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ABSTRACT: The catalytic performances of molecular and silica-
supported molybdenum oxo alkylidene species bearing anionic O
ligands [ORgy, OTPP, OHMT — where ORgy = OC(CF;);, OTPP
= 2,3,5,6-tetraphenylphenoxy, OHMT = hexamethylterphenoxy]
with different o-donation abilities and sizes are evaluated in the
metathesis of both internal and terminal olefins. Here, we show
that the presence of the anionic nonafluoro-tert-butoxy X ligand in
Mo(O){=CH-4-(MeO)C¢H,}(THF),{X}, (1; X = ORg)
significantly increases the catalytic performances in the metathesis
of both terminal and internal olefins. Its silica-supported equivalent
displays slightly lower activity, albeit with improved stability. In
sharp contrast, the molecular complexes with large aryloxy anionic
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X ligands show little activity, whereas the activity of the corresponding silica-supported systems is greatly improved, illustrating that
surface siloxy groups are significantly smaller anionic ligands. Of all of the systems, compound 1 stands out because of its unique
high activity for both terminal and internal olefins. Density functional theory modeling indicates that the ORg, ligand is ideal in this
series because of its weak o-donating ability, avoiding overstabilization of the metallacyclobutane intermediates while keeping low

barriers for [2 + 2] cycloaddition and turnstile isomerization.

Bl INTRODUCTION

Olefin metathesis has become a key reaction for the synthesis
of basic chemicals as well as complex molecular architectures
including polymers, growing in importance in both academia
and industry." Since its early mechanistic proposal,” con-
tinuous efforts have been directed at gaining a detailed
understanding of what makes specific metal alkylidenes good
for this catalytic reaction.” For instance, for early-transition-
metal (d°) metathesis catalysts that share a common structural
motif—(X)(Y)M(=CHR)E* (M = Mo or W, E = imido or
oxo ligand, and X and Y are anionic ligands)—each ligand has
a tremendous influence on the stability of the reaction
intermediates and the overall catalytic activity.”> In that
context, surface organometallic chemistry,le’6 in combination
with computational chemistry, has played a key role in the
identification and understanding of the effect of each ligand.”
In particular, these studies, complemented by molecular
chemistry, have shown that (i) the trigonal-bipyramidal
(TBP) isomer is a key intermediate in the metathesis pathway
while the square-pyramidal (SP) isomer is usually more stable
and corresponds to an off-cycle intermediate and (ii) the
anionic ligands play a major role in the stability of the TBP and
SP metallacyclobutane intermediates and, in turn, drive the
overall catalytic performance (Scheme 1A).° In that context,
W-based metathesis catalysts display typically poorer activity
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toward terminal olefin compared to their Mo analogues,
because of the significantly higher stability of the parent
metallacyclobutane formed from the ethylene byproduct.
Nonetheless, their performance, whether molecular or
supported, can in most cases be significantly improved by
introducing strong o-donating ligands like oxo,” thiolate,'® or
N-heterocyclic carbene (NHC).'' Even with molybdenum
alkylidenes, which are particularly efficient metathesis catalysts
for terminal olefins, their activity can also be dramatically
improved by replacing an imido with an oxo ligand (Schemes
1B and 2) or by introducing a NHC ligand in their cationic
form.

With the recent development of synthetic routes for several
molybdenum oxo p-methoxybenzylidene complexes Mo(O)-
{=CH'4'(MeO)C6H4}(THF)Z(ORF9)2 [1; ORg = OC-
(CF;);] and Mo(O){=CH-4-(MeO)CH,}(OTPP), (2;
OTPP = 2,3,5,6-tetraphenylphenoxy) (Scheme 1),'* we
investigate here the role of the X anionic ligand in metathesis
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Scheme 1. (A) Proposed Olefin Metathesis Mechanism for
d° Transition-Metal Catalysts and (B) General Structures of
(a) Molybdenum and Tungsten Imido Alkylidene Catalysts,
(b) Tungsten Oxo Alkylidene with a Thiolate Ancillary
Ligand, and (c) Tungsten Oxo and Molybdenum Imido
Alkylidenes with Strong 6-Donor NHC Ligands
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for molecular and silica-supported neutral molybdenum oxo
alkylidene complexes. We show that introducing a poor o-
donating and less sterically demanding ligand, namely, ORg,,
boosts the activity for the metathesis of both terminal and
internal olefins, surpassing previously reported systems.

