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A B S T R A C T   

A benzimidazole derivative ligand (L1) and its corresponding transition metal complexes ML1Cl2 (M = Cu (1), Co 
(2)) have been synthesized and characterized by a combination of X-ray crystallography, PXRD, electrochem
istry, spectral (IR, UV–vis) techniques and DFT calculations. The electrocatalytic activity of the two complexes 
for CO2 reduction was investigated without and with proton source. Bulk electrolysis of the two compounds 
demonstrates that there is a competition between CO2 and H+ reduction during the electrocatalytic process, 
leading to a low Faradaic efficiency for CO evolution but a high FE for H2 evolution. The reason of the serious 
competition reaction of hydrogen generation in the process of catalytic CO2 reduction have been investigated. 
Studies show that the catalytic effect could be due to a synergy effect between the redox active ligand L1 and 
metal ions (Cu (II) (1) and Co (II) (2)), while the formation of hydride complex [M(I)L1•¡H•¡]1- might be the 
crux in the selectivity between CO2 reduction and H2 evolution, and the process of electrocatalytic reduction of 
CO2 could have promoted H+ reduction.   

1. Introduction 

The release of carbon dioxide (CO2) by burning unprecedented 
amount of fossil fuels to meet the growing energy demand has caused an 
ever-increasing emission of anthropogenic CO2 into the atmosphere, 
[1–3] which further leads to series of negative consequences such as 
global climate change, and eventually disorganizing the earth’s 
ecosystem.[4,5] Therefore, searching for new, green, and sustainable 
energy sources such as H2 to replace traditional fossil fuels is an urgent 
issue of worldwide concern. On the other side, CO2 is an ideal C1 
feedstock, which can be converted into energy-rich compounds[6] such 
as carbon monoxide, formic acid, methanol, etc. However, due to the 
thermodynamic and kinetic reasons, there are still many obstacles for 
the conversion of CO2 and H2 evolutions.[7–9] Accordingly, the explo
ration of economical and practical catalysts like non-noble transition 
metal complexes characteristic with high catalytic efficiency, selectivity 
and stability, has attracted large amounts of researcher’s interests.[10] 
Electrochemical and photochemical catalysis are promising ways for 
CO2 reduction and H2 evolution among many strategies.[11,12]How
ever, compared with photocatalytic method, electrocatalysis is a great 

indirect way to utilize the clean energy such as solar energy, wind en
ergy, and nuclear energy, which can greatly broaden the use of renew
able energy.[13] In recent years, a number of non-noble transition metal 
complexes with excellent electrocatalytic performance have been re
ported as CO2 reduction or H2 evolution catalysts.[14–19] 

In the process of electrocatalytic CO2 reduction reaction (eCO2RR), 
the parallel competing reaction of H2 evolution is usually a critical issue. 
[20] Therefore, several efforts have devoted to figure out the competi
tion between CO2 reduction and H+ reduction which is very significant 
for promoting electrocatalytic CO2 reduction.[21–23] Peters reported a 
CoIII electrocatalyst coordinated by a tetradentate N4 ligand which is 
possibly the key for the preferential reduction of CO2 over H2 evolution. 
[24,25] Trovitch and Jones et al. illustrated that during the electro
catalytic CO2 reduction by a manganese complex [(PDI)Mn(CO)]+ (PDI 
= 2,6-bis(4- methoxyphenylmethylimine)pyridine), H2 evolution can be 
enhanced by CO2 , which could produce proton source in the formation 
of carbonic acid,[26] while, two [Ni(pdi)]2+ catalysts studied by 
Rochford and Groysman may have the similar behaviors with the Mn(I) 
complex.[17] 

It is well known that redox active and electron-rich benzimidazole 
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derivatives has excellent biological properties,[27–30] and Tamaki et al 
found that benzimidazole derivative (1,3-dimethyl-2-phenyl-2,3-dihy
dro-1H-benzo[d]imidazole, BIH) was a very suitable electron donor in 
photocatalytic reduction of carbon dioxide.[31]Additionally, benz
imidazole derivatives transition metal complexes have also been 
extensively studied due to their excellent properties.[32,33] Such as 
benzimidazole-based imine-linked copper complexes have a selectivity 
in the detection of cyproheptadine and thiabendazole drug mole
cules.[15a] Benzimidazole derivatives have displayed superior antimi
crobial activity[34] and acted as anti-inflammatory agents,[35] etc. On 
the one hand, Benzimidazoles have been previously identified as 
promising hydride donors[36–39] due to their characteristic confor
mation and an anomeric effect.[40] On the other hand, it can be widely 
used as N–N chelating ligands, analogous in many ways to bipyridine. 
[41] However, very few of them have been investigated as CO2 reduc
tion catalysts.[42,43] 

