanol: GC analysis-Rt-βDEXsm column, split mode, carrier gas 

helium, makeup gas helium, column oven temperature= 120 
o
C, injection temperature 230 

o
C, 

flow rate 0.80 mL/min, tR1 = 15.05 min; tR2= 15.21 min.  

(-)-1-(2-Hydroxyphenyl)-ethanol: GC analysis-Rt-βDEXsm column, split mode, carrier gas 

helium, makeup gas helium, column oven temperature= 120 
o
C, injection temperature 230 

o
C 

flow rate 1.30 mL/min, tR1 = 16.02 min; tR2= 16.09 min.  

(-)-2,3-Dihydro-1H-inden-1-ol: GC analysis-Rt-βDEXsm column, split mode, carrier gas 

helium, makeup gas helium, column oven temperature= 120 
o
C, injection temperature 230 

o
C, 

flow rate 0.80 mL/min, tR1 = 14.46 min (100% ee). 

2.5 Procedure for the enantiomeric recognition using Mosher’s acid salt 

For recognition experiment, 10.2 mg ( 0.04 equivalent) of racemic Mosher’s acid sodium salt 

was added to 42.6 mg ( 0.12 equivalent) of CIL 2, taken in a RBF. Then water was added and the 

mixture was stirred overnight for anion exchange. After that, water was removed in vacuo and 
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the resultant solid was dissolved in a mixture of CDCl3 and DMSO-d6 then filtered to take the   

NMR spectrum.  

3. Results and discussion 

3.1 Synthesis and characterization of the CILs 

In continuation to our efforts towards the synthesis and applications of new CILs from the 

natural available chiral precursors [14, 38-40, 43]; herein, we have reported the synthesis and 

applications of (-)-menthyl ester based CILs. These CILs can be synthesized under very mild 

conditions, as depicted in the Scheme 1, from commercially available (-)-menthol. The synthesis 

of (-)-menthyl ester was carried out under ultrasonication in the presence of Iron(III)perchlorate 

hexahydrate [38]. After that, quaternization of DMAP was achieved in acetonitrile. The 

quaternization reaction of DMAP with (-)-menthyl ester occurs by an SN
1
 mechanism. In the last 

step, anion exchange reactions have been performed at room temperature to produce the CIL (3-

7) containing different anions. All the CILs were obtained in excellent yields and the physical 

properties of the CILs are enlisted in Table 1. 
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Scheme 1: Synthesis of DMAP-based CIL 

Table 1: Physical properties of the DMAP-based CILs 

Entry CIL Anion Physical State Yield Mp [
o
C] [α]D

25
(c 0.25)

*
 

1 2 Cl White solid 78% 242-244 -45.9 

2 3 BF4 Off-white solid 92% 134-138 -41.6 

3 4 PF6 Off-white solid 89% 126-130 -39.1 

4 5 SbF6 Off-white solid 86% 104-106 -30.6 

5 6 BrCH2CH2SO3 Off-white solid 87% 138-142 -37.1 

6 7 CF3SO3 Semi-solid 87% Semi solid   -28.6 
*For CIL 6 (entry 5) acetone was used for dilution, for all the other enteries methanol was used  

From the above table, it is evident that melting points of these CILs are dependent on the anion 

size; the salts with larger anions exhibit lower melting points. This can be explained by the fact 

that with the increase in size, the ions are not closely packed in the lattice thus resulting in the 

decrease in melting point. The specific rotation values of all the CILs are found to be negative. In 

the 
1
H NMR spectra, the downfield signals in case of CIL 2 and 6 reveal the strong coordination 

of the chloride and bromoethanesulfonate ions with the cationic moieties. An upfield shift of 

0.71 and 0.62 ppm has been observed for -NCH2 protons when Cl
- 
ion was replaced with PF6

-
 

and BF4
-
 ions respectively. The almost similar trend was seen in the case of CF3SO3 and SbF6 

ions. This upfield effect has also been observed in case of the aromatic protons of the DMAP 

ring and the change in chemical shift is more marked in the case of the protons which are close 

to the positively charged nitrogen atom of the ring. The effect of various anions on chemical shift 

values is given in Table 2. The similar anion effects have also been reported in the literature 

[44]. 

