

Letter

Silver Mediated Banert Cascade with Carbon Nucleophiles

Juliana R. Alexander, Paul V. Kevorkian, and Joseph J. Topczewski*

Cite This: Org. Lett. 2021, 23, 3227–3230

correlate to the reaction efficiency, which enabled the formation of $C_{sp}{}^{3}-C_{sp}{}^{2}$ and $C_{sp}{}^{3}-C_{sp}{}^{3}$ bonds under otherwise identical conditions from structurally dissimilar nucleophiles. The triazole heterocycle has been widely adopted as a key

molecular building block for a variety of synthetic applications including in drug discovery,^{1–4} medicinal chemistry,^{5–8} bioconjugation,^{9,10} and material science.^{11–13} Triazoles are small, polar, and stable *N*-heterocycles that can be used as a peptidomimetic,^{2,14,15} amide isostere,^{16,17} *N*-acetyl lysine mimic,^{7,8} or glycosyl surrogate.^{18–20} NH-triazoles contain a hydrogen bond donor, more closely resembling sugars and native amides, relative to *N*-substituted triazoles. NH-triazoles can adopt three N–H tautomeric structures, providing additional flexibility,²¹ and they have demonstrated utility in multiple contexts.^{22–26}

Forming NH-triazoles by CuAAC or RuAAC has been problematic from the standpoint of reactivity and safety.^{27–29} Thus, we focused on the Banert cascade of propargylic azides (Figure 1b).^{30–34} This process commences by either a sigmatropic or prototropic rearrangement,³⁵ resulting in an allenyl azide.^{35,36} The allenyl azide undergoes electrocyclization³⁷ to form a triazafulvene.³⁸ The triazafulvene will polymerize or can be intercepted by exogenous nucleophiles, including alcohols, water, amines, thiols, or azide anion.^{30,32,39,40} We were surprised by a lack of well documented reports utilizing carbon nucleophiles to terminate the Banert cascade.^{25,41} Presented herein are silver mediated conditions enabling the construction of carbon–carbon bonds α to the newly formed NH-triazole (Figure 1c).

This study began by screening model azide 1a with 2methylindole (2a), a representative indole of moderate nucleophilicity (*vide infra*). Small quantities of product 3a were observed upon heating to 60 °C (Table 1, entry 1). Attempts at optimizing this reaction in the absence of a catalyst were not fruitful (not shown). Silver salts are known to activate alkynes^{42,43} and allenes^{44,45} to cycloaddition reactions. Therefore, it was hypothesized that a silver salt may promote the reaction. The addition of AgNO₃ increased the yield of 3a (entry 2). A silver salt screen (entries 2–5 and Supporting Information) identified AgOTf as an excellent promoter (entry

NH-triazoles up to 92% yield

regioselective diverse nucleophile scope

Figure 1. Triazole isosterism and the Banert cascade.

4). A solvent screen indicated that nitrile solvents were optimal (entries 6-9). Decreasing the loading of AgOTf demonstrated that substoichiometric quantities of silver can catalyze the reaction (entries 10-12 vs entry 1), but did not further increase the yield of compound **3a** relative to entry 4. Increasing the silver loading did not increase the yield (entries 13 and 14). Adding more indole **2a** improved the yield (entries

Received: March 25, 2021 Published: April 2, 2021

Table 1. Optimization with Indole $2a^a$

F 1a			HN ^{-N} -N Me Me Baa		
entry	AgX	equiv of AgX	equiv 2a	solvent	% yield ^b
1	-	-	1	MeCN	23
2	$AgNO_3$	1	1	MeCN	50
3	$AgBF_4$	1	1	MeCN	55
4	AgOTf	1	1	MeCN	73
5	AgTFA	1	1	MeCN	47
6	AgOTf	1	1	CH_2Cl_2	-
7	AgOTf	1	1	THF	13
8	AgOTf	1	1	DMF	28
9	AgOTf	1	1	CH_3CH_2CN	61
10	AgOTf	0.1	1	MeCN	56
11	AgOTf	0.2	1	MeCN	60
12	AgOTf	0.5	1	MeCN	65
13	AgOTf	1.5	1	MeCN	70
14	AgOTf	2	1	MeCN	70
15	AgOTf	1	1.5	MeCN	81
16	AgOTf	1	2	MeCN	86
17	AgOTf	1	5	MeCN	77