For the reasons above, in this work, we have successfully synthesized 
and crystallized a new benzimidazole derivative ligand 2-(6-methox
ypyridin-2-yl)-1-((6-methoxypyridin-2-yl)methyl)-6-nitro-1H-benzo[d] 
imidazole (L1) and two transition metal complexes ML1Cl2 (M = Cu (1), 
Co (2)) containing ligand L1 with distorted tetrahedral geometry, and 
systematically explored their electrochemical behaviors. Both of the two 
complexes display electrocatalytic reactivity for CO2 reduction along 
with H2 evolution. Coupled with DFT calculations the probable mech
anism of electrocatalytic CO2 reduction competing with H2 evolution for 
the two compounds were also interpreted. 

2. Results and discussion 

2.1. Synthesis 

The synthesis routes of the ligand L1 and the two complexes 1 and 2 
are shown in Scheme 1. Herein, the novel benzimidazole derivative 
ligand was prepared by 4-nitro-o-phenylenediamine and 6-methoxypyr
idine-2-carboxaldehyde in a molar ratio of 1: 2 in good yield (44%). As 
the proposed mechanism for the synthesis of ligand L1 depicted in 
Scheme S1, the overall reaction takes place in two steps: at first, two 
amino groups on 4-nitro-o-phenylendiamine react with two aldehyde 
groups on two 6-methoxypyridine-2-carboxaldehydes proceeding 

through a condensation reaction to form one bis-Schiff base, and then 
intramolecular redox reaction occurs, leading to the formation of 
benzimidazole geometry which is a thermodynamically stable structure. 
The two novel complexes CuL1Cl2 (1) and CoL1Cl2 (2) were both pre
pared with benzimidazole derivative L1 and transition metal chlorides, 
CuCl2⋅2H2O and CoCl2, respectively, but under different reaction 
conditions. 

In the synthesis of complex 1, a mixture of dichloromethane and 
methanol as the reaction solvent and room temperature are required. 
But for complex 2 is isolated in acetonitrile solution and under high 
temperature. The purity of the as-synthesized L1 is verified by its crystal 
structure (Fig. 1) and NMR spectrum (Figure S1), while compounds 1 
and 2 were verified by comparing their theoretical and experimental 
powder X-ray diffraction (PXRD) patterns (Figure S2). For the two 
compounds, the peak positions of the diffraction in both patterns are all 
in good agreement, which confirms that the crystalline phases of all the 
as-prepared samples are all uniform. 

Scheme 1. Synthesis routes of ligand L1 and complexes 1 and 2.  

Fig. 1. Crystal structures of ligand L1 (a), complexes 1 (b) and 2 (c), all at 50% 
probability ellipsoids. Color code: blue, N; red, O; gray, C; green, Cl; cyan, Cu; 
magenta, Co. Hydrogen atoms have been omitted for clarity of the scan rate. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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2.2. Crystal structure determinations of the ligand L1 and complexes 1 
and 2 

A summary of the main crystallographic information of L1, 1 and 2 is 
given in Table S1. The selected bond lengths of 1 and 2 are listed in 
Table 1. Single crystal structures of L1, 1 and 2 were shown in Fig. 1. 

Crystallographic structural analysis reveals that the ligand L1 crys
tallizes in the triclinic crystal system and space group P-1(2). In the large 
conjugated structure, the pyridine ring containing N1 is perpendicular 
to the plane formed by benzimidazole and the other pyridine ring con
taining N2, which is very conducive for the transfer of electrons within 
the molecule. 

Crystallographic structural analysis reveals that complexes 1 and 2 
crystallize in the triclinic P-1(2) and monoclinic P-1–21/n-(14) space 
group, respectively. The center transition metal ions (Cu (II) and Co (II)) 
in 1 and 2 are both four coordinated with two N atoms (N1 and N2) from 
the ligand L1 and two chloride ions (Cl1 and Cl2) to form distorted 
tetrahedral geometry. The bond lengths Cu–N, Cu–Cl, and Co–N, Co–Cl 
are comparable to those of the other reported tetrahedral Cu (II) [44,45] 
and Co (II) complexes. [46,47] 