Bl RESULTS AND DISCUSSION

Synthesis and Characterization of Silica-Supported
Catalysts. First, the silica-supported catalysts 1@SiO, and 2@

SiO, were prepared under an inert atmosphere by grafting
onto silica partially dehydroxylated at 700 °C (SiO,_5q) 1 and
2 with ORgy and OTPP anionic ligands, respectively (Scheme
2).

Quantification by elemental analysis showed a Mo loading of
0.24 and 0.17 mmol of Mo/g for 1@SiO, and 2@SiO,,
respectively, in agreement with solution NMR quantification of
the released alcohol/phenol after reaction with silica. In both
cases, IR spectroscopy shows that after grafting a large amount
of isolated silanols associated with the band at 3747 cm™" are
consumed, in accordance with surface anchoring via
protonolysis (Figures S11 and S14). For 2@SiO,, a broad
absorption band around 3500 cm™' can be observed,
corresponding to interaction of the bulky phenoxy ligand
with re51dual OH groups that are no longer accessible for
graftlng For 1@SiO,, this band is less prominent, in line
with the smaller footprint of complex 1, hence the observed
difference of metal loadings in the respective cases.
Furthermore, the band at 2842 cm™ indicates the presence
of at least one coordinated tetrahydrofuran (THF). 'H magic-
angle-spinning (MAS) NMR spectra of the silica-supported
complexes show the alkylidene proton resonances at 14 and 13
ppm for 1@SiO, and 2@SiO,, respectively, slightly downfield
with respect to the molecular precursor signals in solution
(13.7 and 11.8 ppm; Figures S8 and S12). The signal at 7.4
ppm can be assigned to protons of the phenyl moieties, and the
resonances at 2.6, 1.9, and 1.4 ppm for 2@SiO, can be
attributed to the interaction of organometallic fragments with
adjacent OH groups.” Similar signals can be seen for 1@SiO,
at 2.9 and 1.9 ppm. The "*C cross-polarization (CP) MAS
NMR spectrum of 1@SiO, shows the presence of aromatics,
the methoxy at 54 ppm as well as resonances at 25 and 75 ppm
associated with coordinated THF (Figure S9). Because the
solid-state '*C NMR spectrum did not show any signals from
the natural abundance, the 3C-enriched supported species of
the metathetically more active catalyst 1@SiO,, 1*@SiO,, was
prepared through metathesis of 1 with '*C-labeled 4-vinyl-
anisole followed by grafting on silica. As shown by 'H and *C
NMR (Figures S6 and S7), the labeled complex 1* is obtained
as a mixture of syn and anti isomers and corresponds to the
mono-THF adduct, as confirmed by X-ray crystallography (see
the Supporting Information for more details). Subsequent
grafting of 1* on SiO,_-y, was performed. The *C CP MAS
spectrum of 1*@SiO, shows the same signals as those detected
in 1@Si0, with an additional "*C resonance at 293 ppm from
the labeled alkylidene carbon, which exhibits several prominent
spinning sidebands consistent with a large chemical shift
anisotropy that is typical of molybdenum alkylidenes (Figure
$16)."* Solid-state '°’F NMR was also measured for 1@SiO,,
showing a single peak at —76.5 ppm associated with the
pendant ORg, ligand (Figure S10).

Catalytic Testing. The metathesis activity of both
molecular and supported complexes was evaluated in a
nitrogen filled glovebox using cis-4-nonene and 1-nonene as
prototypical substrates. The data, including these for Mo(O)-
{=CH-4-(MeO)C¢H,}(OHMT), (3; OHMT = hexamethyl-
terphenoxy) and 1ts supported analogue 3@SiO, that were
previously reported,'> are summarized in Table 1. Detailed
kinetic profiles can be found in the Supporting Information.

