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Summary of main observation and conclusion The first copper-catalyzed enantioselective arylcyanation of styrenes has been developed using readily 
available anilines as aryl radical precursors under mild conditions, which enables easy access to chiral 2,3-diaryl propionitriles with moderate to good 
enantioselectivities. This operationally straightforward reaction exhibits broad substrate scope and functional group tolerance. Notably, this method has 
been applied to the synthesis of chiral AIEgen as well as estrogen receptor-β agonist (R)-DPN.  

Background and Originality Content 
Optically pure organonitrile compounds are featured in natural 

products, pharmaceuticals, and agrochemicals.[1] Among them, 
chiral 2,3-diaryl propionitriles and their derivatives have received 
much attention (Figure 1). For instance, (R)-DPN is an estrogen 
receptor β-selective ligand, the other diaryl propionic acids and 
propionamides can be used in treatment of pulmonary embolism, 
or as an antiobesity agent.[2] In general, conventional synthesis of 
chiral 2,3-diaryl propionitriles relies on the dehydration of chiral 
amides, asymmetric arylation of α-halonitriles.[3] The Meerwein 
arylation of alkenes represents an effective strategy for the 
installation of an aryl group into alkenes,[4,5] where the alkyl radicals 
generated by aryl radical addition into alkenes would be trapped to 
form various C–C and C–heteroatom bonds. However, the variants 
for asymmetric Meerwein arylation of alkenes are rare, owing to 
the challenging asymmetric radical control. In 2015, Zhu and 
Buchwald developed an enantioselective copper-catalyzed 
intramolecular radical oxyfunctionalization of alkenes, including 
oxyarylation with aryl diazonium salts.[6] Liu and coworkers  

CN

HO

OH

(R)-DPN

O

OHH2N

NH

O
N

HN

DX9065a

Taranabant

Glucagon receptor antagonist

N

N
O

NH

O F

F

F

- Seretase inhibitor

N
F3C

O N
H

O

NC

Cl

H
N

O

N
H

O
S

OHO

O

γ  
Figure 1  Representative bioactive molecules bearing chiral 2,3-diaryl 
propanitriles and related scaffolds  

reported a Cu/CPA-catalyzed asymmetric aminoarylation of alkenes 
with aryldiazonium salts.[7] Recently, Zhang and coworkers 
disclosed a copper-catalyzed enantioselective arylalkynylation of 
alkenes with diaryliodonium salts.[8] 

On the basis of our developed copper-catalyzed radical relay 
process,[9] we have recently realized the enantioselective 
cyanation,[10] arylation,[11] and alkynylation[12] reactions. For 
instance, the benzylic C-H cyanation has been developed, where 
the key benzylic radical generated from hydrogen atom transfer 
(HAT) could be trapped by a chiral (Box)CuII(CN)2 complex with 
excellent enantioselectivity (Scheme 1a). For the efficient synthesis 
of chiral 2,3-diaryl propanitriles, the benzylic C-H cyanation of 1,2-     

Scheme 1  Enantioselective Cu-catalyzed radical cyanation 
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diarylethanes presents an attractive method, but generally 
afforded the mixture of nitriles owing to the poor site-selective HAT 
in these cases. Therefore, we reasoned that if the diaryl benzylic 
radicals could be selectively generated from Meerwein arylation of 
styrenes, the enantioselective arylcyanation of styrenes could be 
expected to synthesize chiral 2,3-diaryl propanitriles (Scheme 1b). 
Herein, we communicate this study, where readily available anilines 
were used as aryl radical precursors under mild conditions. This 
method enables easy access to structurally diverse chiral 2,3-diaryl 
propionitriles with good to excellent enantioselectivities,[13] and 
could be applied to synthesize estrogen receptor-β agonist (R)-DPN 
(Scheme 1b). 

Results and Discussion 
 Our initial studies were commenced on the reaction of 1a with 
4-fluorobenzenediazonium salt 2aa and TMSCN under chiral 
(L1)Cu(I) catalysis. We were delighted to find that, as shown in eq 
1, the reaction indeed gave the desired product 3a with good 
enantioselectivity, albeit in low yield (14%; 85:15 er). 
Unfortunately, further optimizing the reaction conditions did not 
improve the reaction yield. The arenediazonium salt 
predominately underwent the side reduction (3aa, 32% yield) and 
cyanation reaction (3ab, 26% yield), which is possibly resulted from  
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Table 1  Optimization of the Reaction Conditionsa,b 
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Entry Ligand Nitrite Yield (%) Er 