2.3. IR and UV–Vis spectra 

As shown in Figure S3, the FT-IR spectra of complexes (1 and 2) and 
the free ligand L1 were investigated. It can be found that the IR spectra of 
complexes 1 and 2 are very close to ligand L1, especially in the range of 
1200–700 cm− 1. However, the strong band at 1471 cm− 1 for ligand L1 is 
assigned to the stretching vibration corresponding to υ(C––N) in benz
imidazole,[48] which increase to 1489 cm− 1 in complex 1 and 1486 
cm− 1 in complex 2. The υ(C––N) band undergoes a blueshift in the 
spectra of the two complexes as compared to free ligand L1, which can be 
attributed to the coordination of the benzimidazole nitrogen to the 
metal center.[49,50] The most important bands which appeared in the 
429 cm− 1 for complex 1 and 431 cm− 1 for complex 2 belong to the 
stretching vibration peak of υ(M-N) coordination bond,[51] confirming 
that the complexes formation and representing further evidence for the 
coordination of the ligands through nitrogen atoms. 

The UV–vis spectra of the complexes (1 and 2) and the free ligand L1 

were collected at room temperature in DMF. As depicted in Figure S4, 
Complex 1 is light yellow and complex 2 is light blue in color and both of 
them have two bands: one in the UV region (1: 322 nm, and 2: 320 nm) 
and one in the visible region (1: 402 nm, and 2: 403 nm), while ligand L1 

is colorless and only exhibits two major peaks in the UV region at 313 
nm (π-π*) and 343 nm (n-π*). Upon the coordination with metal ions (Cu 
(II) (1) and Co (II) (2)), both the absorption intensities at 313 nm and 
343 nm are enhanced, which indicates the formation of the L-Cu2+ or L- 
Co2+ complexes[52]. 

In order to explore the formation of complexes in DMF solutions, we 
have synthesized complexes ML2 (M = Cu (3), Co (4)) and analyzed the 
complexes by UV–vis. The ligand-to-metal molar ratios used in the ex
periments were 2:1 for ligand with M = Cu(II) (3) or Cu(II) (4). 
Compared with complexes 1 and 2, the UV–vis spectra of complexes 3 
and 4 have one band redshift (3: 338 nm; 4: 353 nm) and one band 
blueshift(3: 368 nm; 4: 387 nm), indicating that complexes 1 and 2 
bound by only one imidazole ligand in DMF solution. 

2.4. Electrochemistry under argon saturation 

The cyclic voltammograms (CVs) for the ligand L1 obtained in 0.1 M 
nBu4NPF6/DMF solution under argon (Ar) at different scan rates are 
presented in Fig. 2a. Overall, the voltammograms consist of one irre
versible reduction peak at the potential of − 0.96 V and one qusai- 
reversible reduction peak at the potential of − 1.42 V versus Fc+/0. (all 
the potentials are versus Ferrocene due to the DMF solvent), which could 
be assigned to the continuously reduction of L1 affording two radical 
anions [L1•]− and [L1••]2− . Thus, it can be postulated that the large 
π-system of benzimidazole unit of L1 enables multiple-electron transfer 
as other π-acidic ligand [53–56] bipyridine, terpyridine, diamine, etc. 
Fig. 3 and Fig. 4 show the cyclic voltammogram (CV) plots of complexes 
1 and 2 recorded in DMF solution under Ar. These two complexes exhibit 
similar electrochemical behavior based on the data summarized in 
Table 2. 

In general, the two complexes display both ligand-based and metal- 
based redox processes. The first two reduction processes occur at about 
− 0.97 V, − 1.55 V, and − 0.98 V, − 1.72 V for complexes 1 and 2, 
respectively, which could be due to the reduction of the benzimidazole 
ligand L1 by comparing the reduction potentials of the ligand itself. The 
results are also consistent with the DFT analysis, that the LUMOs (lowest 
unoccupied molecular orbital) for complexes 1 and 2 are primarily 
based on ligand L1 (Fig. 5, the whole frontier molecular orbital surfaces 
of 1 and 2 are illustrated in Figure S5, Tables S2 and S3). 

While the third and fourth reductions at about − 1.97 V and − 2.06 V 
for complex 1 should be Cu localized, which could be assigned to suc
cessive reductions of CuII to CuI and CuI to Cu0, respectively. Whereas, 
the third reduction potential at about − 2.16 V for complex 2 could be 

Table 1 
The selected bond length (Å) for complexes 1 and 2.  

