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A pyridylvinylene derivative containing piazselenole displayed high selectivity toward glutathione in the
presence of other biorelevant analytes. The compound exhibited a 19 nm red-shift in absorption spectra
and w3-fold fluorescence intensity enhancement; in addition, it was possible to detect micromolar
amounts of glutathione quantitatively using both red-shift absorbance and enhanced fluorescence. The
mechanism of the reaction between the modified pyridylvinylene derivative and glutathione was
confirmed using ESI-MS and absorption/fluorescence spectra.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

LowMr thiols, such as glutathione (GSH) and cysteine (Cys), play
a crucial role in physiological systems owing to their participation
in reversible redox reactions [1]. GSH is the most abundant cellar
thiol and exists in a redox equilibrium between the reduced (GSH)
and oxidized (GSSG) forms [2]. The ratio of GSH:GSSG is a key
indicator for monitoring cellular oxidative stress and large changes
can lead to some diseases and cancers [3e5]. Hence, the quanti-
tative detection of physiological thiols is very important for
investigating cellular functions. Of the various methods [6e15] for
detecting thiols, great attention has attended the use of fluorescent
probes owing to advantages over other methods, such as high
sensitivity and operational simplicity [16e18]. Recently, attention
has focused on the development of fluorescent probes for thiols,
including maleimide-type [19e24], aldehyde-type [25e31], dithiol
[32e34], 2,4-dinitrobenzenesulfonyl-protected [35e39] probes
and other different response mechanism [2,40e53] probes. Despite
the large number of fluorescent thiols probes, many of them can
.
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quantitatively detect nanomolar [23,45] or millimolar [52]
concentrations of GSH. It is well-known that the concentration of
GSH is about 2 mM in blood plasma [54], in which context, Yan et al.
[50] andWang et al. [51] developed two systems based on quantum
dots for the detection of GSH in which GSH was determined by
fluorescence intensity. Recently, Tian et al. have reported many
colorimetric probes based on intramolecular charge transfer (ICT)
mechanism for several analytes, such as mercury [55], pyrophos-
phate (PPi) [56]. However, to the best of our knowledge, few reports
relating to the quantitative detection of GSH at micromolar level
using red-shift absorption and enhanced fluorescence have
appeared, with the exception of a merocyanine-containing che-
modosimeter published by Zhengs et al. [57].

In this paper we describe the synthesis of probe 1, which
comprised an aminophenylpyridylvinylene derivative fluorophore
and a piazselenole receptor (Scheme 1). Using an amino-
phenylpyridylvinylene derivative as fluorophore offers many
inherent virtues, such as desirable spectroscopic properties and
outstanding intramolecular charge transfer (ICT) [58,59]; the use of
piazselenole as receptor was inspired fromprevious reports [10,45].
We hypothesize that piazselenole reacts with thiols to provide the
stronger electron-donor, o-phenylenediamine, which induces
changes in two-channel output signals, namely absorption red-shift
and fluorescence enhancement.
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Scheme 1. Synthesis of probe 1 and reference compound 2.

Fig. 1. Absorption (a) and fluorescence (c) spectra of 1 (10 mM) in the presence of GSH
(0e12 mM), and plot of the absorbance (at 376 nm) (b) and the fluorescence intensity
(at 440 nm) (d) of 1 as a function of the GSH concentration in a mixture of DMF and
water (8:2, v/v) solution. Each spectrum was acquired 30 min after GSH addition at
25 �C. The excitation wavelength was 370 nm. The excitation and emission slit widths
were 2.5 and 5.0 nm.
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2. Experimental

2.1. General

All reactions were carried out under a nitrogen atmosphere. All
the chemicals used in this paper were obtained from commercial
suppliers. 1H NMR spectra was taken on a Bruker AMX400 spec-
trometer. Chemical shifts (d) were reported in ppm relative to
a Me4Si standard in CDCl3 or DMSO-d6. High-resolution mass data
were measured with fourier transform ion cyclotron resonance
mass spectrometer (APEX IV). Electrospray ionization (ESI) mass
spectra were measured with an LC-MS 2010A (Shimadzu) instru-
ment. Absorption spectra were recorded on TU-1901 UVevis
spectrophotometer. Fluorescence spectra were measured on Hita-
chi F-7000 fluorescence spectrometer. All pH measurements were
made with a Sartorius basic pH-meter PB-10.

2.2. Synthesis of 2-methyl-N-methyl pyridinium iodide

2-Methylpyridine (932.2 mg, 10.01 mmol) and methyl iodide
(4262.9 mg, 30.03 mmol) were dissolved in ethanol (20 mL). After
stirred and refluxed for 4 h under N2 atmosphere, the reaction
mixture was cooled to room temperature and was filtered to give
the product (1695.7 mg) in 72% yield. 1H NMR (400MHz, DMSO-d6)
d (*10�6): 2.82(s, 3H), 4.27(s, 3H), 7.97(t, J ¼ 6.9 Hz, 1H), 8.09(d,
J ¼ 7.9 Hz, 1H), 8.50(t, J ¼ 7.7 Hz, 1H), 9.03(d, J ¼ 6.2 Hz, 1H).