1 L1 t-BuONO 75 88.5:11.5 

2 L1 BnONO 10 85.5:14.5 

3 L1 PhCH(CH3)ONO 44 85.5:14.5 

4c L1 t-BuONO 20 87.5:12.5 

5 L2 t-BuONO 60 86:14 

6 L3 t-BuONO 10 52.5:47.5 

7 L4 t-BuONO 49 8:92 

8 L5 t-BuONO 37 93.5:6.5 

9 L6 t-BuONO 42 95:5 

10d L1 t-BuONO 75 88.5:11.5 

11d L6 t-BuONO 40 95:5 
a Reaction Condition: Styrene 1a (0.1 mmol), aniline 2a (0.3 mmol), t-
BuONO (0.4 mmol), TMSCN (0.4 mmol), Cu(MeCN)4PF6 (5.0 mol%), L (6.0 
mol%) in CH3CN (1.0 mL) at 25 oC for 24 h. b 1H NMR yield using CH2Br2 as an 
internal standard, enantiomeric ratio (er) was determined by the HPLC on a 
chiral stationary phase. c At 0 oC. dThe reaction was conducted on a 0.2 mmol 
scale, isolated yield. 

its high concentration (eq. 1). With this speculation, we reasoned 
that, gradually generating arenediazonium salt from aniline in situ 
might be beneficial to lower its concentration, thereby suppressing 
these side reactions. 

In order to monitor the reaction by 19F NMR, 4-fluoroaniline 2a 
was employed as the aryl radical source in the presence of tert-
butyl nitrite, the reaction afforded the target product 3a in 75% 
yield with slightly improved enantioselectivity (Table 1, entry 1). 
Other nitrite reagents (e.g., BnONO, PhCH(CH3)ONO) were 
screened for tuning the rate of the arenediazonium salt formation, 
however, lower yields were observed in these reactions (entries 2 
and 3). The enantioselectivity was not improved when the reaction 
was conducted at 0 oC (entry 4). Ligand screening indicated that 
Box-Bn L2 gave the similar enantioselectivity (86:14 er), while Box-
But L3 gave worse result (52.5:47.5 er). Furthermore, introducing 
the steric bulky benzyl group into gem-carbon of Box ligands was 
essential to enhance the enantioselectivity (entries 7-9), and L6 
with a larger gem-3,5-dimethoxybenzyl group performed the best 
to give 3a with 95:5 er, albeit in lower yield (entry 9). When the 
reactions were carried on a 0.2 mmol scale, similar results were 
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obtained (entries 10 and 11). 

Table 2  Substrate scopesa,b 
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a Condition A: Styrene 1a (0.2 mmol), aniline 2 (0.6 mmol), t-BuONO (0.6 
mmol), TMSCN (0.4 mmol), Cu(MeCN)4PF6 (5.0 mol%), L1 (6.0 mol%) in 
CH3CN (2.0 mL) at 25 oC for 48 h; Condition B: L6 was used instead of L1.  b 

Isolated yield, enantiomeric ratio (er) was determined by the HPLC on a 
chiral stationary phase and showed in the parenthesis. c Under the 
condition A. d On a 5 mmol scale. e On a 10 mmol scale. 

The substrate scopes were next surveyed under the standard 
conditions in entries 10 and 11 (Table 1). Aniline and p-toluidine 
were suitable aryl sources to give the desired products 3b and 3c 
in 72% and 56% yields with good enantiomeric ratios (Table 2). The 
reactions of various electron-deficient anilines provided the 
corresponding products 3d−3m in good yields (65-85%) with good 
to excellent enantiomeric ratios (from 85:15 to 95:5 er). Compared 
to the condition A with L1, the condition B with L6 provided higher 
er values, albeit in lower yields. For example, the reaction of 
styrene with 4-nitroaniline 2h in the presence of L1 afforded the 

product 3h in 78% yield with 85:15 er, while the er value was 
improved to 94:6 in 50% yield. Various functional groups, such as 
halide, ester, nitro, cyano, ketone and sulfamide, were tolerated 
under the reaction conditions. Moreover, meta-(trifluoromethyl)- 
aniline also exhibited good reactivity to give the desired product 3n 
in good yield and enantioselectivity. In addition, 2-CF3-pyridinyl-2-
amine were also compatible to give 3o in moderate yield with 
93:7~ 94:6 er. The absolute configuration of these products was 
determined by X-ray crystallography of product 3m (see SI).  