1  2  

Cu (1)-N (1) 2.051(2) Co (1)-N (1) 2.079(3) 
Cu (1)-N (2) 1.968(2) Co (1)-N (2) 2.015(4) 
Cu (1)-Cl (1) 2.209(8) Co (1)-Cl (1) 2.230(13) 
Cu (1)-Cl (2) 2.204(8) Co (1)-Cl (2) 2.211(14)  

Fig. 2. (a) Cyclic voltammetry of 2.5 mM ligand L1 under 1 atm Ar at scan rate 
range from 50 to 400 mV s− 1; (b) The linear plots of peak cathodic currents 
versus the square root. 
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ascribed to CoII/CoI couple. These ligand and metal centered reduction 
assignments are well in agreement with other transition metal com
plexes with redox-active ligands. [57–59] As Fig. 2b, 3b and 4b indi
cated, the fitting curves of cathodic peak currents at varies scan rates for 
L1, 1 and 2 all increase linearly versus the square root of the scan rate, 
illustrating that the currents are controlled by diffusion of the com
pounds to the surface of the working electrode. 

2.5. Study on electrocatalytic reduction in the presence of CO2 

The electrocatalytic activity of complexes 1 and 2 was investigated 
for the reduction of CO2 under Ar and saturated CO2 at different scan 
rate. To intuitive display the better electrochemical performance under 
CO2 than under Ar atmosphere, only the CVs with scan rate of 100 mV 
s− 1 been displayed. 

Fig. 6a and 6b illustrate a comparison of the CVs of 1 and 2 in the 
presence and absence of CO2, respectively, showing that upon bubbling 
CO2, both compounds 1 and 2 display two reduction peaks with close 
potential values at − 1.0 V, − 2.06 V vs. Fc+/0, and − 1.03 V, − 2.17 V vs. 
Fc+/0 (the scaning rate is 100 mV/s), respectively, which suggests that 
the two complexes exhibit similar process for the electrochemical 
reduction of CO2. Notably, the cathodic peak currents were observed 
largely enhanced at the two electrons transfer redox potentials for both 
of the two complexes. As shown in Figure S6, compared with L1, CuCl2, 
CoCl、2 with and without HAc in the DMF solution, complexes 1 and 2 
with the addition of HAc showed largely enhanced currents under the 
same conditions, suggesting that it’s the complex that plays a catalytic 
role in the electrocatalytical process. Nonetheless, by employing control 

potential electrolysis (CPE) experiments, at the two potentials of the two 
complexes, namely E = -1.0 V, − 2.06 V for complex 1, and E = -1.03 V, 
E = -2.17 V for complex 2, only at the latter potentials of the two 
complexes, CO and H2 were detected by GC analysis (Due to the pres
ence of residual water in DMF, the residual water in unopened DMF 
solution determined by Karl-fisher titration is 3.32‰. nBu4NPF6 and on 

Fig. 3. (a) Cyclic voltammetry of 2.5 mM complex 1 under 1 atm Ar at scan 
rate range from 50 to 400 mV s− 1; (b) The linear plots of peak cathodic currents 
versus the square root of the scan rate. 

Fig. 4. (a) Cyclic voltammetry of 2.5 mM complex 2 under 1 atm Ar at scan 
rate range from 100 to 600 mV s− 1; (b) The linear plots of peak cathodic cur
rents versus the square root of the scan rate. 

Table 2 
The reduction potentials of complexes 1 and 2 and ligand L1 under 1 atm Ar at 
100 mV s− 1 in a 0.1 M nBu4NPF6 DMF supporting electrolyte.   

1st 2nd 3rd 4th 

Complex 1 − 0.97 − 1.55 − 1.97 − 2.11 
Complex 2 − 0.98 − 1.72 − 2.17 – 
Ligand L1 − 0.96 − 1.42 – –  

Fig. 5. LUMO of complexes 1 (a) and 2 (b) (iso value = 0.02).  
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the glass of the cell which can hardly removed, H2 also evolved at the 
cathode along with CO formation[6].), which suggest that only the latter 
reduction wave of the two complexes is correspond to the electro
catalytic reduction of CO2 or the evolution of H2. In addition, the cyclic 
voltammetry experiments for complexes 1 and 2 under saturated carbon 
dioxide atmosphere in DMF solution were also recorded at different scan 
rates shown in Figure S7. It can be found that all the CV plots at different 
scan rates repeated well with no evolution of new oxidative or the 
reductive waves, which assures the reproducibility and stability of 
complexes 1 and 2 for electrocatalytic CO2 reduction. Meanwhile, the 
relationship between concentrations of the complex and the catalytic 
current peaks were also investigated (Figure S8), which reveals that the 
catalytic currents at the cathode potentials − 2.06 V (for complex 1) and 
− 2.17 V (for complex 2) both have linear dependence relationship with 
catalyst concentrations, proving that the rate determining step in the 
catalysis is the first order. 