^aReactions conducted with azide 1a (0.1 mmol) and 2-methylindole (2a) at 0.1 M in varying solvent at 60 °C. All yield values reflect the average of duplicate trials. ^bYield determined using calibrated GC-FID with naphthalene as an internal standard.

15–17). The conditions in entry 16 were taken as optimal. Under these conditions, only one triazole regioisomer was observed, originating from a sigmatropic rearrangement. The three N–H tautomers are dynamic on the NMR time scale.

The azide scope was investigated (Scheme 1). The model substrate 3a was isolated in 78% yield. Other azides containing an aryl group provided similar results (3b-3f). An *ortho* substituent did not impact the yield (3g). Various functional groups were tolerated (3h-3k). The pendent aryl ring was not required (3l-3m). The reaction also proceeded with primary (3n-3o), secondary (3p-3q), and tertiary (3r) azides.

The indole scope was investigated (Scheme 2). Indoles with various substituents worked well (4a-4e). Even potent withdrawing groups $(-NO_2)$ were tolerated (4f). A phenyl group at C-2 did not affect the reaction (4g). The indole present in cediranib worked (4h), and *N*-methylation was tolerated (4i).

It seemed prudent to expand the nucleophile scope. Since the product-forming step required nucleophilic attack (Figure 1), the Mayr table of nucleophilicity parameters (N) was consulted.⁴⁷ The model nucleophile **2a** has an N value of 6.91.⁴⁸ This is significantly higher than the value for indole (N = 5.55, **6a**, Scheme 3).⁴⁸ N-Methyl pyrrole (N = 5.85)⁴⁹ led to product **6b**, and imidazole (N = 11.47)⁵⁰ afforded product **6c**. Furan (N = 1.33)⁵¹ did not afford product. However, potassium 2-furanyl-trifluoroborate (N value = 5.99)⁵² did (**6d**) as did allyl tributylstannane (N = 5.46, **6e**),⁴⁹ 2methylallyltributylstannane (N = 7.48, **6f**),⁴⁹ and silyl-ketene acetal (N = 10.3, **6g**).⁵³ Taken together, these data expand the scope of participating nucleophile well beyond indoles and provide guidance on which untested nucleophiles would be likely to participate (N > 5.4).

In conclusion, the Banert cascade can be terminated by a wide array of carbon nucleophiles. The scope of both the azide

Scheme 1. Substrate Scope with Respect to Azide^a

"Yields are reported for isolated and purified products. Yield values reflect the average of duplicate trials.

Scheme 2. Substrate Scope for Indole^a

"Yields are reported for isolated and purified products. Yield values reflect the average of duplicate trials.

pubs.acs.org/OrgLett

Scheme 3. Scope of Other Nucleophiles and N Parameter^a

"Yields are reported for isolated and purified products. Yield values reflect the average of duplicate trials.

(1', 2', and 3'; α -aryl and α -alkyl) and nucleophile (N values range from 5.46 to 10.3, formation of $C_{sp}^3 - C_{sp}^2$ and $C_{sp}^3 - C_{sp}^3$ bonds) are quite broad under identical reaction conditions. Due to the well documented utility of 1,2,3-triazoles as amide isosteres, it is noteworthy that these products from this reaction feature side chains mapping onto native amino acids.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.1c01032.