Then the scope of styrenes was also surveyed, and various 
substituents at para-, meta-, and ortho-positions on the benzene 
rings were suitable to generate the corresponding products 3p-3w 
in good yields with up to 95:5 er. Moreover, aryl bromide and aryl 
borate are well tolerated, a meaningful feature with respect to 
further functional group manipulation. The reaction of 2-methoxy-
5-vinylpyridine afforded 3x in 82% yield with 85:15 er. We found 
that estrone-derived styrene as well as L-menthol-tethered aniline 
was amenable to this reaction and gave the corresponding 
arylcyanation products 3y and 3z in moderate yields with 
moderate diastereomeric excess. Notably, when the reactions of 
1v and 1w were scaled up to 5 mmol and 10 mmol, respectively, 
the desired products 3v and 3w were obtained with the same 
enantiomeric ratio (95:5 er) in similar yields. 

Furthermore, diene substrate 4 bearing two terminal double 
bonds also proved amenable to provide dinitrile 5 in 90% yield with 
good stereoselectivity (89:11) and excellent enantioselectivity (> 
99:1 er, eq. 2). 

5
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4
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L1 
(6 mol %)
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(4.0 equiv)

MeCN (2.0 mL) 
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The synthetic utility of the asymmetric arylcyanation was 
examined (Scheme 2). First, tetraphenylethylene (TPE) and its 
derivatives are a common class in aggregation-induced emission 
luminogen (AIEgen). When the AIEgens are endowed with chirality, 
the resultant chiral AIEgens can act as sensors to discriminate and 
analyze enantiomers of chiral compounds.[14] Cholesterol 
possessing a high level of liquid crystal property was attached with 
a tetraphenylethylene moiety through this method, providing the 
chiral AIEgen 8 in 52% yield with 94:6 dr, which might be a potential 
optical sensors for chiral compounds and chiral nematic liquid 
crystals.[15] The fluorescent photographs taken in tetrahydrofuran–
water mixtures with different water fractions (fw) under 365 nm UV 
irradiation indicated that product 8 indeed possessed AIE feature. 
Moreover, the estrogen receptor β-selective ligand (R)-DPN was 
quickly accessed by this method with (3R, 8S)-L1 after the following 
oxidation reaction. Finally, product 4j could be easily converted to 
amide 9 in 84% yield by hydrogenation. 

To provide supporting evidences for the proposed radical 
process, TEMPO and BHT were added to the standard reaction  
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Scheme 2. Synthetic applications 
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systems, and the formation of desired product 3a was dramatically 
inhibited. Benzylic radical and aryl radical were captured with 
TEMPO and BHT, respectively (see SI). Radical clock experiments 
were also carried out under the standard conditions (Scheme 3). 
The intramolecular reaction of alkenes tethered aniline 10 afforded 
the cyclization cyanation product 11 in 50% yield with a 1.1:1 
diastereomer ratio (88% and 98% ee, respectively). In addition, the 
reaction of cyclopropane containing substrate 12 afforded the ring-
opened product 13 in 35% yield. These observations suggested 
that the reaction likely involves a benzylic radical. 

Scheme 3  Radical clock experiments 
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Conclusions 
In summary, we have developed a copper-catalyzed 

enantioselective arylcyanation reaction of styrenes with the readily 
available anilines as aryl radical precursors under mild conditions, 

affording a series of chiral 2,3-diaryl propionitriles with moderate 
to good enantioselectivities. Notably, this reaction has been 
applied to the synthesis of chiral AIEgen as well as estrogen 
receptor β agonist (R)-DPN. 

Experimental 
General experimental procedures for the asymmetric 
arylcyanation of alkenes 
To a 10 mL sealed tube, L1 (4.4 mg, 0.012 mmol, 6 mol%) or L6 (7.8 
mg, 0.012 mmol, 6 mol%) and Cu(CH3CN)4PF6 (3.7 mg, 0.010 mmol, 
5 mol%) were dissolved in anhydrous and oxygen-free CH3CN (2.0 
mL) under an atmosphere of argon. The solution was stirred at 
room temperature for 30 mins, and then alkene 1 (0.2 mmol, 1.0 
equiv), aniline 2 (0.6 mmol, 3.0 equiv), t-BuONO (78 μL, 0.6 mmol, 
3.0 equiv) and TMSCN (52 μL, 0.4 mmol, 2.0 equiv) were 
sequentially added, then the mixture was stirred for 48 h at 25 oC. 
After the reaction was completed, solvent was evaporated under 
reduced pressure. The residue was purified by flash column 
chromatography on silica gel with gradient of petroleum ether and 
ethyl acetate to afford product 3. 
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