To further explore the electrocatalytic ability of CO2 reduction for 
the two complexes, a series of CPE experiments were recorded for 3 h in 
DMF solution with 0.1 M nBu4NPF6 under saturated CO2 using a fluorine 
doped tin oxide (FTO) glass with a surface-area of 1.0 cm2 as the 
working electrode in a gas-tight cell, meanwhile, the gaseous products in 
the headspace of the electrochemical cell was analyzed by gas chro
matography (GC). 

As depicted in Fig. 7 by the black line, the current densities are very 
small at the potentials of − 2.06 V without complexes 1 or 2 during the 
electrolysis, and there was barely any CO or H2 detected, which reveals 

that no catalysis occurred. In addition, rinse tests were performed on the 
FTO glass electrode after electrocatalysis for complexes 1 and 2, which 
reveals that the current densities are similar with results of the blank test 
before the catalysis, indicating that the two complexes are both great 
homogeneous catalysts (Fig. 7, the red and olive lines). X-ray photo
electron spectroscopy (XPS) confirmed that there have been no metal- 
oxide formed after the whole electrolysis (Figure S9, ESI), which 
revealed that the two complexes are both quite stable during the 3 h 
electrolysis. The almost linear curves of the CPE indicate that catalysts 1 
and 2 remain stable in solution during the whole catalytic process 
(Fig. 7). By comparing the scanning electron microscopy (SEM) of FTO 
electrodes before and after CPE of complexes 1 and 2, it is found that 
there is no film electrodeposited on the glass electrode (Figure S10, ESI). 
Besides, the in situ UV–vis spectroelectrochemistry was performed 
during the controlled potential electrolysis (Figure S11, ESI), and no 
insignificant difference was observed in the electron spectrogram, which 
further confirms that complexes 1 and 2 have high catalytic stability. In 
addition, the NMR studies of the liquid phase after 3 h CPE in DMF 
shows no evidence of other CO2 reduction products such as formic acid 
in the liquid phase. 

After analyzing by gas GC, the Faradaic efficiency (FE) of CO and H2 
evolution for complex 1 at applied potentials − 2.06 V, and for complex 
2 at − 2.17 V is calculated according to eq (2): 

FE(%) = 2nF/Q (2) 

where n is the number of moles of CO or H2, F is the Faradaic con
stant, Q is the total charge passed. As depict in Fig. 8 , at the first 30 min 
of CPE, the Faradaic efficiency of CO (black) and H2 (red) formation for 
complex 1 is 5%, and 38%, respectively. The FE for CO keeps stable 
during the whole electrolysis, but the FE for H2 increases to 45% at the 
point of 150 min, and then decreases to 42% at the end of the elec
trolysis. For complex 2, the Faradaic efficiency of CO (blue) formation is 
only 0.5%, but the FE for H2 (magenta) could reach to 97%, which 
suggests that complex 2 is a valuable catalyst for H2 evolution. 

The electrochemical CO2 reduction by complexes 1 and 2 is possible 
owing to the reductive disproportionation of CO2 to produce CO and 
CO3

2− (2CO2 + 2e- = CO + CO3
2− (a)), which is usually caused in the 

absence of proton donor, or due to the assists of the proton to generate 
CO and H2O (CO2 + 2H+ + 2e- = CO + H2O (b)). In order to figure out 
the electrochemical mechanism, CO2 reduction activity of complexes 1 
and 2 was also investigated in the presence of a proton donor CH3COOH 
(HAc) in the DMF solution with 0.1 M nBu4NPF6. 

As shown in Fig. 9, upon addition of 3.5 mol/L HAc in the solution 
under saturated CO2 atmosphere, the intensities of the catalytic currents 

Fig. 6. Cyclic voltammetry of complexes 1 (a) and 2 (b) in the presence (red) 
and absence (blue) of CO2 recorded at 100 mV s− 1 at glassy carbon in a 0.1 M 
nBu4NPF6 DMF supporting electrolyte. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 7. CPE with 2.5 mM complexes 1 (blue line) and 2 (violet line), blank 
experiment without 1 or 2 (black line), and rinse tests for complexes 1 (red line) 
and 2 (olive line) on an FTO working electrode (1.0 cm2). (For interpretation of 
the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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at the potential of E = − 2.06 V for complex 1, and E = − 2.17 V for 
complex 2 increase by almost 100% compared with the CV without HAc. 
The linear sweep voltammetry (LSV) of complexes 1(a) and 2 (b) at 
different concentrations of acetic acid are shown in Figure S12. As for 
complex 1, the Faradaic yield for CO increases to 10% compared with 
the FECO = 5% without HAc (Fig. 8 olive curve), and the FE for H2 is 
calculated as 60% at first, and then declined to around 45% at the end of 
the electrolysis (Fig. 8 navy curve). As for complex 2, the Faradaic yield 