Experimental procedures and spectral data (PDF)

AUTHOR INFORMATION

Corresponding Author

Joseph J. Topczewski – Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States; o orcid.org/0000-0002-9921-5102; Email: jtopczew@umn.edu

Authors

- Juliana R. Alexander Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
- **Paul V. Kevorkian** Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.1c01032

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R35GM124718. We also acknowledge NIH Shared Instrumentation Grant #S10OD011952.

REFERENCES

(1) Kalinin, D. V.; Jana, S. K.; Pfafenrot, M.; Chakrabarti, A.; Melesina, J.; Shaik, T. B.; Lancelot, J.; Pierce, R. J.; Sippl, W.; Romier, C.; Jung, M.; Holl, R. Structure-Based Design, Synthesis, and Biological Evaluation of Triazole-Based SmHDAC8 Inhibitors. *ChemMedChem* **2020**, *15* (7), 571–584.

(2) Kharb, R.; Sharma, P. C.; Yar, M. S. Pharmacological Significance of Triazole Scaffold. *J. Enzyme Inhib. Med. Chem.* **2011**, 26, 1–21.

(3) Mamidyala, S. K.; Finn, M. G. In Situ Click Chemistry: Probing the Binding Landscapes of Biological Molecules. *Chem. Soc. Rev.* **2010**, *39*, 1252–1261.

(4) Lewis, W. G.; Green, L. G.; Grynszpan, F.; Radić, Z.; Carlier, P. R.; Taylor, P.; Finn, M. G.; Sharpless, K. B. Click Chemistry In Situ: Acetylcholinesterase as a Reaction Vessel for the Selective Assembly of a Femtomolar Inhibitor from an Array of Building Blocks. *Angew. Chem., Int. Ed.* **2002**, *41*, 1053–1057.

(5) Dheer, D.; Singh, V.; Shankar, R. Medicinal Attributes of 1,2,3-Triazoles: Current Developments. *Bioorg. Chem.* **2017**, *71*, 30–54.

(6) Bonandi, E.; Christodoulou, M. S.; Fumagalli, G.; Perdicchia, D.; Rastelli, G.; Passarella, D. The 1,2,3-Triazole Ring as a Bioisostere in Medicinal Chemistry. *Drug Discovery Today* **201**7, *22*, 1572–1581.

(7) Divakaran, A.; Talluri, S. K.; Ayoub, A. M.; Mishra, N.; Cui, H.; Widen, J. C.; Berndt, N.; Zhu, J.-Y.; Carlson, A. S.; Topczewski, J. J.; Schönbrunn, E.; Harki, D. A.; Pomerantz, W. C. K. Molecular Basis for the N-Terminal Bromodomain and Extra Terminal (BET) Family Selectivity of a Dual Kinase-Bromodomain Inhibitor. *J. Med. Chem.* **2018**, *61*, 9316.

(8) Carlson, A. S.; Cui, H.; Divakaran, A.; Johnson, J. A.; Brunner, R. M.; Pomerantz, W. C. K.; Topczewski, J. J. Systematically Mitigating the P38 α Activity of Triazole-Based BET Inhibitors. *ACS Med. Chem. Lett.* **2019**, *10*, 1296–1301.

(9) McKay, C. S.; Finn, M. G. Click Chemistry in Complex Mixtures: Bioorthogonal Bioconjugation. *Chem. Biol.* 2014, 21, 1075–1101.

(10) Hong, V.; Presolski, S. I.; Ma, C.; Finn, M. G. Analysis and Optimization of Copper-Catalyzed Azide–Alkyne Cycloaddition for Bioconjugation. *Angew. Chem., Int. Ed.* **2009**, *48*, 9879–9883.

(11) Huo, J.; Hu, H.; Zhang, M.; Hu, X.; Chen, M.; Chen, D.; Liu, J.; Xiao, G.; Wang, Y.; Wen, Z. A Mini Review of the Synthesis of Poly-1,2,3-Triazole-Based Functional Materials. *RSC Adv.* **2017**, *7*, 2281–2287.