 Table 2: Effect of various anions on chemical shift values
*
   

 

 

 

 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

11 
 

Entry CIL Anion NCH2 (C12) Ar-CH (C13, C14) Ar-CH (C15, C16) 

1 2 Cl
-
   5.57 (two d) 8.47 (d) 6.96 (d) 

2 3 BF4
-
 4.95 (s) 7.96 (d) 6.87 (d) 

3 4 PF6
-
 4.86 (s) 7.86 (d)     6.84 (d) 

4 5 CF3SO3
-
 5.02 (s) 8.06 (d) 6.90 (d) 

5 6 BrCH2CH2SO3
-
 5.84 (q) 8.23 (d) 6.93 (d) 

6 7 SbF6
-
 4.89 (s) 7.88 (d)             6.85 (d) 

*chemical shift values in ppm 

3.2 Application of the CILs in asymmetric reduction of prochiral ketones  

Our previous reports consist
 
of the use of the CILs in asymmetric sodium borohydride reduction 

of some prochiral substrates to the corresponding enantiopure alcohols [38-40]. Here, we have 

also employed CIL 2 in the reduction of some acetophenone derivatives (Scheme 2). 

 

 

Scheme 2: Synthesis of optically active alcohols from prochiral ketones using CIL 2 

For the reduction reaction, 1 equivalent of each substrate, 0.1 equivalent of CIL 2 and 1.5 

equivalent of sodium borohydride was added and the mixture was stirred at 35 
o
C. The optical 

purity  and percentage yields of the alcohols are mentioned in Table 3. 

Table 3: Various parameters for the reduction of ketones 

Entry Substrate Yield (%) Enantiomeric excess (%)* 

1 Acetophenone 76 Rac 

2 p-Cl Acetophenone 78 5 

3 p-Br Acetophenone 78 10 

4 p-OMe Acetophenone 75 13 

5 p-OH Acetophenone 72 17 

6 p-Me Acetophenone 69 4 

7 o-OH Acetophenone 72 8 

8 1-Indanone 74 100 
*ee values have been determined by GC analysis on a Rt-βDEXsm capillary column  

From the Table 3, one can find that all the substrates can be converted to the corresponding 

products in substantial yields. The enantiomeric excess in case of acetophenone, p-methyl 

acetophenone is very low. For 1-indanone, the enantiomeric excess is very high (100%). The 
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excellent enantiomeric excess in case of 1-indanone is probably due to the fact that; the carbonyl 

group in 1-indanone is presnt as a part of the ring system so the hydride attack is favourable from 

one side only. This favoured attack leads to higher enantiopurity of the corresponding secondary 

alcohol. The higher enantiomeric excess in case of 1-indanone can also be found in literature 

reports [36]. In all the other cases moderate enantiomeric excess has been achieved. As shown in 

Scheme 3, we have also proposed a mechanism for the formation of the optically active 

secondary alcohols. In the proposed transition state (TS), there is an interaction between 

borohydride anion and the quaternary nitrogen atom of the CIL. The hydride transfer from 

borohydride to the ketonic substrate and subsequent proton abstraction from the solvent yields 

secondary alcohols.  

 

 

 

 

 

 

 

Scheme 3: Plausible mechanism for the asymmetric reduction 

3.3 Application of the CIL 2 in Chiral Recognition by Mosher’s acid 

Inspired from the induction of chirality in sodium borohydride reduction; we have also employed 

the CIL 2 in the chiral molecular recognition of Mosher’s acid salt. To evaluate the chiral 

recognition properties of the synthesized CILs sodium salt of Mosher’s acid was used. The CILs 

were treated with Mosher’s acid salt to produce diastereomeric complexes. The chiral 
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recognition mechanism can be explained on the basis of three-point interaction model [45]. As 

depicted in the Fig. 1 the CILs show different interactions with the enantiomers of Mosher’s 

acid. There is greater possibility of the H-bonding with –CF3 group, in case of R enantiomer of 

the acid than the S enantiomer. The selective interactions of the two enantiomers with CILs leads 

to the recognition of the enantiomers. The splitting of the –OCH3 signal was found to be 12 Hz 

in case of CIL 2. The similar results for the splitting of the signal of the –OCH3 group of 

Mosher’s acid have also been reported by Heckel et al using nicotine based CILs [46].  

 

 

 

 

Fig. 1: Diastereomeric interactions between the two enatiomers of Mosher’s acid salt and CILs  

4. Conclusions 

To summarize, a number of DMAP based CILs have been synthesized in excellent yields under 

very mild conditions. These CILs have been fully characterized using polarimetry, 
1
H, 

13
C, 

11
B, 

31
P NMR and EI-MS techniques. The synthesized CIL was successfully employed for the chiral 

recognition of racemic Mosher’s acid salt through NMR spectroscopy. The CIL has also been 

utilised in the asymmetric reduction of some prochiral ketones using sodium borohydride as a 

hydrogen source. High yields and low to excellent enantiomeric excess has been obtained in the 

reduction of the prochiral ketones. 
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