for CO increases to 1.0% compared with the FECO = 0.5% without HAc 
(Fig. 8 violet curve), and the FE for H2 is about 94% at the end of the 
electrolysis (Fig. 8 purple curve). The experimental result indicates that 
the addition of the proton donor acetic acid can promote the electro
catalytic reduction of CO2 by complexes 1 and 2, which suggests that the 
catalytic CO2 reaction for complexes 1 and 2 could be a proton-coupled 
electron transfer (PCET) process.[60–62] Moreover, there is no CO 
product detected in another CPE experiment under the same condition 
except using argon instead of carbon dioxide in either complex 1 or 2, 
suggesting that the CO product is not from the reduction of DMF, but 
from the reduction of CO2. Futheremore, there is no H2 product detec
ted, suggesting that CO2 is necessary to reduce protons. 

We propose a similar mechanism for both complexes 1 and 2 to 
explain the results in Scheme 2 and Scheme S2. Here, we take complex 1 
as an example to illustrate the process. The lowest unoccupied molecular 
orbitals (LUMO) of complex 1 are mainly located on the ligand L1, 
indicating that the first one electron reduction occurs at the ligand L1 

after the departure of the two chlorine ions, generating [Cu(II)DMFL1•− ] 
+ (1a) in DMF solution. In fact, in this process, an electron enters the 
empty LUMO of the lowest lying π* orbital of the redox-active benz
imidazole ligand L1, which is reduced to be radical anion L1•− acting as 
an electron reservoir for catalytic reduction of CO2.[63,64] Then, CO2 is 
nucleophilically attacked to form the CO2 adduct intermediates [Cu(II) 
(L1•− )–CO2]+ (1b). After the second electron reduction happened on the 
metal center, a proton-coupled electron transfer (PCET) process happens 
to form [Cu(I)(L1•− ) (COOH)]1- (1c) with a COOH− group coordinated. 
Finally the C–O bond of the carboxyl group cleavage to release CO, 
along with H2 generated, both of which may be resulting from the 
cooperation of the noninnocence radical anion benzimidazole ligand L1 

and the metal ion.[65] In addition, the evolution of H2 may because a 
transition state copper/cobalt hydride complex ML1H (1d) (M = Cu (1), 
Co (2)) is formed in the process of CO2 releasing, which has been well 
proved by previous reported CO2 reduction studies.[66,67] Therefore, 
the formation of hydride complex [M(I)L1•− H•− ]1- before CO2 reduction 
may play an essential role in the competition between CO2 reduction 
and H2 evolution electrocatalysis. 

Fig. 8. The Faradaic efficiency of CO and H2 formation for complexes 1 and 2 
in the presence and absence of a proton donor HAc (3.5 mol/L) in the DMF 
solution with 0.1 M nBu4NPF6. 

Fig. 9. CVs of complexes 1 (a) and 2 (b) in the presence of a proton donor HAc 
in the DMF solution with 0.1 M nBu4NPF6. 

Scheme 2. Proposed reaction mechanism for the electrocatalytic reduction of 
CO2 in the presence of complex 1 in DMF. 
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3. Conclusion 

In this report, we have successfully synthesized a novel benzimid
azole derivative ligand 2-(6-methoxypyridin-2-yl)-1-((6-methoxypyr
idin-2-yl) methyl)-6-nitro-1H-benzo[d]imidazole (L1) and its 
corresponding transition metal complexes M L1Cl2 (M = Cu (1), Co (2)). 
Upon combining cyclic voltammetry, bulk electrolysis with coulometry 
potential as well as complementary DFT calculations, it is found that the 
two complexes can electrocatalytic CO2 reduction and H2 evolution due 
to synergy effect between the redox-active ligand L1 and transition metal 
(Cu (1), Co (2)). However, the selective CO2 reduction was not achieved, 
on the other hand, the high selectivity for H2 evolution with Faradaic 
efficiency = 97% by complex 2 is very promising. The addition of proton 
donor HAc can enhance the electrocatalytic reduction of CO2, but no 
effect on the H2 evolution, revealing a proton-coupled electron transfer 
(PCET) process. Based on these investigations, incorporating with some 
DFT calculations, the electrocatalytic mechanism was explored. And we 
found that the formation of transition metal hydride complex [M(I) 
L1•− H•− ]1- before CO2 reduction might be the crux in the competition 
between CO2 reduction and H2 evolution. Further work is underway to 
explore potential transition metal complexes containing redox-active 
ligand catalysis with high selectivity of CO2 reduction against the 
competing H2 evolution. 