(12) Binder, W. H.; Sachsenhofer, R. 'Click' Chemistry in Polymer and Material Science: An Update. *Macromol. Rapid Commun.* 2008, 29, 952–981.

(13) Juríček, M.; Kouwer, P. H. J.; Rowan, A. E. Triazole: A Unique Building Block for the Construction of Functional Materials. *Chem. Commun.* **2011**, *47*, 8740–8749.

(14) Agalave, S. G.; Maujan, S. R.; Pore, V. S. Click Chemistry: 1,2,3-Triazoles as Pharmacophores. *Chem. - Asian J.* **2011**, *6*, 2696–2718.

(15) Pedersen, D. S.; Abell, A. 1,2,3-Triazoles in Peptidomimetic Chemistry. Eur. J. Org. Chem. 2011, 2011, 2399-2411.

(16) Johansson, J. R.; Beke-Somfai, T.; Stålsmeden, A. S.; Kann, N. Ruthenium-Catalyzed Azide Alkyne Cycloaddition Reaction: Scope, Mechanism, and Applications. *Chem. Rev.* 2016, *116*, 14726–14768.
(17) Bachl, J.; Mayr, J.; Sayago, F. J.; Cativiela, C.; Díaz Díaz, D. Amide–Triazole Isosteric Substitution for Tuning Self-Assembly and

Amide–Triazole Isosteric Substitution for Tuning Self-Assembly and Incorporating New Functions into Soft Supramolecular Materials. *Chem. Commun.* **2015**, *51*, 5294–5297.

(18) Moses, J. E.; Moorhouse, A. D. The Growing Applications of Click Chemistry. *Chem. Soc. Rev.* **2007**, *36*, 1249–1262.

(19) Zhou, C.-H.; Wang, Y. Recent Researches in Triazole Compounds as Medicinal Drugs. *Curr. Med. Chem.* **2012**, *19*, 239–280.

(20) Meldal, M.; Tornøe, C. W. Cu-Catalyzed Azide–Alkyne Cycloaddition. *Chem. Rev.* 2008, 108, 2952–3015.

(21) Albert, A.; Taylor, P. J. The Tautomerism of 1,2,3-Triazole in Aqueous Solution. J. Chem. Soc., Perkin Trans. 2 1989, 1903–1905.

(22) Harrison, T.; Owens, A. P.; Williams, B. J.; Swain, C. J.; Williams, A.; Carlson, E. J.; Rycroft, W.; Tattersall, F. D.; Cascieri, M. A.; Chicchi, G. G.; Sadowski, S.; Rupniak, N. M. J.; Hargreaves, R. J. An Orally Active, Water-Soluble Neurokinin-1 Receptor Antagonist Suitable for Both Intravenous and Oral Clinical Administration. *J. Med. Chem.* **2001**, *44*, 4296–4299.

(23) Panda, S.; Pradhan, N.; Chatterjee, S.; Morla, S.; Saha, A.; Roy, A.; Kumar, S.; Bhattacharyya, A.; Manna, D. 4,5-Disubstituted 1,2,3-Triazoles: Effective Inhibition of Indoleamine 2,3-Dioxygenase 1 Enzyme Regulates T Cell Activity and Mitigates Tumor Growth. *Sci. Rep.* **2019**, *9*, 18455.

(24) Kallander, L. S.; Lu, Q.; Chen, W.; Tomaszek, T.; Yang, G.; Tew, D.; Meek, T. D.; Hofmann, G. A.; Schulz-Pritchard, C. K.; Smith, W. W.; Janson, C. A.; Ryan, M. D.; Zhang, G. F.; Johanson, K. O.; Kirkpatrick, R. B.; Ho, T. F.; Fisher, P. W.; Mattern, M. R.; Johnson, R. K.; Hansbury, M. J.; Winkler, J. D.; Ward, K. W.; Veber, D. F.; Thompson, S. K. 4-Aryl-1,2,3-Triazole: A Novel Template for a Reversible Methionine Aminopeptidase 2 Inhibitor, Optimized to Inhibit Angiogenesis in Vivo. J. Med. Chem. **2005**, 48, 5644–5647.