For cis-4-nonene, the molecular complex 1 reaches
equilibrium conversion within the first 3 min at 0.02 mol %
loading with an (under)estimated turnover frequency of 870
min~". As the catalyst loading is further lowered to 0.014 mol
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Table 1. Homometathesis of cis-4-Nonene and 1-Nonene (Toluene, 30 °C)

-1 ———
TOF; y,y min~" (conversion, %)

time to equilibrium/maximum conversion

catalyst mol % cis-4-nonene
1 0.1 170 (52)°

1 0.02 870 (52)°

1 0.014 250 (11)

1 0.01

2 0.1 1(<1)

3¢ 0.1 5 (1)
1@Si0, 0.1 170 (51)°
1@Si0, 0.02 725 (42—46)°
1@Si0, 0.014 680 (29)
1@Si0, 0.005 100 (1)
2@Si0, 0.1 170 (52)°
2@Si0, 0.02 350 (24)
3@Si0,” 0.1 120 (40)°
3@Si0," 0.02 300 (17)
3@Si0,? 0.014 410 (18)
3@Si0," 0.005 520 (8)

1-nonene cis-4-nonene 1-nonene
210 (62) 3 min 97% after 4 h
940 (58) 3 min 97% after 4 h
11% after 1 h
1270 (38) 50% after 4 h
30 (9) 4% after 1 h 62% after 4 h
<1 3% after 24 h 45% after 8 h
70 (22) 3 min 97% after 4 h
170 (10) 5—10 min® 73% after 8 h
10 min
41% after 9 h
40 (12) 3 min 98% after 6 h
70 (5) 30 min 95% after 8 h
75 (13) 10 min 98% after 8 h
1h
70 (4) 1h 97% after 24 h
45 (1) 28% after 24 h 63% after 24 h

“TOF at 3 min, given in min~', with the corresponding conversions given in parentheses. Equilibrium conversion is 50%. ’Maximum conversion is
100%. When full conversion was not reached, the maximum conversion measured after a given time is provided. “The TOF value is underestimated
given that the conversion is close to equilibrium. dPreviously reported results in ref 15. “Performed in duplicate and averaged.

Table 2. Relative Gibbs Free Energies and Reaction Enthalpies (kcal/mol) of Molecular and Grafted Oxo Alkylidene
Complexes with Respect to Separate Reactants (Methylidene and Ethylene)

catalyst TOF; ,, (0.1 mol %) for 1-nonene AG¢[2+2] (AH*[HZ])

1 210 8.12 (—6.25)
2 30 a
3 <1 a
1@Si0, 70 a
2@Si0, 40 a
3@Si0, 75 a

“Not calculated.

AGTBP (AHTBP) AG:*:tumstile (AH:ttumstile) AC;SP (AHSP)

—2.60 (—16.66) 8.38 (—6.45) —8.46 (—22.54)
2.06 (—11.40) a —11.23 (—22.67)
3.42 (—12.81) a —6.57 (—20.42)
axial siloxy —0.08 (—15.47) a —10.39 (—24.44)
equatorial siloxy —1.96 (—16.60)

—1.70 (—14.87) a —14.36 (—26.71)
—0.37 (—15.21) a —9.74 (—24.53)

%, the conversion is fast but stagnates at 11% because of
deactivation, as indicated by the substantially lower TOF; ;.
of 250 min™'. This sharply contrasts with the catalyst
performance of the molecular complex 2, which shows very
low activity at 0.1 mol % loading, reaching only 4% conversion
after 1 h. This parallels the low activity of the previously
reported dimesitylphenoxy analogue 3, which only reaches 3%
conversion after 24 h under the same conditions. This lack of
reactivity is likely associated with the presence of a large
aryloxy ligand that prevents the necessary distortion of the
metal complex to a trigonal prism to accommodate the
incoming olefin."> In fact, the corresponding silica-supported
systems 2@SiO, and 3@SiO, are far more active, reaching full
conversion and high TOF; ., at 0.02 mol % (equilibrium
conversion after 30 min and 1 h and TOF; ;, = 350 and 300
min~’, respectively). 1@SiO, displays unprecedented high
activity toward internal olefins for Mo, reaching TOF; ;, of
725 min~" at 0.02 mol % loading and thereby surpassing even
the highest value previously reported for grafted molybdenum
oxo complexes at significantly lower loading (TOF; ,.;, = 520
min~!, 0.005 mol %).” In comparison to the molecular
counterpart 1, the stability of 1@SiO, is also increased as the
catalyst remained active even at SO ppm loading (41%
conversion after 9 h).

