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ratiometric detection of Zn2+and Al3+ in human breast 
cancer cell (MCF7): Development of binary logic gate 
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A very simple molecule derived from salisaldehyde and N-phenyl ethylenediamine (L1) functions as 
dual-mode ratiometric fluorescence “turn on” sensors for Zn2+ and Al3+ at two different wavelengths. 
The sensing is based on the combined effect of inhibition of excited-state intra-molecular proton transfer 
(ESIPT), CH=N isomerization and chelation-enhanced fluorescence (CHEF). Moreover, [L1+Zn2+] 
system functions as better Al3+ sensor where Al3+ ratiometrically displaces Zn2+ from [L1+Zn2+] 
complex. Emission wavelength dependent differentiation of Zn2+ and Al3+ using L1 allows us to develop 
a binary logic gate that functions as a molecular switch. L1 efficiently detects Zn2+ and Al3+ in human 
breast cancer cell (MCF7) while [L1+Zn2+] complex specifically detects Al3+ in the said cells. 
 
 

 Chemosensors that convert molecular recognition event into 
highly sensitive and easily detectable signals are being actively 
studied as an attractive research area indeed. The imaging techniques 
to visualize bio-active metal ions have got superior importance in 
biomedical analysis and environmental monitoring. Fluorescence 
technique has emerged as most powerful tool for its operational 
simplicity, high sensitivity and cost effective methodology.1,2 

 Particularly, when ratiometric sensor exhibits spectral shift upon 
interaction with specific analyte, then combination of fluorescence 
sensing and imaging allow its’ most promising and vibrant method 
of determination. A ratiometric sensor is highly desirable as it 
reduces or eliminates the adverse effects of change of environment 
around the probe (pH, polarity, temperature etc.), probe 
concentration and excitation power on the emission intensity by 
providing a built-in correction to the signal ratio of emission 
intensities at two different wavelengths.3-5 
Zn2+ plays pivotal roles in numerous biological processes including 
brain activity, gene transcription, and immune function etc.6 It is 
employed as a required cofactor that can stimulate the activities of 
approximately 300 enzymes7  including those involved in gene 
expression and DNA repair.8,9 However, abnormal zinc metabolism 
is associated with many health problems, such as prostate cancer, 
delayed sexual maturation and impotence, type 2 diabetes mellitus 
(T2DM), Wilson’s diseases, amyotropic lateral scelerosis (ALS) and 
age-related macular degeneration (AMD).7,10,11 Plausibly, Zn2+ 
homeostasis have some correlation on the pathology of Alzheimer’s 
disease12 and other severe neurological problems such as cerebral 
ischemia13 and epilepsy.14 
 On the other hand, aluminium enters human body through foods 
and water as Al3+, trace amount of which is found in most biological 
tissues15 and required for various normal human physiological 

processes.16 However, its excessive exposure (WHO recommended 
average daily human intake of aluminium is approximately 3–10 
mg17) may cause severe toxicity on human’s health, particularly 
neurotoxicity to damage central nervous system. Disorders of 
aluminium homeostasis lead to a number of diseases, such as 
Parkinson’s disease (PD), Alzheimer’s disease (AD) and 
amyotrophic lateral sclerosis.18-21 In addition, Al3+ is suspected to be 
involved in disease like microcytic hypochromic anemia, myopathy, 
and affects the absorption of iron in blood causing anemia.22,23  
Moreover, it inhibits plant growth on acid soils.24 
 Thus, due to the potential impact of Zn2+ and Al3+ levels on human 
health and environment, selective trace level detection of both the 
ions in a single shot is highly demanding. 
 Molecular arithmetic to convert chemically encoded information 
(input) into optical signal as output is the bases of molecular logic 
gates,25-28 a potential scientific interest in the field of unconventional 
computing systems.29 Examples include AND, OR, XOR, INHIBIT 
and NAND type molecular level logic gates.30-32.  
 Till date, very few fluorescence sensors33-38 can selectively detect 
both Zn2+ and Al3+. Additionally, having similar chemical properties, 
Cd2+ interferes with the Zn2+ sensor.39 
 From practical point of view, a single sensor that shows 
differential response towards multiple ions is more desirable than 
one-to-one sensor.  These facts stimulated us to search for a single 
probe that can detect both Zn2+ and Al3+ selectively. 
 Recently, our research group has developed a new turn-on Zn2+ 
and Al3+ dual sensor40. However that is not also the most desirable 
ratiometric one as already discussed. Ratiometric sensor for dual 
sensing of Zn2+ and Al3+ is very rare. A single report from Goswami 
group41 have several limitations, viz. the difference between their 
emission wavelengths is very narrow (14 nm, λem for Zn2+, 446 nm 
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Experimental 
Apparatus and reagents 
 High-purity HEPES, salisaldehyde and N-phenyl ethylenediamine 
are purchased from Sigma Aldrich (India). Zn2+ and Al3+ stock 
solutions have been prepared using Zn(NO3)2.6H2O and Al(NO3)3. 
9H2O salts respectively. All other metal ions used are either their 
nitrate or chloride forms. Other analytical reagent grade chemicals 
are used without further purification except when specified. Water 
having a resistivity of 18.2 MΩ cm is obtained from a Milli-Q 
Millipore water purification system (Bedford, MA) and used 
throughout all the experiments. Solvents used are of spectroscopic 
grade. A Shimadzu Multi Spec 2450 spectrophotometer is used for 
recording UV-Vis spectra. FTIR spectra are recorded on a Shimadzu 
FTIR (model IR Prestige 21 CE) spectrophotometer. Thermo 
gravimetric analyses are performed on a Perkin Elmer TG/DTA lab 
system l (Technology by SII). Mass spectra have been performed 
using a QTOF 60 Micro YA 263 mass spectrometer in ES positive 
mode. 1H and 13C NMR spectrum are recorded using Bruker Avance 
DPX 300 (300 MHz) in CDCl3. 