(25) Weide, T.; Saldanha, S. A.; Minond, D.; Spicer, T. P.; Fotsing, J. R.; Spaargaren, M.; Frère, J. M.; Bebrone, C.; Sharpless, K. B.; Hodder, P. S.; Fokin, V. V. NH-1,2,3-Triazole Inhibitors of the VIM-2 Metallo- β -Lactamase. ACS Med. Chem. Lett. **2010**, 1 (4), 150–154.

(26) Koszytkowska-Stawińska, M.; Sas, W. Synthesis of Novel NH-1,2,3-Triazolo-Nucleosides by the Banert Cascade Reaction. *Tetrahedron* **2013**, *69*, 2619–2627.

(27) Amantini, D.; Fringuelli, F.; Piermatti, O.; Pizzo, F.; Zunino, E.; Vaccaro, L. Synthesis of 4-Aryl-1H-1,2,3-Triazoles through TBAF-Catalyzed [3 + 2] Cycloaddition of 2-Aryl-1-Nitroethenes with TMSN3 under Solvent-Free Conditions. *J. Org. Chem.* **2005**, *70*, 6526–6529.

(28) Gutmann, B.; Obermayer, D.; Roduit, J. P.; Roberge, D. M.; Kappe, C. O. Safe Generation and Synthetic Utilization of Hydrazoic Acid in a Continuous Flow Reactor. *J. Flow Chem.* **2012**, *2* (1), 8–19.

(29) Yap, A. H.; Weinreb, S. M. β -Tosylethylazide: A Useful Synthon for Preparation of N-Protected 1,2,3-Triazoles via Click Chemistry. *Tetrahedron Lett.* **2006**, 47 (18), 3035–3038.

(30) Brase, S.; Banert, K. Organic Azides: Synthesis and Applications; John Wiley and Sons: Chichester, 2010.

(31) Bräse, S.; Banert, K. Organic Azides: Syntheses and Applications. In *Organic Azides: Synthesis and Applications*; John Wiley & Sons, Ltd, 2010; p 507. DOI: 10.1002/9780470682517.fmatter.

(32) Banert, K. Reactions of Unsaturated Azides, 6. Synthesis of 1,2,3-Triazoles from Propargyl Azides by Rearrangement of the Azido Group. – Indication of Short-Lived Allenyl Azides and Triazafulvenes. *Chem. Ber.* **1989**, *122*, 911–918.

(33) Banert, K. Basenkatalysierte Bildung von Allenylaziden Aus Propargylaziden: Neue Synthesen Fur 1,2,3-Triazole. *Chem. Ber.* **1989**, 122, 1963–1967.

(34) Banert, K. Functionalized Allenes: Generation by Sigmatropic Rearrangement and Application in Heterocyclic Chemistry. *Curr. Org. Chem.* **2020**, *23*, 3040–3063.

(35) Alexander, J. R.; Packard, M. H.; Hildebrandt, A. M.; Ott, A. A.; Topczewski, J. J. Divergent Mechanisms of the Banert Cascade with Propargyl Azides. J. Org. Chem. **2020**, *85*, 3174–3181.

(36) Banert, K.; Hagedorn, M. First Isolation of Allenyl Azides. Angew. Chem., Int. Ed. Engl. 1989, 28, 1675–1676.

(37) Bhattacharyya, S.; Hatua, K. Theoretical Investigation of Banert Cascade Reaction. *R. Soc. Open Sci.* **2018**, *5*, 171075.

(38) Fotsing, J. R.; Banert, K. First Propargyl Azides Bearing Strong Acceptor Substituents and Their Effective Conversion into Allenyl Azides: Influence of the Electronic Effects of Substituents on the Reactivity of Propargyl Azides. *Eur. J. Org. Chem.* **2005**, 2005, 3704–3714.