For 1-nonene, the activity of the molecular complex 1
exceeds the activity toward internal olefins, reaching TOF; ;.

of 1270 min™! at a low loading of 0.01 mol %. Here again,
deactivation is observed as the conversion stagnates at 50%
after 4 h. Compared to the results of the homometathesis of
cis-4-nonene, the molecular complex 2 at 0.1 mol % loading is
more active toward the terminal olefin with TOF; ;, of 30
min~! but suffers from deactivation as well, as seen by a
conversion reaching only 62% after 4 h. The supported
catalysts 1@SiO, and 2@SiO, are both active at 0.02 mol %
loading, reaching TOF; ., values of 170 and 80 min',
respectively. 1@SiO, does not reach full conversion within 8 h
(73% conversion) because of deactivation. This parallels the
results observed for 3@SiO,, showing an activity similar to that
of 1@Si0, at high catalyst loadings (0.1 mol %, 75 vs 70
min~"); the catalyst also deactivates at lower loadings (0.014
mol %, TOF; ,;, = 70 min™"), reaching equilibrium conversion
only after 24 h.

Computational Analysis. Density functional theory
calculations (PBE/def2-TZVP//PBE0/def2-TZVP with SDD
effective core potential for Mo, ultrafine integration grid, and
GD3BJ empirical dispersion) were performed to gain further
insight into the origin of the molybdenum oxo alkylidene
metathesis catalytic activity. The relative stabilities of TBP and
SP unsubstituted metallacycles were assessed for all systems
because these key intermediates typically control the turnover
rates, in particular for the metathesis of terminal olefins where
ethylene is formed. The energies were calculated for both
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molecular and silica-supported molybdenum oxo alkylidenes
1-3 and 1-3@Si0, (see Table 2 and Figure S17 for details);
calculations for the silica-supported systems were carried out
by using (MeO);SiO as a simple model to interrogate the
electronic effects associated with a surface siloxy ligand. From
these data, it appears that the SP metallacycle, recognized as
the resting state intermediate of olefin metathesis, is always the
lower-energy metallacycle for all calculated complexes.
Regarding the TBP intermediates, their free energies are also
significantly lower than the energies of the separated reactants
for all calculated complexes with the exception of the
molecular complexes 2 and 3, where formation of the TBP
metallacycle is endergonic by ca. 2 or 3.5 kcal/mol,
respectively.

An ideal metathesis catalyst would have a close-to-neutral
free energy of formation for the TBP isomer (AGrgp ~ 0 keal/
mol) and a destabilized SP isomer, favoring metathesis over
formation of the off-cycle intermediate. The data presented in
Table 2 clearly indicate that compound 1 allows the formation
of not too stable TBP and SP metallacyclobutanes, while 2 and
3 are associated with the positive free energies of formation of
the key TBP intermediate, likely associated with a higher
barrier for [2 + 2] cycloaddition. In addition, while not
calculated, olefin coordination/cycloaddition in complexes 2
and 3 is likely not favorable because of the bulky aryloxide
ligands. In contrast, the silica-supported systems with the
significantly smaller and weak o-donating surface siloxy
ligand'**'® are associated with the formation of slightly more
stable TBP and SP metallacycles.

This could explain their higher activity with respect to the
corresponding molecular complexes 2 and 3. These calcu-
lations also highlight the specificity of compound 1, containing
two very weak o-donating ORgy ligands that do not stabilize
the metallacycles too much. For 1@SiO,, two TBP isomers can
be formed with the siloxy ligand in either the axial or equatorial
position. The free energy of the siloxy equatorial isomer is 2
kcal/mol lower compared to the siloxy axial isomer, high-
lighting the weak o-donor ability of ORgg that ends up trans to
the very strong o-donor oxo ligand. This may explain the lower
activity of 1@SiO, compared to 1. To better understand the
high activity of 1, we also evaluated the metathesis pathway.
While the olefin complex and associated transition state for
coordination could not be located, the [2 + 2] cycloaddition
and turnstile isomerization transition states have very similar
and quite low energies: AG¢[2+2] (AH¢[2+2J) = 8.12 (—6.25)
keal/mol and AG*, . (AH¥ i) = 8.38 (—6.45) keal/
mol. The combination of facile [2 + 2] cycloaddition/
cycloreversion and formation of not too stable metal-
lacyclobutanes is consistent with the high catalytic activity of
compound 1.

B CONCLUSIONS

Overall, this study further illustrates how subtle differences in
ligand substitution in Schrock alkylidenes can greatly influence
their metathesis activity, pointing out to the need to explore
this family of complexes in a more systematic fashion toward
the development of detailed structure—activity relationships.
This study also illustrates the uniqueness of silica, that enables
generated isolated metal sites bound to a weak o-donating and
rather small siloxy ligand.
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