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c-alkoxy-a,b-enoate. A new method to address

stereochemical challenges presented by Amaryllidaceae alkaloids
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Abstract—Various substituted arylcuprates undergo stereocontrolled additions to a DD-mannitol-derived c-alkoxy-a,b-enoate with
exclusive anti-selectivity. The method is well suited for the preparation of a broad range of biologically active Amaryllidaceae alka-
loids and their aromatic analogues. A model accounting for the stereochemical outcome of this process is presented.
� 2005 Elsevier Ltd. All rights reserved.
Isoquinoline alkaloids, isolated from plants of the Ama-
ryllidaceae family, have attracted broad interest from
synthetic chemists, biologists, and pharmacologists.1

Many of these natural products have been found to dis-
play various medicinally useful physiological effects
including anticancer, antiviral, immunostimulatory, acet-
ylcholinesterase inhibitory, and antimalarial activities.
On the basis of the carbon framework, Amaryllidaceae
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Figure 1.
alkaloids are classified into several structural types,
examples being the narciclasine, lycorine, and lycorenine
families (Fig. 1).

According to a recent comprehensive review, over 100
alkaloids that fall into one of these three groups have
been isolated.2 Despite potent biological activities asso-
ciated with some of these Amaryllidaceae constituents,
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their medicinal evaluation is hampered due to low natu-
ral abundance, hence insufficient quantities available
from isolation. For example, pancratistatin (narciclasine
type) is a potent anticancer, antiviral, and antiparasitic
agent that has been in various stages of preclinical devel-
opment for over 18 years. This lengthy time period is in
great part due to availability issues.3 Cytotoxic alkaloids
hippeastrine4 (lycorenine type) and 7-deoxypancratista-
tin5 (narciclasine type) serve as additional examples of
this problem. It should be noted that 7-deoxypancratist-
atin has been shown to exhibit promising therapeutic in-
dexes in antiviral assays and represents a rare example
of chemotherapeutic efficacy in a Japanese Encephalitis
virus infected mouse model.6

These issues have led to a worldwide effort aimed at
developing synthetic pathways to these natural products
for systematic study of their biology and generation of
analogues with medicinal potential. The complexity of
these structures stems in part from dense stereochemis-
try of the cyclitol moiety. Thus, installation of the aro-
matic ring with the required stereochemistry in
pancratistatin (position C10b) has significantly under-
mined the efficiencies of its published syntheses.7 Conse-
quently, pancratistatin�s practical chemical preparation,
which will provide the required quantity of material for
clinical trials, still captivates the minds of the synthetic
community.8 In contrast, much shorter synthetic ap-
proaches have been developed to narciclasine, which
has no stereocenter at position C10b.9

Our recently disclosed synthetic strategy for a practical
synthesis of pancratistatin involves an arylcuprate con-
jugate addition process to c,d,e-trialkoxyenoate 1
(Scheme 1) as an efficient way to install the C10b stereo-
center.10 We found that this reaction affords exclusive
anti-selectivity, independent of the substitution pattern
on the aromatic ring. While the anti-stereochemical out-
come of this process makes it potentially applicable to
the synthesis of lycorine and lycorenine alkaloid types,11
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we were uncertain about the contribution of d and
e-benzyloxy groups in enoate 1 toward this high selectiv-
ity. This is an important issue since successful applica-
tion of this arylcuprate chemistry in various settings
requires that efficient stereocontrol be exerted by a single
c-alkoxy group.

Examination of the literature reports of organocopper
addition processes with c-alkoxy-a,b-enoates reveals
that although the anti-stereochemical outcome is
cwell-precedented, the selectivities range from moderate
to high and are seldom exclusive.12 While various c-
oxygen protecting groups have been found to favor
the formation of anti-products, Hanessian and his co-
workers systematically studied Me2CuLi addition to a
glyceraldehyde-derived enoate and found that selectivi-
ties were highest with methoxymethyl (10:1) and benzyl-
oxymethyl (14:1) groups.12d Although Ph2CuLi reagent
was only moderately (4.5:1) anti-selective with a
c-MOMO-a,b-enoate,12d the same research group
reported later that the reaction of Ph2CuMgBr with
a c-BOMO-a,b-enoate displayed very high anti-
selectivity.12k These, to our knowledge, represent the
only examples of utilization of arylcuprates in this
methodology.

The above-mentioned reports prompted us to prepare
enoate 3 utilizing literature procedures reported for a re-
lated compound12d,13 and investigate its reactions with
various substituted arylcopper reagents, including those
derived from alkoxy aromatics (Scheme 2). We were
pleased to find that under the reaction conditions previ-
ously developed for enoate 1, these additions proceed
with exclusive anti-diastereoselectivities14 with all of
the arylcuprates studied.15,16

The anti-stereochemistry was confirmed by converting
the phenyl addition product 4a to known lactone 6,
whose 1H and 13C NMR had been previously reported
(Scheme 3).17

A number of transition state models, which may ac-
count for anti-selective addition of alkyl, vinyl, and allyl
cuprates to c-alkoxy-a,b-enoates, have been discussed
by various investigators.12b,d,e Clearly, because of the
complex and diverse nature of organocopper reagents,
no single mechanistic model generally explains or pre-
dicts the outcome of these reactions. In addition, the re-
sults of recent mechanistic investigations strongly
support the involvement of large cluster frameworks in
these conjugate additions.18 Thus, the reason for the
strong anti-stereochemical preference may be totally dif-
ferent for arylcuprates. The rather unusual (for acyclic
systems) high degree of stereocontrol observed here
leads us to favor a �modified Felkin-Anh�19 interpreta-
tion (Fig. 2), in which allylic 1,3-strain20 greatly destabi-
lizes transition state B that leads to syn-products. This
destabilization is augmented by the �acute� angle of at-
tack in a copper-enoate p-complex, whose formation is
evidenced by recent experimental and theoretical work
(Fig. 2).18,21 To our knowledge, there has been no discus-
sion of factors determining stereochemical outcome of
such reactions after the new mechanistic understanding
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of organocopper conjugate addition process, includ-
ing the intermediacy of CuIII species, has emerged.

We believe that the chemistry described in this letter will
find general utility in procedures for the installation of
aromatic subunits with required stereochemistry in
pathways to a large number of medicinally promising
Amaryllidaceae alkaloids and other stereochemically
complex substances. Two particular aspects of this
method are noteworthy. Firstly, the observed exclusive
stereocontrol is an important factor in evaluating the
potential scalability of any synthetic method, since nor-
mally difficult chromatographic separation of acyclic
stereoisomers is not required. Secondly, the lack of
dependence of this stereochemical outcome on the sub-
stitution pattern on the aromatic ring makes this process
applicable to the generation of aromatic analogues of
these natural products, an area which has been little
explored.22

Further efforts are underway in this area to apply this
chemistry to the synthesis of Amaryllidaceae constitu-
ents and to refine the presented stereochemical model.
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