2.3. Synthesis of 5-methyl-2,1,3-benzoselenadiazole

4-Methylbenzene-1,2-diamine (1.2217 g, 10 mmol) and sele-
nium dioxide (1.1096 g, 10 mmol) were ground respectively, and
thenmixed in amortar at room temperature. After 30min grinding,
the crude products were dissolved in n-hexane, and then filtered.
The solvent was removed under reduced pressure to give the
desired product (1.8133 g, 9.2 mmol, 92% yield). 1H NMR (400 MHz,
CDCl3) d (*10�6): 2.46(s, 3H), 7.30(d, J ¼ 9.2 Hz, 1H), 7.57(s, 1H), 7.70
(d, J ¼ 9.2 Hz, 1H).

2.4. Synthesis of 2,1,3-benzoselenadiazol-5-carbaldehyde

5-methyl-2,1,3-benzoselenadi-azole (985.8 mg, 5.00 mmol) and
selenium dioxide (1110.8 mg, 10.01 mmol) were dissolved in
methyltoluene (30 mL). After stirring under reflux for 4 h under
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a N2 atmosphere, the reaction mixture was cooled to room
temperature and filtered. The filtrate was concentrated and column
chromatographed on silica-gel (elution with chloroform) to give
the product (532.6 mg) in 50% yield. 1H NMR (400 MHz, CDCl3)
d (*10�6): 7.93e8.00(m, 2H), 8.34(s, 1H), 10.20(s, 1H).
2.5. Synthesis of probe 1

2,1,3-benzoselenadiazol-5-carbaldehyde (253.3 mg, 1.2 mmol)
and 2-methyl-N-methyl pyridinium iodide (235.1, 1 mmol) were
dissolved in absolute ethanol (25 mL). After stirring under reflux
for 45 min under a N2 atmosphere, the reaction mixture was
concentrated under reduced pressure. The residues were added to
a 40:1 mixture of chloroform:methanol (25 mL) and the product
was collected by filtration and washed with 5 � 3 mL mixture
solvents (chloroform:methanol ¼ 40:1, v/v) to give a pure product
Fig. 2. Absorption (a) and fluorescence (b) spectra of 1 (10 mM) with or without GSH
and a variety of biorelevant analytes including Al3þ, Ca2þ, Cd2þ, Cu2þ, Kþ, Mg2þ, Naþ,
Zn2þ, H2O2, Fe3þ and ascorbic acid (Vc) (20 mM) in a mixture of DMF and water (8:2,
v/v) solution. Each spectrum was acquired 30 min after various analytes addition at
25 �C. The excitation wavelength was 370 nm. The excitation and emission slit widths
were 2.5 and 5.0 nm.
1. 1H NMR (400 MHz, DMSO-d6) d (*10�6): 4.45(s, 3H), 7.85(d,
J ¼ 16.0 Hz, 1H), 7.97e8.01(m, 2H), 8.14(d, J ¼ 16.0 Hz, 1H), 8.20(d,
J¼ 9.4 Hz, 1H), 8.26(s, 1H), 8.59(d, J¼ 4.2 Hz, 2H), 8.99(d, J¼ 6.2 Hz,
1H). HRMS (ESI positive) calcd for C14H12N3Se [M]þ 302.01913,
found 302.01860.
2.6. Synthesis of reference compound 2

Benzaldehyde (318.4 mg, 3 mmol) and 2-methyl-N-methyl
pyridinium iodide (235.1, 1 mmol) were dissolved in n-butanol
(25 mL). After stirring under reflux for 2 h under N2 atmosphere,
the mixture was cooled to room temperature to afford crude
product after filtration. The pure product was obtained by recrys-
tallization from ethanol. HRMS (ESI positive) calcd for C14H14N [M]þ

196.11208, found 196.11161.
3. Results and discussion

3.1. Spectra titration of 1 with GSH

In this paper, GSH was selected as the representative thiol in the
spectral experiments. The absorption and fluorescence spectra
were determined in a mixture of DMF and water (8:2, v/v) solution.

As shown in Fig. 1a, 1 displayed a major absorption band
centered at 357 nm corresponding to molar absorption coefficient
(3) of 2.60 � 10�4 M�1 cm�1. Addition of GSH to the solution of 1
(10 mM) resulted in a remarkable red-shift (19 nm) in the absorp-
tion spectra and a gradual increase of the absorbance at 376 nm.
There was a good linearity between absorbance and concentrations
of GSH in the range of 4e12 mM (Fig. 1b), and the detecting limit
was 0.5 mM.