4. Experimental section 

4.1. General procedures 

Unless otherwise stated, all manipulations were carried out under 
aerobic conditions, and all chemicals were commercially available and 
used as supplied without further purification, carbon dioxide and argon 
were purchased from Deihai Gases Corporation. 

4.2. Synthesis of ligand 2-(6-methoxypyridin-2-yl)-1-((6- 
methoxypyridin-2-yl) methyl)-6-nitro-1H-benzo[d]imidazole (L1) 

The ligand L1 was synthesized according to published procedure 
with some modification.[42] Under N2 atmosphere, 6-methoxypyridine- 
2-carboxaldehyde (2 g, 14.6 mmol) was slowly added dropwise to 4-nitr- 
o-phenylendiamine (1.12 g, 7.3 mmol) in acetonitrile turbid solution 
(40 mL). The mixture was heated to reflux at 80 ◦C for 24 h, then cooled 
to room temperature, and filtered to give a yellow precipitate. The solid 
was washed with cold acetonitrile 3–5 times, and then dried in vacuo. 
The crude product was recrystallized from methanol/dichloromethane 
(V: V = 1: 2) to give the yellowish crystals. Yield: 1.26 g (44%). Calc. 
(Found) for C20H17N5O4: C, 61.38(61.40); H, 4.35(4.31); N, 17.90 
(17.83) %. IR (KBr disk, cm-1): 3292 (m), 3101 (w), 2996 (w), 1606 (m), 
1573 (m), 1521 (s), 1471 (s), 1411 (m), 1330 (s), 1272 (w), 1230 (w), 
1145 (w), 1025 (s), 983 (m), 883 (m), 809 (s), 742 (m), 553 (w), 431 
(w). 1H NMR (DMSO‑d6, 400 MHz): δ (ppm) δ 8.31 (s, 1H), 8.07 (s, 2H), 
7.91 (s, 1H), 7.78 (s, 1H), 7.65 (s, 1H), 7.51 (s, 1H), 7.30 (s, 1H), 7.20 (s, 
1H), 7.04 (s, 1H), 6.76 (t, J = 38.6 Hz, 1H), 5.76 (s, 2H), 3.90 (s, 3H), 
3.78 (s, 3H). (Figure S1) 

4.3. Synthesis of CuL1Cl2 (1) 

A solution CuCl2⋅2H2O (0.170 g, 1 mmol) in methanol (5 mL) was 
added to a solution of L1 (0.391 g, 1 mmol) in dichloromethane (10 mL). 
The mixture was stirred at room temperature for 12 h. The resulting 
solution was filtered, and the filtrate was kept for evaporation at RT for 
about 7 days to give X-ray-quality light yellow crystals at room tem
perature. Yield: 0.295 g (56%). Calc. (Found) for C20H17Cl2CuN5O4: C, 
45.64(45.59); H, 3.23(3.17); N, 13.31(13.39) %. IR (KBr disk, cm-1): 
3369 (s), 2942 (m), 2831 (w), 1604 (s), 1579 (s), 1527 (s), 1467 (s), 
1425 (m), 1344 (s), 1303 (s), 1268 (w), 1027 (s), 877 (w), 806 (m), 740 
(m), 563 (w), 437 (w). 

4.4. Synthesis of CoL1Cl2 (2) 

A solution CoCl2 (0.129 g, 1 mmol) in CH3CN (5 mL) was added to a 
solution of L1 (0.39 g, 1 mmol) in CH3CN (10 mL). The mixture was 
stirred under reflux for 12 h. After cooling to room temperature, the 
resulting solution was filtered, and all volatiles were removed under 
reduced pressure to yield blue solid, which was washed with diethyl 
ether and dried. X-ray-quality blue crystals were grown by vapor 
diffusion of diethyl ether onto a saturated acetonitrile solution at 2 ℃. 
Yield: 0.245 g (47%). Calc. (found) for C20H17Cl2CoN5O4: C, 46.05 
(46.10); H, 3.26(3.33); N, 13.43(13.46) %. IR (KBr disk, cm-1): 3390 
(m), 3103 (m), 2941 (w), 2846 (w),1606 (s), 1575 (s), 1525 (s), 1471 (s), 
1425 (m), 1342 (s), 1305 (s), 1135 (w), 1039 (m), 877 (w), 806 (m), 742 
(w), 566 (w). 