(39) Banert, K.; Hagedorn, M.; Hemeltjen, C.; Ihle, A.; Weigand, K.; Priebe, H. Synthesis of N-Unsubstituted 1,2,3-Triazoles via a Cascade Including Propargyl Azides, Allenyl Azides, and Triazafulvenes. *ARKIVOC* **2017**, 2016, 338–361.

(40) Loren, J. C.; Sharpless, K. B. The Banert Cascade: A Synthetic Sequence to Polyfunctional NH-1,2,3-Triazoles. *Synthesis* **2005**, 2005, 1514–1520.

(41) Fotsing, J. R.; Sharpless, K. B.; Fokin, V. V. Carbon-Carbon Bond Formation by the Banert Cascade. 41st West. Reg. Meet. Am. Chem. Soc. San Diego, CA, United States, Oct. 9–13 2007.

(42) Fang, G.; Bi, X. Silver-Catalysed Reactions of Alkynes: Recent Advances. *Chem. Soc. Rev.* 2015, 44, 8124.

(43) Sivaguru, P.; Cao, S.; Babu, K. R.; Bi, X. Silver-Catalyzed Activation of Terminal Alkynes for Synthesizing Nitrogen-Containing Molecules. *Acc. Chem. Res.* **2020**, *53*, 662–675.

(44) Tata, R. R.; Harmata, M. Silver-Catalyzed Cyclization of Sulfonyl Allenes to Dihydrofurans. *Org. Lett.* **2016**, *18* (21), 5684–5687.

(45) Tata, R. R.; Fu, C.; Kelley, S. P.; Harmata, M. Synthesis of 3-(Arylsulfonyl)-3-Pyrrolines from Allenyl Sulfonamides by Silver Ion Catalysis. Org. Lett. 2018, 20, 5723–5726.

(46) Tyrra, W. Silver(I) Fluoride and Related Compounds in Chemical Synthesis. *Heteroat. Chem.* **2002**, *13* (6), 561–566.

(47) Mayr, H.; Ofial, A. R. Do General Nucleophilicity Scales Exist? J. Phys. Org. Chem. 2008, 21, 584–595.

(48) Lakhdar, S.; Westermaier, M.; Terrier, F.; Goumont, R.; Boubaker, T.; Ofial, A. R.; Mayr, H. Nucleophilic Reactivities of Indoles. J. Org. Chem. 2006, 71, 9088–9095.

(49) Mayr, H.; Bug, T.; Gotta, M. F.; Hering, N.; Irrgang, B.; Janker, B.; Kempf, B.; Loos, R.; Ofial, A. R.; Remennikov, G.; Schimmel, H. Reference Scales for the Characterization of Cationic Electrophiles and Neutral Nucleophiles. *J. Am. Chem. Soc.* **2001**, *123*, 9500–9512.

(50) Baidya, M.; Brotzel, F.; Mayr, H. Nucleophilicities and Lewis Basicities of Imidazoles, Benzimidazoles, and Benzotriazoles. *Org. Biomol. Chem.* **2010**, *8*, 1929–1935.

(51) Ammer, J.; Nolte, C.; Mayr, H. Free Energy Relationships for Reactions of Substituted Benzhydrylium Ions: From Enthalpy over Entropy to Diffusion Control. *J. Am. Chem. Soc.* **2012**, *134*, 13902–13911.

(52) Berionni, G.; Morozova, V.; Heininger, M.; Mayer, P.; Knochel, P.; Mayr, H. Electrophilic Aromatic Substitutions of Aryltrifluoroborates with Retention of the BF3– Group: Quantification of the Activating and Directing Effects of the Trifluoroborate Group. J. Am. Chem. Soc. 2013, 135, 6317–6324.

(53) Tokuyasu, T.; Mayr, H. Nucleophilic Reactivities of Ketene Acetals. *Eur. J. Org. Chem.* **2004**, 2004, 2791–2796.