In the fluorescence spectra (Fig. 1c), the mixture of DMF and
water (8:2, v/v) solution of 1 exhibited a fluorescence emission
Fig. 3. Absorption (a) and fluorescence (b) responses of 1 (10 mM) to GSH (20 mM) in
the absence and presence of biorelevant analytes (20 mM) in a mixture of DMF and
water (8:2, v/v) solution. Each spectrum was acquired 30 min after various analytes
addition at 25 �C. The excitation wavelength was 370 nm. The excitation and emission
slit widths were 2.5 and 5.0 nm.
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peak at 434 nm, with a fluorescence quantum yield of 0.0069
(see Supporting Information). Upon addition of GSH, the maximum
emission peak underwent a red shift to 440 nm and the fluores-
cence quantum yield increased up to 0.0113. There was a good
linearity between the fluorescence intensity and concentrations of
GSH in the range of 2e12 mM (Fig. 1d), and the detecting limit was
0.03 mM.

Therefore,1 could detect GSH qualitatively and quantitatively by
both absorption and fluorescence spectrometry methods.
3.2. Spectra titration of 1 with biorelevant analytes

For an excellent probe, high selectivity is a matter of necessity.
The specificity of 1 toward GSH was determined by the absorption
and fluorescence titration experiments (Fig. 2a and b). Nearly no
changes was observed in the absorption and fluorescence spectra
with Al3þ, Ca2þ, Cd2þ, Cu2þ, Kþ, Mg2þ, Naþ, Zn2þ, H2O2, Fe3þ and
ascorbic acid (Vc). Next, the absorption and fluorescence responses
of 1 toward GSH in the presence of physiological analytes were
also investigated (Fig. 3a and b). The results showed that 1
possesses high selectivity toward GSH when present with other
analytes.
Fig. 4. Absorption (a) and fluorescence (b) responses of 1 (10 mM) to different
thiols (including TA, MEA, Cys, DTT, and GSH (20 mM)) in a mixture of DMF and water
(8:2, v/v) solution. Each spectrumwas acquired 30 min after different thiols addition at
25 �C. The excitation wavelength was 370 nm. The excitation and emission slit widths
were 2.5 and 5.0 nm.
3.3. Spectra of 1 in the presence of other thiols

The reactivity of 1 to other thiols was tested by the absorption
and fluorescence titration experiments (Fig. 4a and b). The results
demonstrated that 1 showed greater response to GSH than other
nonprotein thiols such as thioglycolic acid (TA), b-mercaptoethyl-
amine (MEA), L-cysteine (Cys) and dithiothreitol (DTT). This result is
in good agreement with the conclusion reported by Tang et al. [45]
and Zhang et al. [10].

3.4. The mechanism of 1 in sensing thiols

To understand the mechanism of 1 in sensing GSH, reference
compound 2 was synthesized. When GSH was added to the solu-
tion of 1 and 2 respectively, the changes of the solution of 2 was
ignored compared with those of the solution of 1 (Fig. 5a and b).
This implied that the reaction of 1 with GSH was attributed to
piazselenole reacting with GSH. The reaction products of 1 with
GSH were subjected to electrospray ionization mass spectral
analyses. The peak at m/z 226 corresponding to the compound 3
was observed (Fig. S6). Additionally, to further demonstrate the
reaction of 1 with GSH by thiol, a mixture of N-ethylmaleimide
(NEM, a known thiol-blocking agent) and GSH was added to the
solution of 1, no obvious changes in the absorption and fluores-
cence spectra was observed (Fig. 6a and b), implying the reaction
of 1 to thiol of GSH. Therefore, a possible mechanismwas proposed
as shown in Scheme 2.
Fig. 5. Absorption (a) and fluorescence (b) responses of 1 and 2 (10 mM) to GSH
(20 mM) in a mixture of DMF and water (8:2, v/v) solution. Each spectrumwas acquired
30 min after GSH addition at 25 �C. The excitation wavelength was 370 nm. The
excitation and emission slit widths were 2.5 and 5.0 nm.



Scheme 2. The possible mechanism of the reaction of 1 with GSH.

Fig. 6. Absorption (a) and fluorescence (b) responses of 1 with or without NEM
(100 mM), a mixture of NEM (100 mM) and GSH, and GSH (20 mM) in a mixture of DMF
and water (8:2, v/v) solution. Each spectrum was acquired 30 min after different
analytes addition at 25 �C. The excitation wavelength was 370 nm. The excitation and
emission slit widths were 2.5 and 5.0 nm.
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4. Conclusions

In summary, we have presented the synthesis and properties of
a highly selective two-channel probe 1 for GSH and related bio-
thiols. Addition of GSH to the solution of 1 induced the 19 nm red-
shift in the absorption spectra and about 3-fold fluorescence
intensity enhancement in the fluorescence spectra, which are due
to the reaction of 1with GSH to deliver the compound 3. Moreover,
probe 1 can be used for quantification of GSH in the range of
4e12 mM for red-shift absorbance and 2e12 mM for enhanced
fluorescence. Experiments are underway to test the targetable
capability of 1 to image thiols in living systems.
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