4.5. Physical measurements 

Infrared spectra (2 wt% sample in KBr pellets) were recorded on a 
Nicolet 170SX spectrometer in the 4000–400 cm-1 region. Elemental 
analyses (C, H and N) of the catalysts were performed on a model 2400 
PerkinElmer analyzer. Powder X-ray diffraction (XRD) data were 
measured with a RIGAKU DMAX2500PC diffractometer with Cu-Ka ra
diation (k = 1.54056 Å). Nuclear Magnetic Resonance (NMR) spectra 
were acquired on a 300 MHz Bruker Avance spectrometer at 298 K, in 
which 0.5 mL electrolyte was mixed with 0.2 mL CD3Cl3 (deuterated 
chloroform) was added as internal standard. UV–vis absorption spectra 
were measured by a TU-1800 (Beijing Purkinje General Instrument Ltd.) 
equipped with a photomultiplier tube detector. 

4.6. X-Ray crystallographic data collection and refinement of the 
Structures. 

Single crystals of L1, 1 and 2 were mounted on a Bruker APEX-II CCD 
X-ray single-crystal diffractometer, and all data were collected at 173 K 
with graphite monochromated MoKɑ radiation (λ = 0.71073 Å) in I > 2σ 
(I) diffraction spots and reduced by the SAINT v8.34A program, and 
absorption corrections were applied using program SADABS2014/5. 
The structures were solved by ShelXT program and refined by full- 
matrix least-squares techniques based on F2 with all observed re
flections performed with the SHELXL program.[68] Molecular graphics: 
Olex2.[69] All the structures were refined by the full-matrix least 
squares method on F2 with anisotropic thermal parameters for all non- 
hydrogen atoms. Hydrogen atoms were generated geometrically. 
CCDC numbers for L1, 1 and 2 are 1854595, 1581406, and 1835472, 
respectively. 

4.7. Electrochemical measurements and electrolysis product analysis 

All electrochemical experiments were tested by a CHI660E electro
chemical analyzer to study their electrocatalytic properties and per
formed in a single chamber three-electrode reactor. 0.1 M solution of 
nBu4NPF6 in dry N, N-dimethlyformamine (DMF) was used as support
ing electrolyte. Cyclic voltammogram (CV) experiments were performed 
with a 3 mm-diameter glassy carbon working electrode, which was 
carefully polished using diamond paste, and ultrasonically rinsed in 
absolute ethanol and deionized water, then dried before use. There was 
about 10 mL of solution in the electrolytic cell, and the concentration of 
the complexes in the solution was about 2.5 mmol/L. The counter- 
electrode was a platinum wire and the reference electrode was Ag/ 
AgCl electrode. Control potential electrolysis (CPE) were performed 
with F-doped tin oxide (FTO) conducting glass substrates (1 cm × 1 cm, 
active surface area was 1.0 cm2) as the working electrode, which was 
obtained from Zhuhai Kaivo Optoelectronic Corp. They were pre-treated 
by dipping it in 5 wt% NaOH in ethanol for several hours, and then 
cleaning with water, ethanol, and water successively. Before each 
experiment the solution was purged with Ar or CO2 for 30 min at room 
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temperature. 
The in situ UV–Vis spectroelectrochemistry were carried out by 

applying a constant potential of − 2.06 V and − 2.17 V vs. Fc+/0 for the 
complexes 1 and 2, respectively, and recorded by using a UV-1800 
UV–vis spectrophotometer (Shimadzu). In situ spectroelectrochemical 
studies were performed using a quartz cuvette of 1 cm path length 
assembled as an electrochemical cell, containing a platinum gauze, a 
platinum wire and an Ag/AgCl (saturated KCl) electrode as working, 
counter and reference electrode, respectively.The headspace gas sam
ples (2 mL) generated by CPE experiments were extracted using a lure 
lock-type air-tight syringe and injected into a gas chromatography in
strument (GC, Shimadzu GC-2014) equipped with a flame ionization 
detector (FID) with mechanizer to analyze CO and a thermal conduc
tivity detector (TCD, Shimadzu) to perform analysis for quantifying H2. 
Ultra-high purity Ar was used as carrier gas to detect CO and and H2. The 
liquid products were analyzed by NMR (Bruker AVANCE III HD). 

4.8. Density functional theory calculations 

Quantum-mechanical calculations were carried out using the 
Gaussian 09 program package, using the B3LYP hybrid functional 
[70,71] and the ‘‘double-ξ” quality LanL2DZ[72] basis sets were used for 
transition metals (Cu and Co) and 6-311G (d, p) basis sets were used for 
non-metal atoms.[73] Atom coordinates used in the calculations were 
from crystallographic data, and a molecule in the unit cells was selected 
as the initial model. 
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