1H NMR titration experiments have 
been performed using Bruker Avance DPX 600 (600 MHz) in 
CD3OD-D2O system. Elemental analyses are performed on a Perkin 
Elmer 2400 CHN analyzer. The steady state emission and excitation 
spectra are recorded with a Hitachi F-4500 spectrofluorimeter. 
Systronics digital pH meter (model 335) is used for pH 
measurement. Fluorescence microscope images are captured through 
an Olympus IX81 microscope and processed using image-pro plus 
version 7.0 software.  
 
Synthesis of L1 
 The probe, L1 has been synthesised by refluxing the equimolar 
mixture of salisaldehyde and N-phenyl ethylenediamine in ethanol 
for 6h (Scheme 1). The brown-yellow solid is obtained after 
evaporation of the solvent. This product is dissolved in methanol and 
kept at room temperature for slow evaporation. After several days, 
rectangular yellow crystals suitable for single crystal X-ray 
diffraction are collected. Yield is 95%. Anal. calcd (%): C, 74.97; H, 
6.71 and N, 11.66; found: C, 75.02; H, 6.67 and N, 11.80. The X-ray 
structure is presented in Fig.S23 (ESI). Significant crystal and 
refinement parameters are summarized in Table S3 (ESI). 1H NMR 
(Fig.S24, ESI) (300 MHz, CDCl3), δ (ppm): 3.49 (2H, t, J = 6.0 Hz), 
3.79 (2H, t, J = 6.0 Hz), 6.62 (1H, d, J = 0.6 Hz), 6.65 (1H, d, J = 0.9 
Hz), 6.72 (1H, t, J = 6.0 Hz), 6.85 (1H, t, J = 6.0 Hz), 6.95 (1H, d, J 
= 9.0 Hz), 7.16 (1H, d, J = 1.8 Hz),  7.20 (1H, t, J = 1.5 Hz), 7.24 
(1H, t, J = 1.8 Hz), 7.29 (1H, t, J = 6.0 Hz),  7.54 (1H, t, J = 1.2 Hz),  
8.32 (1H, s), 9.90 (1H, s). 13C NMR (Fig.S25, ESI) (300 MHz, 
CDCl3), QTOF – MS ES+ (Fig.S26, ESI): [M + H]+ = 241.6. FTIR 
(cm−1) (Fig.S27, ESI): υ(O-H phenol) 3383, υ(N─H 2º amine) 3360, 
υ(CH=N) 1629, υ(C─O phenyl) 1315. Thermogram (Fig.S28, ESI) 
indicates the stability of L1 up to 200ºC. UV-Vis. (Fig.S29, ESI): λ 
(nm) in EtOH (ε, M−1 cm−1), 404 nm (8500), 305 nm (32500), 250 
nm (132500). Excitation spectrum using emission wavelength is 
presented in Fig.S29 (ESI). 
Synthesis of [L1+Zn2+] complex 
 Methanol solution of Zn(NO3)2.6H2O (50 mg, 0.1680mmol)  is 
added drop-wise to a magnetically stirred solution of L1 (80 mg, 
0.3361 mmol) in methanol at room temperature. After 2-3 min, a 
white precipitate that appeared is filtered and dissolved in minimum 
volume methylene chloride and kept at room temperature for few 
days to obtain rectangular white crystals, suitable for X-ray 
crystallography. Yield is 80%. Anal. calcd (%): C, 66.24; H, 5.56 
and N, 10.30; found: C, 66.12; H, 5.49 and N, 10.43. Significant 
crystal and refinement parameters are summarized in Table S3 (ESI). 
The QTOF–MS ES+ (Fig.S30, ESI) at m/z, 543.30 is assigned to 
[2L12─ + Zn2+ + H+]+, confirming 2:1 (mole ratio) stoichiometry 

between L1 and Zn2+. FTIR (cm−1) (Fig.S31, ESI): υ(N─H 2º amine) 
3294, υ(CH=N) 1600, υ(C─O phenyl) 1303. The absence of υ(O-H, 
phenol) band further confirms deprotonation of L1 upon interaction 
with Zn2+. Thermogram (Fig.S32, ESI) shows 6.098% weight loss in 
the temperature range, 40.0-260.7ºC corresponds to the loss of two 
oxygen atoms, and 21.376% weight loss in the temperature range, 
260.7-343.3ºC, corresponds to the rupture of one CH=N  bond along 
with loss of aldehyde unit. Again, 11.690% weight loss in the 
temperature range, 343.3-452.9ºC corresponds to the breaking of 
second CH=N  bond with loss of corresponding aldehyde unit and 
43.530% weight loss in the temperature range, 452.9-566.1ºC is 
attributed to the loss of two amine units. Thermogram also indicates 
that [L1+Zn2+] complex is more thermally stable (up to 260.7ºC) 
over L1 (up to 200ºC). UV-Vis. (Fig.S33, ESI): λ (nm) in EtOH/ 
H2O, 1/1, v/v (ε, M−1 cm−1): 363 nm (32000), 271 nm (75500). 
Excitation spectrum using emission wavelength is presented in in 
Fig.S33, (ESI).  
 
Synthesis of [L1+Al3+] complex 
 A methanol solution of Al(NO3)3. 9H2O (50 mg, 0.1332 mmol) is 
added slowly to a magnetically stirred solution of L1 (64 mg, 0.2665 
mmol) in methanol. Stirring is continued for 1h. On slow 
evaporation of the solvent, a deep yellow-brown compound is 
obtained. Anal. calcd (%): C, 70.99; H, 6.35; N, 11.04; O, 6.30 
found: C, 70.82; H, 6.49; N, 10.86; O, 6.17. The compound is 
characterized by QTOF –MS ES+ (Fig.S34, ESI): m/z, 557.1227, 
attributed to [2L1 + Al3++ CH3OH+ H2O]3+ indicating 2:1 
stoichiometry (mole ratio) between L1 and Al3+. FTIR spectrum 
(Fig.S35, ESI); υ(O-H phenol) 3421, υ(N─H 2º amine) 3251, 
υ(CH=N) 1600, υ(C─O phenyl) 1303. Thermogram (Fig.S36, ESI) 
indicates 3.776% weight loss in the temperature range 30.0-60.3ºC, 
attributed to the loss of non-coordinated water molecule. Moreover, 
5.527% weight loss in the temperature range, 60.3-90.5ºC 
corresponds to the loss of two OH groups and 42.992% weight loss 
in the temperature range 90.5-277.9ºC is due to the loss of one L1 
unit.14.044% weight loss in the temperature range, 277.9-476.6ºC 
corresponds to the loss of aldehyde unit as a result of rupture of 
CH=N bond of the remaining L1 moiety. 22.771% weight loss in the 
temperature range, 476.6-572.1ºC is due to the loss of aldehyde part 
through rupture of CH=N bond of the remaining organic amine part. 
The presence of non-coordinated water molecule in the [L1+Al3+] 
complex has also been supported by this thermal analysis. UV-Vis. 
(Fig.S37, ESI): λ (nm) in EtOH/ H2O, 1/1, v/v (ε, M−1 cm−1): 385 nm 
(32500), 273 nm (132500). Excitation spectrum using emission 
wavelength is presented in Fig.S37 (ESI).   
The [L1+Al3+] adduct is also prepared by stirring equivalent amount 
of Al(NO3)3.9H2O with the methanol solution of [L1+Zn2+] complex 
at room temperature. Evaporation of the solvent generates a brown 
solid having QTOF –MS ES+ (Fig.S38, ESI) at m/z, 557.1225, 
conforming the formation of [L1+Al3+] adduct. 
Cell imaging studies 
 Human breast cancer cell line MCF7 are grown in DMEM 
(Sigma, St. Louis, USA) supplemented with 10% fetal bovine serum 
(Sigma, St. Louis, USA), 2 mM glutamine, 100 U/ mL penicillin-
streptomycin solution (Gibco, Invitrogen, USA) in presence of 5% 
CO2 at 37°C. For in vitro imaging studies, the cells are seeded in 6 
well culture plate with a seeding density of 105 cells per well. After 
reaching 60%–70% confluence, the previous media is replaced with 
serum free media, supplemented Zn2+, Al3+ and L1 at a concentration 
of 50, 50 and 20 µM, and incubated for 2h to facilitate their uptake 
by cells. The cells are then observed under an inverted microscope at 
different magnifications to examine any adverse effect on cellular 
morphology. L1 treated cells are then incubated with Zn2+ and Al3+ 
alone for 15 – 30 min or with Zn2+ followed by Al3+and observed 
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